張超王義強(qiáng)王啟業(yè)黃瑞春米小琴(. 中南林業(yè)科技大學(xué)經(jīng)濟(jì)林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室 中南林業(yè)科技大學(xué)生物技術(shù)實(shí)驗(yàn)室,長(zhǎng)沙 40004;.湘西州森林生態(tài)研究實(shí)驗(yàn)站,湘西 46000)
產(chǎn)丁醇梭菌基因改造的研究進(jìn)展
張超1王義強(qiáng)1王啟業(yè)1黃瑞春2米小琴2
(1. 中南林業(yè)科技大學(xué)經(jīng)濟(jì)林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室 中南林業(yè)科技大學(xué)生物技術(shù)實(shí)驗(yàn)室,長(zhǎng)沙 410004;2.湘西州森林生態(tài)研究實(shí)驗(yàn)站,湘西 416000)
產(chǎn)丁醇梭菌作為丁醇發(fā)酵的主要生產(chǎn)菌,近年來成為研究的熱點(diǎn),而丁醇作為新型可再生能源,其優(yōu)勢(shì)遠(yuǎn)大于乙醇,因此,對(duì)產(chǎn)丁醇梭菌的基因改造研究具有重大意義。從關(guān)鍵基因、糖酵解途徑和丁醇耐受性的角度出發(fā),介紹了近幾年來對(duì)產(chǎn)丁醇梭菌基因改造的研究進(jìn)展。討論了目前研究存在的問題,并對(duì)如何提高丁醇產(chǎn)量提出一些見解,旨為廣大研究者提供新的思路。
產(chǎn)丁醇梭菌;ABE發(fā)酵;EMP;基因過表達(dá);基因失活;丁醇耐受性
產(chǎn)丁醇梭菌作為ABE(acetone-butanol-ethanol)發(fā)酵[1]的主要菌株,是一類嚴(yán)格厭氧的革蘭氏陽性菌[2]。它們可以利用多種碳源(葡萄糖、木糖、阿拉伯糖、纖維二糖等)[3]通過代謝轉(zhuǎn)化為丙酮、丁醇和乙醇,是一類重要的產(chǎn)溶劑工業(yè)微生物[4]。丁醇作為一種新型的可替代汽油燃料的可再生能源,可直接應(yīng)用于未加改造的汽油發(fā)動(dòng)機(jī)[5],在新能源利用上具有重大意義。目前,用于丁醇生產(chǎn)的梭菌類型主要可分為以下4種類型:丙酮丁醇梭菌(Clostridium acetobutylicum)、拜氏梭菌(Clostridium beijerickii)、糖丁酸梭菌(Clostridium saccharobutylicum)及糖乙酸多丁醇梭菌(Clostridium saccharoperbutylacetonicum)。近年來,在石油化工合成技術(shù)[6]的競(jìng)爭(zhēng)下,開發(fā)高產(chǎn)丁醇梭菌已刻不容緩?,F(xiàn)有的用于提高丁醇產(chǎn)量的方法主要有發(fā)酵條件優(yōu)化[7-10]和改造新的菌株[11],在菌株改造方面有不定向的誘變育種[12,13]和定向的基因改造[14,15]。但受限于分子操作技術(shù)和產(chǎn)丁醇梭菌本身的特點(diǎn)[16],基因改造技術(shù)在過去10年里進(jìn)展緩慢,其基本策略有基因失活、重組和依賴于質(zhì)粒的基因表達(dá)系統(tǒng)等。本文就近10年所進(jìn)行的對(duì)產(chǎn)丁醇梭菌的基因改造方面做一個(gè)概括和總結(jié)。
ABE(acetone-butanol-ethanol)發(fā)酵是生物法產(chǎn)丁醇的最主要方法,其發(fā)酵過程是一個(gè)復(fù)雜的生物反應(yīng)過程,包括2個(gè)不同的階段:產(chǎn)酸階段和產(chǎn)溶劑階段[17]。在溶劑的轉(zhuǎn)變過程中至少涉及到245個(gè)基因的差異表達(dá)[18],兩階段之間的轉(zhuǎn)換涉及到生物化學(xué)反應(yīng)、基因調(diào)控和環(huán)境之間的相互作用[19]。其發(fā)酵的過程為:細(xì)菌利用葡萄糖(或者其他多糖)作為底物,通過EMP(糖酵解)途徑生成2分子丙酮酸,在鐵氧還蛋白氧化還原酶作用下生成乙酰-CoA,并產(chǎn)生氫氣,主要代謝反應(yīng)由6-磷酸果糖激酶和丙酮酸激酶催化。由乙酰-CoA生成丁醇的過程分為產(chǎn)酸階段和產(chǎn)溶劑階段。在細(xì)胞生長(zhǎng)初期和指數(shù)生長(zhǎng)期,所需能量由產(chǎn)酸過程提供,隨著乙酸(由磷酸乙酰轉(zhuǎn)移酶和乙酸激酶催化)和丁酸(由磷酸丁酰轉(zhuǎn)移酶和丁酸激酶催化)的增加,發(fā)酵液pH降低,細(xì)胞生長(zhǎng)受到抑制。當(dāng)pH下降到一定值(pH達(dá)到5左右),細(xì)胞進(jìn)入穩(wěn)定階段,并開始產(chǎn)溶劑。產(chǎn)酸階段產(chǎn)生的乙酸和丁酸被重新利用吸收,在CoA 轉(zhuǎn)移酶的作用下轉(zhuǎn)化為乙酰-CoA和丁酰-CoA。乙酰-CoA和丁酰-CoA在醛脫氫酶和醇脫氫酶的作用下生成乙醇和丁醇。隨著發(fā)酵的進(jìn)行,底物的耗盡和產(chǎn)物丁醇的毒害作用,菌體開始自溶或生成孢子,發(fā)酵活動(dòng)逐漸降低直至終止。具體代謝過程見圖1[20]。
2.1 丙酮合成
丙酮在20世紀(jì)50年代作為ABE發(fā)酵的首要產(chǎn)物,被用于戰(zhàn)爭(zhēng)物資,使得ABE發(fā)酵得到快速發(fā)展。但是,在丁醇作為發(fā)酵的主要產(chǎn)物之后,丙酮的合成路線被研究者們作為首要的剔除代謝路徑來增加丁醇的產(chǎn)量[21,22]。丙酮的合成涉及到乙酰乙酰-CoA轉(zhuǎn)移酶(COAT)和乙酰乙酰脫羧酶(AADC)。Tummala等[22]利用asRNA對(duì)丙酮丁醇梭菌adc進(jìn)行抑制發(fā)現(xiàn),構(gòu)建載有抑制adc的質(zhì)粒和控制質(zhì)粒(無抑制adc的元件)所產(chǎn)生的丙酮并沒有明顯的變化。隨后,為了驗(yàn)證adc對(duì)丙酮的合成是否是必需的關(guān)鍵基因,Tummala將質(zhì)粒pFNK7(載有ctfA和ctfB基因:乙酰乙酰-CoA轉(zhuǎn)移酶基因亞基)和質(zhì)粒pFNK6(含有ctfA、ctfB和adc)轉(zhuǎn)化突變菌株(缺乏所有溶劑生成的突變菌),發(fā)酵結(jié)果表明,丙酮只在含有pFNK6質(zhì)粒中產(chǎn)生,說明adc基因編碼的乙酰乙酰脫羧酶是丙酮合成所必需的關(guān)鍵酶。隨后,Tummala對(duì)ctfA-B的兩亞基進(jìn)行失活,發(fā)現(xiàn)丙酮產(chǎn)量明顯減少,說明ctfA-B基因編碼的乙酰乙酰-CoA轉(zhuǎn)移酶是丙酮合成的限速酶。同樣,在H?nicke等[23]的實(shí)驗(yàn)中也證明了adc基因的缺失會(huì)導(dǎo)致丙酮的合成受限,其所構(gòu)建的adc基因突變菌僅產(chǎn)生2 mmol/L丙酮(野生菌20 mmol/L),進(jìn)一步證明了adc基因?qū)Ρ铣傻闹匾浴?/p>
2.2 乙酸合成
乙酸合成的代謝酶是磷酸乙酰轉(zhuǎn)移酶(PTA)和乙酸激酶(AK),乙酸作為產(chǎn)酸階段的主要代謝物之一,當(dāng)酸的積累達(dá)到一定程度(pH<5)時(shí),宿主菌會(huì)進(jìn)入產(chǎn)溶劑階段。因此,乙酸合成的多少將會(huì)影響宿主菌進(jìn)入產(chǎn)溶劑階段的時(shí)間和丁醇的產(chǎn)量。Cooksley等[24]通過ClosTron技術(shù)失活丙酮丁醇梭菌ack基因發(fā)現(xiàn),乙酸含量明顯減少,乙醇和丁醇的產(chǎn)量卻顯著提高,其所構(gòu)建的ptb(磷酸丁酰轉(zhuǎn)移酶基因)突變菌株的乙酸產(chǎn)量卻比野生菌高,說明減少乙酸合成的代謝流可以提高乙醇的生成,而阻斷丁酸合成的路徑可以提高乙酸的產(chǎn)量。而Kuit等[25]利用同樣的技術(shù)對(duì)ack基因進(jìn)行失活發(fā)現(xiàn),乙酸的含量只是稍微減少,但是丁醇和乙醇的產(chǎn)量相比于野生菌分別提高了16%和59%。Jang等[26]發(fā)現(xiàn),單獨(dú)對(duì)ack、pta基因進(jìn)行敲除并不會(huì)完全消除乙酸的形成,而且經(jīng)過對(duì)其酶活的測(cè)定,發(fā)現(xiàn)被敲除的酶依然具有活性,只是降低到原來的16%。Lehmann[27]的實(shí)驗(yàn)結(jié)果也證明,對(duì)pta進(jìn)行敲除,乙酸的合成相比于野生菌并沒有明顯降低。而Wang等[28]對(duì)拜氏梭菌pta基因進(jìn)行失活,發(fā)現(xiàn)乙酸的產(chǎn)量明顯下降,而丁酸顯著增加。從這些研究結(jié)果可以看出,阻斷丁酸的合成路徑可以提高乙酸的產(chǎn)量,說明兩者在維持環(huán)境pH值是相輔相成的兩個(gè)因素。
圖1 產(chǎn)丁醇梭菌代謝圖
2.3 丁酸合成
丁酸合成比乙酸的合成的代謝網(wǎng)絡(luò)更加復(fù)雜,其代謝過程中直接相關(guān)的2個(gè)關(guān)鍵酶為丁酰轉(zhuǎn)移酶(PTB)和丁酸激酶(BK)。Shao等[29]利用II型內(nèi)含子對(duì)丙酮丁醇梭菌進(jìn)行buk的失活,發(fā)現(xiàn)丁醇的產(chǎn)量比野生菌株提高了44%,與前人的研究結(jié)果相一致[30,31]。Wang[28]等對(duì)拜氏梭菌利用II型內(nèi)含子對(duì)buk進(jìn)行失活,發(fā)現(xiàn)乙酸和丁酸的產(chǎn)量沒有明顯變化,但是可以將溶劑的產(chǎn)量提高20%-30%,并且提高了葡萄糖的利用速率。Lehmann等[32]實(shí)驗(yàn)對(duì)丙酮丁醇梭菌ptb基因進(jìn)行敲除,PTB的酶活只有野生菌株的1%,丁酸的合成路徑基本被抑制,說明ptb基因所表達(dá)的酶為丁酸合成過程中的限速酶。
2.4 生物乙醇/生物丁醇合成
生物醇合成的代謝酶為醇/醛脫氫酶(由基因adhE1、adhE2、bdhA和bdhB編碼)。為了探討這些代謝酶在醇合成中的作用,Harris等[30]構(gòu)建含有aad(醇/醛脫氫酶)基因的質(zhì)粒pTAAD導(dǎo)入丙酮丁醇梭菌的突變菌PJC4BK(buk基因失活)發(fā)現(xiàn),其乙醇的產(chǎn)量從2.6 g/L增加到4.5 g/L,而丁醇和丙酮的產(chǎn)量與突變菌PJC4BK相近,說明aad并不是丁醇合成過程中的限速酶。隨后,Cooksley等[24]利用ClosTron技術(shù)構(gòu)建了醛/醇脫氫酶的突變丙酮丁醇梭菌菌株adhE1-、adhE2-、bdhA-和bdhB-發(fā)現(xiàn),adhE-突變菌只產(chǎn)生少許的溶劑(丁醇2.5、丙酮1.7、乙醇2.5 mmol/L),但其酸產(chǎn)量有明顯增加。而且,突變菌株adhE2-、bdhA-和bdhB-對(duì)比于野生菌株,其產(chǎn)物產(chǎn)量基本無變化,說明adhE1是負(fù)責(zé)溶劑產(chǎn)生的主要基因。
2.5 EMP代謝途徑改造
目前對(duì)EMP(糖酵解)途徑代謝基因改造的研究還比較少,重點(diǎn)還是集中在研究下游代謝酶對(duì)丁醇產(chǎn)量的影響。2013年,Ventura等[20]對(duì)丙酮丁醇梭菌進(jìn)行基因改造,通過對(duì)6-磷酸果糖激酶和丙酮酸激酶的過表達(dá),發(fā)現(xiàn)丁醇和乙醇的產(chǎn)量分別提高了29.4%和85.5%,丙酮并無明顯增加,丁醇和總?cè)軇┑漠a(chǎn)量分別提高到19.12和28.02 g/L。Ventura對(duì)實(shí)驗(yàn)結(jié)果作出了合理的分析,得出了溶劑產(chǎn)量的增加是因?yàn)檫@兩種酶的過表達(dá)使得細(xì)胞產(chǎn)生了更多的ATP和NADH。最新研究發(fā)現(xiàn)[33],通過失活拜氏梭菌基因Cbei_4110(編碼NADH醌氧化還原酶)來阻礙NAD(P)H消耗,發(fā)現(xiàn)葡萄糖利用率和丁醇產(chǎn)量都顯著提高。ATP作為細(xì)胞的能量提供者和酸代謝途徑的生成物,可以使細(xì)胞更快的生長(zhǎng),同時(shí)又能抑制產(chǎn)酸代謝途徑(負(fù)反饋調(diào)節(jié)作用)。而NADH作為產(chǎn)溶劑過程中的反應(yīng)物,可以有效地促進(jìn)代謝向產(chǎn)溶劑方向進(jìn)行。受此研究?jī)?nèi)容的啟發(fā),本實(shí)驗(yàn)課題研究組正在構(gòu)建載有pyk(丙酮酸激酶基因)和pfk(6-磷酸果糖激酶基因)基因的目標(biāo)菌(Clostridium Saccharobutylicum BAA-117),希望能夠進(jìn)一步驗(yàn)證EMP代謝途徑對(duì)丁醇產(chǎn)量的提高有重要影響,并完善其理論依據(jù)。
3.1 丁醇耐受性基因改造
丁醇的毒害作用對(duì)丁醇產(chǎn)量的提高是一個(gè)非常重要的限制因素,其限制作用主要體現(xiàn)在對(duì)細(xì)胞膜流動(dòng)性的改變。因此,在主要代謝途徑之外,研究者們通過研究其他相關(guān)基因,發(fā)現(xiàn)有些基因可以提高丁醇的耐受性。例如,Xu等[14]通過對(duì)拜氏梭菌的基因cac3319(編碼組氨酸激酶)進(jìn)行敲除,發(fā)現(xiàn)突變菌能在含有20 g/L丁醇下正常生長(zhǎng),且丁醇的產(chǎn)量由12.6 g/L增加到21 g/L。表明基因cac3319對(duì)于溶劑生成和丁醇耐受性的提高有著重要的作用。Tomas等[34]將含有熱激蛋白基因(groES和 groEL)的質(zhì)粒轉(zhuǎn)入丙酮丁醇梭菌 ATCC824中,構(gòu)建了新的菌株,發(fā)現(xiàn)其總?cè)軇舛扰c野生菌株、質(zhì)粒對(duì)照菌株相比分別提高40%和33%,說明熱激蛋白可以提高細(xì)胞的耐受性,間接提高溶劑的產(chǎn)量。但是,提高丁醇的耐受性并不一定可以提高丁醇的產(chǎn)量,在Mann等[35]的實(shí)驗(yàn)中發(fā)現(xiàn),過表達(dá)熱激蛋白基因grpE和htpG可以提高丁醇的耐受性,但丁醇產(chǎn)量并沒有提高。此外,Jia等[36]研究發(fā)現(xiàn),由基因SMB_G1518和基因SMB_G1519編碼的兩種未知的功能性蛋白對(duì)菌種耐丁醇有很大的影響,其結(jié)果表明當(dāng)破環(huán)基因SMB_G1518的表達(dá)或者阻斷下游表達(dá)能明顯的增加丁醇的耐受性,而當(dāng)過表達(dá)SMB_ G1519基因則降低菌株的丁醇耐受性能力。表明這兩基因所構(gòu)成的促進(jìn)/阻遏系統(tǒng)將在丙酮丁醇梭菌耐丁醇能力中扮演重要的調(diào)控作用。
3.2 產(chǎn)溶劑抑制基因改造
ABE發(fā)酵是一個(gè)復(fù)雜的代謝過程,因此,影響丁醇生成的因素比較復(fù)雜。除了提高細(xì)菌對(duì)丁醇的耐受性,研究者發(fā)現(xiàn)通過阻斷產(chǎn)溶劑抑制基因也能大幅度提高丁醇產(chǎn)量。Nair等[37]通過同源重組沉默了丙酮丁醇梭菌溶劑抑制基因solR,構(gòu)建了基因工程菌SolRB和SolRH,2株工程菌產(chǎn)生了較高濃度的ABE,其中SolRB工程菌的ABE產(chǎn)量分別為8.1 g/L、17.8 g/L和1.0 g/L,總?cè)軇┠軌蜻_(dá)到26.9 g/L,表明通過解除抑制基因作用能夠明顯提高溶劑的產(chǎn)量。
3.3 孢子生成基因改造
在發(fā)酵后期由于丁醇濃度的升高,將會(huì)抑制細(xì)菌的生長(zhǎng),使細(xì)菌提前進(jìn)入孢子期。因此,有大量研究通過對(duì)孢子生成的基因進(jìn)行改造。Harris等[38]通過將控制孢子形成的基因spo0A在丙酮丁醇梭菌ATCC824中失活和高效表達(dá),分別構(gòu)建了SKO1和pMPSOA工程菌株,結(jié)果表明SKO1基本不產(chǎn)丙酮、丁醇,發(fā)酵后期細(xì)胞呈桿狀,不形成梭狀孢子,而pMPSOA產(chǎn)生較多的丁醇,并且能夠形成梭狀孢子,說明spo0A是控制溶劑產(chǎn)生和孢子形成的一個(gè)轉(zhuǎn)錄調(diào)控因子。Scotcher等[39]構(gòu)建了工程菌株pMSpo和pASspo,分別高效表達(dá)spoIIE和降低spoIIE的表達(dá),結(jié)果顯示spoIIE過量表達(dá)不能提高溶劑產(chǎn)量;相反,spoIIE的下調(diào)使丙酮、丁醇和乙醇的產(chǎn)量分別提高了43%、110%和225%,并且使孢子延期形成,形態(tài)也發(fā)生了改變,這表明spoIIE并不直接影響溶劑產(chǎn)生,而是通過使孢子延期形成,使細(xì)菌的產(chǎn)溶劑期延長(zhǎng),進(jìn)而提高丁醇產(chǎn)量。
產(chǎn)溶劑梭菌作為丁醇的天然生產(chǎn)菌株,丁醇產(chǎn)量比其他類型的基因改造菌要高,但是由于其嚴(yán)格的厭氧培養(yǎng)條件,在實(shí)際培養(yǎng)及分子操作中會(huì)帶來很多困難。例如,CaCl2法轉(zhuǎn)化率低且必須在厭氧環(huán)境中進(jìn)行,而且,在轉(zhuǎn)化過程中常出現(xiàn)轉(zhuǎn)化效率低或者轉(zhuǎn)化子被產(chǎn)溶劑菌的Cac824I二型修飾酶系統(tǒng)降解[40]。應(yīng)對(duì)這些問題,Truffaut等[41]在含有蔗糖的培養(yǎng)基中培養(yǎng)細(xì)菌,通過添加溶菌酶和青霉素,用PEG完成轉(zhuǎn)化,但此制備方法步驟繁雜且周期長(zhǎng)。此外,為了避免質(zhì)粒被宿主菌降解和提高轉(zhuǎn)化效率。Mermelstein等[42]利用大腸桿菌中含有的質(zhì)粒PAN1對(duì)所轉(zhuǎn)化的質(zhì)粒進(jìn)行甲基化修飾,可以避免梭菌的降解系統(tǒng),然后通過電轉(zhuǎn)化并成功轉(zhuǎn)化。Dong等[40]利用二型內(nèi)含子技術(shù)破壞丙酮丁醇梭菌DSM1731的二型限制內(nèi)切酶的基因,使得改造后的突變菌能直接轉(zhuǎn)化而不需要甲基化DNA。隨后這種方法被許多研究者廣為使用[15,43]。但是梭菌的基因失活策略如自殺質(zhì)?;蚯贸?4]、反義RNA抑制[45,46]、復(fù)制型質(zhì)粒同源重組[47,48]、II型內(nèi)含子基因敲除技術(shù)[49,50]等實(shí)驗(yàn)要求較高,不利于產(chǎn)溶劑菌的研究。
近年來,研究者們?yōu)榱颂岣叨〈嫉漠a(chǎn)量,將策略都集中在優(yōu)化丁醇的發(fā)酵條件和構(gòu)建新的改造菌,雖然都取得了很好的效果,但是丁醇的產(chǎn)量始終不能大幅度提高。一方面受限于產(chǎn)丁醇梭菌分子遺傳操作的困難;另一方面缺乏對(duì)產(chǎn)丁醇梭菌整個(gè)ABE代謝過程(包括與環(huán)境的互作)的充分理解。隨著系統(tǒng)代謝工程[51]、轉(zhuǎn)錄組學(xué)[52]和蛋白質(zhì)組學(xué)[53]的發(fā)展,產(chǎn)丁醇梭菌的代謝研究已經(jīng)進(jìn)入快速發(fā)展階段,Liao等[54]采用模型構(gòu)建的策略將ABE發(fā)酵過程的動(dòng)態(tài)整合成一個(gè)模型,希望通過對(duì)基因調(diào)控、環(huán)境互作和代謝反應(yīng)3個(gè)影響因素的整合能夠更好的解釋ABE發(fā)酵的動(dòng)態(tài)變化,為高產(chǎn)丁醇菌株的發(fā)酵條件優(yōu)化和基因改造提供了方向性指導(dǎo)。對(duì)于如何提高丁醇的產(chǎn)量,其所構(gòu)建的模型可以為廣大研究者對(duì)發(fā)酵條件優(yōu)化以及基因改造策略提供理論依據(jù)。筆者認(rèn)為,提高丁醇產(chǎn)量的改造策略有:(1)加強(qiáng)EMP代謝途徑,為細(xì)菌提供更多能量,減少產(chǎn)酸代謝流,同時(shí)加強(qiáng)溶劑產(chǎn)生基因spo0A的表達(dá);(2)失活產(chǎn)酸基因ack和buk,同時(shí)加強(qiáng)spo0A的表達(dá);(3)加強(qiáng)熱激蛋白的表達(dá),提高丁醇的耐受性并過表達(dá)溶劑生產(chǎn)基因(aad和bdhAB)。盡管對(duì)于產(chǎn)丁醇梭菌的代謝路徑研究已經(jīng)非常透徹,但是,對(duì)于細(xì)菌在不同環(huán)境的應(yīng)對(duì)機(jī)制還了解不深。產(chǎn)丁醇梭菌作為天然的丁醇生產(chǎn)菌株,其優(yōu)勢(shì)及缺點(diǎn)都非常明顯。所以,依然需要深入開展對(duì)于構(gòu)建新的高產(chǎn)丁醇菌株和發(fā)現(xiàn)非厭氧產(chǎn)丁醇菌株[55]的研究。
[1]Moon HG, Jang Y, Cho C, et al. One hundred years of clostridial butanol fermentation[J]. Fems Microbiology Letters, 2016, 363:3-18.
[2]Berezina OV, Zakharova NV, Yarotsky CV, et al. Microbialproducers of butanol[J]. Applied Biochemistry And Microbiology, 2012, 48(7):625-638.
[3]Cho C, Jang YS, Moon HG, et al. Metabolic engineering of clostridia for the production of chemicals[J]. Biofuels, Bioproducts and Biorefining, 2015, 9:211-225.
[4]Ding J, Xu G, Han R, et al. Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864[J]. Bioresource Technology, 2016, 199:228-234.
[5]Jin C, Yao M, Liu H, et al. Progress in the production and application of n-butanol as a biofuel[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8):4080-4106.
[6]Uyttebroek M, Van Hecke W, Vanbroekhoven K. Sustainability metrics of 1-butanol[J]. Catalysis Today, 2015, 239:7-10.
[7]Wang QY, Zhang C, Yao R, et al. Butanol Fermentation by Clostridium saccharobutylicum based on poplar wood[J]. Bioresources, 2015, 10(3):5395-5406.
[8]鐘潔, 王義強(qiáng), 華漣灘, 等. 基于楊木纖維發(fā)酵產(chǎn)丁醇工藝條件的研究[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 2015(7):125-130.
[9]彭牡丹, 王義強(qiáng), 王啟業(yè), 等. 糖丁酸梭狀芽孢桿菌BAA-117利用不同碳源發(fā)酵產(chǎn)燃料丁醇的研究[J]. 可再生能源, 2014(11):1703-1709.
[10]Li H, Zhang Q, Yu X, et al. Enhancement of butanol production in Clostridium acetobutylicum SE25 through accelerating phase shift by different phases pH regulation from cassava flour[J]. Bioresource Technology, 2016, 201:148-155.
[11]Zheng J, Tashiro Y, Wang Q, et al. Recent advances to improve fermentative butanol production:Genetic engineering and fermentation technology[J]. Journal of Bioscience and Bioengineering, 2015, 119(1):1-9.
[12]毛紹名, 章懷云. 丙酮丁醇梭菌高耐丁醇突變株的選育及其生理特性的研究[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 2012(8):103-107.
[13]王義強(qiáng), 王啟業(yè), 華連灘, 等. 高產(chǎn)丁醇菌株誘變選育及發(fā)酵研究[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 2015(10):120-126.
[14]Xu M, Zhao J, Yu L, et al. Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production[J]. Applied Microbiology and Biotechnol, 2015, 99(2):1011-1022.
[15]Ehsaan M, Kuit W, Zhang Y, et al. Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824[J]. Biotechnology for Biofuels, 2016, 9(1):4-24.
[16]顧陽, 楊晟, 姜衛(wèi)紅. 產(chǎn)溶劑梭菌分子遺傳操作技術(shù)研究進(jìn)展[J]. 生物工程學(xué)報(bào), 2013(8):1133-1145.
[17]Lutke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum:recent advances to improve butanol production[J]. Current Opinion in Biotechnology, 2011, 22(5):634-647.
[18]Grimmler C, Janssen H, Krauβe D, et al. Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum[J]. Journal of Molecular Microbiology and Biotechnology, 2011, 20(1):1-15.
[19]Lee JW, Na D, Park JM, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals[J]. Nature Chemical Biology, 2012, 8(6):536-546.
[20]Ventura JS, Hu H, Jahng D. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes[J]. Applied Microbiology and Biotechnology, 2013, 97(16):7505-7516.
[21]Jiang Y, Xu C, Dong F, et al. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio[J]. Metabolic Engineering, 2009, 11(4-5):284-291.
[22]Tummala SB, Welker NE, Papoutsakis ET. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum[J]. Journal of Bacteriology, 2003, 185(6):1923-1934.
[23]H?nicke D, Lütke-Eversloh T, Liu Z, et al. Chemostat cultivation and transcriptional analyses of Clostridium acetobutylicum mutants with defects in the acid and acetone biosynthetic pathways[J]. Applied Microbiology and Biotechnology, 2014, 98(23):9777-9794.
[24]Cooksley CM, Zhang Y, Wang H, et al. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway[J]. Metabolic Engineering, 2012, 14(6):630-641.
[25]Kuit W, Minton NP, López-Contreras AM, et al. Disruption of the acetate kinase(ack)gene of Clostridium acetobutylicum results in delayed acetate production[J]. Applied Microbiology andBiotechnology, 2012, 94(3):729-741.
[26]Jang YS, Lee JY, Lee J, et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum[J]. Mcrobiology, 2012, 3(5):e312-e314.
[27]Lehmann D, H?nicke D, Ehrenreich A, et al. Modifying the product pattern of Clostridium acetobutylicum[J]. Applied Microbiology and Biotechnology, 2012, 94(3):743-754.
[28]Wang Y, Li X, Milne CB, et al. Development of a gene knockout system using mobile group II introns(targetron)and genetic disruption of acid production pathways in Clostridium beijerinckii[J]. Applied and Environmental Microbiology, 2013, 79(19):5853-5863.
[29]Shao L, Hu S, Yang Y, et al. Targeted gene disruption by use of a group II intron(targetron)vector in Clostridium acetobutylicum[J]. Cell Res, 2007, 17(11):963-965.
[30]Harris LM, Desai RP, Welker NE, et al. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant:need for new phenomenological models for solventogenesis and butanol inhibition?[J]. Biotechnology and Bioengineering, 2000, 67(1):1-11.
[31]Harris LM, Blank L, Desai RP, et al. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene[J]. Journal of Industrial Microbiology and Biotechnology, 2001, 27(5):322-328.
[32]Lehmann D, Radomski N, Lütke-Eversloh T. New insights into the butyric acid metabolism of Clostridium acetobutylicum[J]. Applied Microbiology and Biotechnology, 2012, 96(5):1325-1339.
[33]Liu J, Guo T, Wang D, et al. Enhanced butanol production by increasing NADH and ATP levels in Clostridium beijerinckii NCIMB 8052 by insertional inactivation of Cbei_4110[J]. Applied Microbiology and Biotechnology, 2016, 100(11):4985-4996.
[34]Tomas CA, Beamish J, Papoutsakis ET. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum[J]. Journal of Bacteriology, 2004, 186(7):2006-2018.
[35]Mann MS, Dragovic Z, Schirrmacher G, et al. Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress[J]. Biotechnology Letters, 2012, 34(9):1643-1649.
[36]Jia K, Zhang Y, Li Y. Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum[J]. PLoS One, 2012, 7(6):e38815.
[37]Nair RV, Green EM, Watson DE, et al. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor[J]. Journal of Bacteriology, 1999, 181(1):319-330.
[38]Harris LM, Welker NE, Papoutsakis ET. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824[J]. Journal of Bacteriology, 2002, 184(13):3586-3597.
[39]Scotcher MC, Bennett GN. SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824[J]. Journal of Bacteriology, 2005, 187(6):1930-1936.
[40]Dong H, Zhang Y, Dai Z, et al. Engineering Clostridium Strain to Accept Unmethylated DNA[J]. PLoS One, 2010, 5:e90382.
[41]Truffaut N, Hubert J, Reysset G. Construction of shuttle vectors useful for transforming Clostridium acetobutylicum[J]. Fems Microbiol Letters, 1989, 49(1):15-20.
[42]Mermelstein LD, Papoutsakis ET. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824[J]. Applied and Environmental Microbiology, 1993, 59(4):1077-1081.
[43]Croux C, Nguyen N, Lee J, et al. Construction of a restrictionless, marker-less mutant useful for functional genomic and metabolic engineering of the biofuel producer Clostridium acetobutylicum[J]. Biotechnology for Biofuels, 2016, 9(1):23.
[44]Green EM, Bennett GN. Genetic manipulation of acid and solvent formation in clostridium acetobutylicum ATCC 824[J]. Biotechnology and Bioengineering, 1998, 58(2-3):215-221.
[45]Desai RP, Papoutsakis ET. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum[J]. Applied and Environmental Microbiology, 1999, 65(3):936-945.
[46]Tummala SB, Junne SG, Papoutsakis ET. Antisense RNAdownregulation of coenzyme A transferase combined with alcoholaldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations[J]. Journal of Bacteriology, 2003, 185(12):3644-3653.
[47]Al-Hinai MA, Fast AG, Papoutsakis ET. Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration[J]. Applied And Environmental Microbiology, 2012, 78(22):8112-8121.
[48]Soucaille P, Figge R, Croux C. Process for chromosomal integration and DNA sequence replacement in Clostridia[Z]. Google Patents, 2014.
[49]Shao L, Hu S, Yang Y, et al. Targeted gene disruption by use of a group II intron(targetron)vector in Clostridium acetobutylicum[J]. Cell Research, 2007, 17(11):963-965.
[50]Heap JT, Pennington OJ, Cartman ST, et al. The ClosTron:a universal gene knock-out system for the genus Clostridium[J]. Journal of Microbiological Methods, 2007, 70(3):452-464.
[51]Liao C, Seo S, Lu T. System-level modeling of acetone-butanolethanol fermentation[J]. Fems Microbiology Letters, 2016, 363(9):w74.
[52]Wang Y, Li X, Blaschek HP. Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052:genome-wide transcriptional analysis with RNA-Seq[J]. Biotechnology for Biofuels, 2013, 6(1):138.
[53]Mao S, Luo Y, Zhang T, et al. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield[J]. Journal of Proteome Research, 2010, 9(6):3046-3061.
[54]Liao C, Seo S, Celik V, et al. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum[J]. Proceedings of the National Academy of Sciences, 2015, 112(27):8505-8510.
[55]Ng CY, Takahashi K, Liu Z. Isolation, characterization, and optimization of an aerobic butanol-producing bacterium from Singapore[J]. Biotechnology And Applied Biochemistry, 2016, 63(1):86-91.
(責(zé)任編輯 狄艷紅)
Research Progress for Genetic Modification of Butanol-producing Clostridia
ZHANG Chao1WANG Yi-qiang1WANG Qi-ye1HUANG Rui-chun2MI Xiao-qin2
(1. Key Lab of Non-wood Forest Nurturing and Protection of National Ministry of Education/Central South University of Forestry and Technology,Biotechnology Laboratory/Central South University of Forestry and Technology,Changsha 410004;2. Xiangxi Forest Ecological Research Station,Xiangxi 416000)
Butanol-producing Clostridia as butanol fermentation strains have been studied frequently in recent years. As a new renewable energy sources,butanol has obviously more advantages than ethanol. Therefore,it is of great significance to study gene modification of butanolproducing Clostridia. In this review,from three aspects of key genes,glycolytic pathway,and butanol tolerance,we introduced the latest research progress on gene modification of butanol-producing Clostridia. Meanwhile,we discussed the issues in the current research,and put forward suggestions on how to improve the butanol yield,aiming at providing some new ideas for the researchers.
butanol-producing Clostridia;ABE fermentation;EMP;gene overexpress;gene inactivation;butanol tolerance
10.13560/j.cnki.biotech.bull.1985.2017.01.011
2016-05-20
國(guó)家林業(yè)局“948”項(xiàng)目(2011-4-13)
張超,男,碩士,研究方向:應(yīng)用生物化學(xué);E-mail:zc327780610@163.com
王義強(qiáng),男,教授,博士生導(dǎo)師,研究方向:生物能源與制藥;E-mail:wangyiqiang12@163.com