曲勝路, 楊茹君, 蘇 函, 劉 媛, 耿倩倩
?
海洋中Fe(Ⅱ)的行為及微生物參與下的過程研究概述
曲勝路1, 2, 楊茹君1, 蘇 函1, 劉 媛1, 耿倩倩1
(1. 中國(guó)海洋大學(xué) 化學(xué)化工學(xué)院, 山東 青島 266100; 2. 青島海洋科學(xué)與技術(shù)國(guó)家實(shí)驗(yàn)室 海洋地質(zhì)過程與環(huán)境功能實(shí)驗(yàn)室, 山東 青島 266071)
Fe(Ⅱ); 微生物活動(dòng); N移除
海水中Fe(Ⅱ)的分布及含量受輸入、遷移轉(zhuǎn)化、遷出等過程的影響。從整體上看, Fe(Ⅱ)在垂直分布上主要集中在表層、OMZ區(qū)和近底層水中, 在水平分布上則呈現(xiàn)出近岸高, 遠(yuǎn)岸低的特點(diǎn)。
海洋中Fe(Ⅱ)的循環(huán)過程包括Fe(Ⅱ)的輸入和輸出, 其中Fe(Ⅱ)的輸入分為外源輸入和海洋再生輸入, 外源輸入方式包括大氣沉降[23]、沉積物釋放[24]、地下水輸入[25]、冰川水釋放[26]等; 海洋再生方式包括光催化還原[7]、生物細(xì)胞裂解釋放[27]、微生物還原[28]等。海水中Fe(Ⅱ)的輸出則主要通過生物攝取[29]、化學(xué)氧化[30]、微生物氧化[31]、顆粒物吸附[32]等方式從海洋中移除。海水中Fe(Ⅱ)的化學(xué)反應(yīng)主要包括: 光催化Fe(Ⅲ)還原產(chǎn)生Fe(Ⅱ)、有機(jī)質(zhì)與Fe(Ⅱ)的配合, Fe(Ⅱ)的化學(xué)氧化移除等。
在海洋透光層, 光催化還原是海水中Fe(Ⅱ)的主要來源。有機(jī)質(zhì)吸收光能, 釋放電子, 并將電子轉(zhuǎn)移給水合Fe(Ⅲ)氧化物, Fe(Ⅲ)還原為Fe(Ⅱ), 氧化物表面Fe(Ⅱ)-O的不穩(wěn)定, 發(fā)生解離將Fe(Ⅱ)釋放到水中(式1)。通常Fe(Ⅲ)氧化物的不定形程度越高, 表面有機(jī)絡(luò)合程度越大, 還原反應(yīng)效率就越高[9, 33-34]。
L(ligand)為與Fe(Ⅱ)絡(luò)合的有機(jī)配體, L′為有機(jī)配體發(fā)生光催化反應(yīng)后的氧化產(chǎn)物。
海水中大部分的溶解有機(jī)態(tài)Fe(Ⅲ)需要被還原為Fe(Ⅱ)才能被生物吸收利用, 有機(jī)態(tài)DFe(Ⅲ)的光還原機(jī)制為光誘導(dǎo)的有機(jī)配體向Fe(Ⅲ)的直接電子轉(zhuǎn)移的反應(yīng)過程(ligand-to-metal charge transfer, LMCT)(式2)[35-36]。
該還原反應(yīng)速率受配體種類、光照條件等因素影響較大[35, 37]。Kuma等[38]測(cè)得日本春季藻華期間的Funka灣表層水Fe(Ⅱ)含量為20~40 nmol/L, 光照模擬實(shí)驗(yàn)結(jié)果表明, 在羥基羧酸存在下, Fe(Ⅲ)能夠被還原為Fe(Ⅱ), 而在腐殖酸存在下, Fe(Ⅲ)沒有被光還原; Rijkenberg等[39]的研究表明, 脫鎂葉綠素、鐵色素、肌醇六磷酸等配體能夠有效增強(qiáng)Fe(Ⅲ)的光還原效率, 使Fe(Ⅱ)的濃度增加; 而去鐵敏B存在下卻抑制Fe(Ⅲ)的還原, 另外原卟啉IX能夠與Fe(Ⅱ)發(fā)生強(qiáng)絡(luò)合, 降低光產(chǎn)物Fe(Ⅱ)的濃度。此外研究發(fā)現(xiàn), 波長(zhǎng)在275~520 nm的光才能催化Fe(Ⅲ)的還原反應(yīng)發(fā)生, 短波長(zhǎng)的光催化效率較高[6, 40]。
Fe(Ⅱ)能夠與海水中的有機(jī)質(zhì)配合, 較穩(wěn)定地存在于海水中。Millero等[30]測(cè)定了有機(jī)質(zhì)含量不同的Biscayne Bay和Gulf Stream 樣品中Fe(Ⅱ)的氧化速率, 結(jié)果表明有機(jī)質(zhì)含量較高的Biscayne Bay水中Fe(Ⅱ)的氧化半衰期為2.4~6.2 min, 是低含量有機(jī)質(zhì)Gulf Stream水的2~5倍, 有機(jī)質(zhì)成分分析表明, 分子質(zhì)量≤500 g/mol的有機(jī)質(zhì)能有效阻止Fe(Ⅱ)的氧化; 而Roy等[41]對(duì)亞北極太平洋西部表層水的研究再次驗(yàn)證了有機(jī)質(zhì)與Fe(Ⅱ)的絡(luò)合作用能夠延長(zhǎng)Fe(Ⅱ)的穩(wěn)定時(shí)間。
濕沉降是海水中Fe(Ⅱ)配體的重要來源。Kieber等[23]研究發(fā)現(xiàn)雨水來源的Fe(Ⅱ)的氧化速率遠(yuǎn)低于其他來源。這主要是由于雨水中的有機(jī)質(zhì)與Fe(Ⅱ)發(fā)生絡(luò)合, 抑制了Fe(Ⅱ)的氧化, 而紫外光消解可以破壞配合效應(yīng)[42]。Willey等[43]比較了雨水、河水等來源的有機(jī)配體與Fe(Ⅱ)的絡(luò)合能力, 發(fā)現(xiàn)雨水中疏水可萃取溶解有機(jī)質(zhì)能夠與Fe(Ⅱ)發(fā)生絡(luò)合, 使氧化半衰期由理論值的幾分鐘延長(zhǎng)至4 h, 其絡(luò)合能力與菲咯嗪(ferrozine, FZ)近似, 而河水來源的有機(jī)配體則對(duì)Fe(Ⅱ)的絡(luò)合作用不明顯。
海水中Fe(Ⅱ)的氧化劑除了O2外, 還包括一些氧化中間體(如H2O2、O2–、OH·)。這些中間體主要由Fe(Ⅱ)的化學(xué)氧化、光催化反應(yīng)產(chǎn)生。King等[47]的研究表明, O2和H2O2對(duì)水體中Fe(Ⅱ)的氧化存在競(jìng)爭(zhēng)關(guān)系, 當(dāng)水體中H2O2的濃度高于一定值時(shí)(10–7mol/L),則可作為水體中Fe(Ⅱ)的主要氧化劑[48]。
目前, 國(guó)際上主要通過流動(dòng)注射化學(xué)發(fā)光法(flow injection- chemiluminescence, FI-CL)現(xiàn)場(chǎng)測(cè)定Fe(Ⅱ), 并在采樣和分析過程中采取盡量縮短測(cè)定時(shí)間、保持海水溫度、氛圍二級(jí)分樣、加入Fe(Ⅱ)固定劑等措施來降低Fe(Ⅱ)的氧化損失[8, 50-52]。由于發(fā)光信號(hào)與Fe(Ⅱ)濃度之間呈一元二次函數(shù)關(guān)系, 即y=kx2+bx+c, 因此在計(jì)算的過程中, 一般采用作標(biāo)準(zhǔn)曲線的方法求海水中Fe(Ⅱ)濃度。首先采樣后立即測(cè)定未知海水發(fā)光信號(hào)y′, 然后將同時(shí)采集的海水靜置10 h后作為空白海水, 并在空白海水中添加Fe(Ⅱ)標(biāo)準(zhǔn), 測(cè)定發(fā)光信號(hào)y與Fe(Ⅱ)濃度之間的函數(shù)式, 將y′代入方程計(jì)算得x′值即為未知海水中Fe(Ⅱ)的濃度[50](圖1)。之前Moffett等[51]采用不同的作圖方法, 在采樣后立即加Fe(Ⅱ)作標(biāo)準(zhǔn)加入曲線, 得到一元二次函數(shù)方程, 但該曲線在x軸上的截距大小是海水中Fe(Ⅱ)與試劑中干擾物質(zhì)濃度之和, 因此需減去試劑中干擾物質(zhì)的濃度, 才是海水中實(shí)際的Fe(Ⅱ)濃度。
海洋浮游植物在生長(zhǎng)和消亡的過程中吸收、釋放Fe(Ⅱ)造成其在海洋生物圈中的循環(huán), 海洋中Fe(Ⅱ)參與的生物過程主要包括浮游生物對(duì)Fe(Ⅱ)的攝取、微生物還原產(chǎn)生Fe(Ⅱ)以及Fe(Ⅱ)的生物氧化等過程。與Fe(Ⅲ)的吸收相比, Fe(Ⅱ)可以直接穿透生物細(xì)胞膜或被細(xì)胞膜上配體蛋白奪取至細(xì)胞內(nèi)[55-56], 不需要進(jìn)行與有機(jī)質(zhì)的絡(luò)合或還原過程[57-58], 是海洋生物所需Fe的重要來源。在Fe(Ⅱ)含量較低的海域, 一些藻類、酵母、細(xì)菌也能夠?qū)e(Ⅲ)化合物還原為Fe(Ⅱ)后再進(jìn)行吸收。
圖2 細(xì)菌異化還原Fe(Ⅲ)機(jī)制
目前研究最多的是sp.和sp.等還原菌, 它們主要通過一系列電子轉(zhuǎn)移蛋白的協(xié)同作用, 將細(xì)胞質(zhì)內(nèi)電子逐步由細(xì)胞內(nèi)膜、細(xì)胞質(zhì)向細(xì)胞外膜轉(zhuǎn)移。進(jìn)入細(xì)胞質(zhì)的溶解態(tài)Fe(Ⅲ)被還原酶所攜帶的電子被還原, 不溶態(tài)Fe(Ⅲ)氧化物則在胞外得到細(xì)胞外膜上的電子發(fā)生還原[65]。White等[66]還對(duì)細(xì)胞外膜中轉(zhuǎn)移蛋白結(jié)構(gòu)及其對(duì)電子轉(zhuǎn)移速率的影響進(jìn)行了研究, 結(jié)果表明細(xì)菌細(xì)胞膜上存在三種色素蛋白組合體。由于組合體的存在, 電子向胞外轉(zhuǎn)移的速率增加至單個(gè)轉(zhuǎn)移蛋白的103倍。這種高效的電子轉(zhuǎn)移機(jī)制為環(huán)境中Fe(Ⅲ)的快速還原提供了重要保證。
圖3 微生物還原Fe(Ⅲ)的三種電子轉(zhuǎn)移途徑
圖4 三類海洋細(xì)菌催化的Fe(Ⅱ)氧化反應(yīng)
參與厭氧光氧化Fe(Ⅱ)反應(yīng)的細(xì)菌種類包括綠硫細(xì)菌、紫色非硫細(xì)菌和紫色硫細(xì)菌等[78], 由位于細(xì)菌細(xì)胞膜上的專一性氧化酶催化氧化反應(yīng)的發(fā)生[79]。其他研究表明細(xì)菌的厭氧光合作用比有氧光合作用出現(xiàn)時(shí)間更早, 而地球早期地層中鐵礦帶(banded iron formations, BIFs)的形成也與光養(yǎng)細(xì)菌的厭氧Fe(Ⅱ)氧化過程緊密相關(guān)[31, 80]。
細(xì)菌氧化Fe(Ⅱ)產(chǎn)生的Fe(Ⅲ)會(huì)吸附在細(xì)胞表面形成結(jié)殼, 嚴(yán)重阻礙細(xì)胞生命活動(dòng)。研究發(fā)現(xiàn)一些Fe(Ⅱ)氧化細(xì)菌可通過產(chǎn)生Fe(Ⅲ)有機(jī)配體[85]、降低pH[86]等方式來避免Fe(Ⅲ)的結(jié)殼, 因此具有更強(qiáng)的環(huán)境適應(yīng)能力。
Fe(Ⅱ)主要通過參與透光層中浮游植物硝酸還原酶的合成來影響N的吸收。而海洋缺氧沉積物和OMZ作為海洋脫氮的主要區(qū)域, 每年通過反硝化或氨氧化過程移除的氮可達(dá)海洋總移除量的70%[87-89], 且沉積物中分布著豐富的鐵礦和還原微生物, 厭氧間隙水和OMZ水體中DFe(Ⅱ)含量普遍較高[18, 90], 因此推測(cè)海洋缺氧環(huán)境中存在著微生物活躍Fe-N遷移轉(zhuǎn)化活動(dòng)。
圖5 沉積物中的Fe-N循環(huán)[91]
[1] Marsh H V, Evans H J, Matrone G. Investigations of the role of iron in chlorophyll metabolism I. effect of iron deficiency on chlorophyll and heme content and on the activities of certain enzymes in leaves[J]. Plant Physiology, 1963, 68: 632-638.
[2] Neilands J B. Iron absorption and transport in microorganisms[J]. Annual Review of Nutrition, 1981, 1: 27-46.
[3] Valentine R C, Mortenson L E, Mower H F, et al. Ferredoxin requirement for reduction of hydroxylamine by[J]. The Journal of Biological Chemistry, 1963, 238:856-858.
[4] Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J]. Corrosion Science, 2013, 66: 88-96.
[5] Boyd P W, Law C S, Wong C S, et al. The decline and fate of an iron-induced subarctic phytoplankton bloom[J]. Nature, 2004, 428: 549-553.
[6] Rich H W, Morel F M M. Availability of well-defined iron colloids to the marine diatom[J]. Limnology and Oceanography, 1990, 35(3): 652-662.
[7] Johnson K S, Coale K H, Elrod V A, et al. Iron photochemistry in seawater from the equatorial Pacific[J]. Marine Chemistry, 1994, 46: 319-334.
[8] Hopkinson B M, Barbeau K A. Organic and redox speciation of iron in the eastern tropical North Pacific suboxic zone[J]. Marine Chemistry, 2007, 106(1-2): 2- 17.
[9] Sulzberger B, Suter D, Siffert C, et al. Dissolution of Fe(Ⅲ)(hydr)oxides in natural waters; laboratory assessment on the kinetics controlled by surface coordination[J]. Marine Chemistry, 1989, 28: 127-144.
[10] Croot P L, Bowie A R, Frew R D, et al. Retention of dissolved iron and Fe(II)in an iron induced Southern Ocean phytoplankton bloom[J]. Geophysical Researche Letters, 2001, 18(28): 3425-3428.
[11] Lin S, Huang K M, Chen S K. Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment[J]. Deep-Sea Research I, 2002, 49: 1837-1852.
[12] Lam P J, Ohnemus D C, Marcus M A. The speciation of marine particulate iron adjacent to active and passive continental margins[J]. Geochimica et Cosmochimica Acta, 2012, 80: 108-124.
[13] Rozan T F, Taillefert M, Trouwborst R E, et al. Iron- sulfur-phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnology and Oceanography, 2002, 47(5): 1346-1354.
[14] de Jong J T M, den Das J, Bathmann U, et al. Dissolved iron at subnanomolar levels in the Southern Ocean as determined by ship-board analysis[J]. Analytica Chimica Acta, 1998, 377: 113-124.
[15] Bruland K W, Orians K J, Cowen J P. Reactive trace metals in the stratified central North Pacific[J]. Geochimica et Cosmochimica Acta, 1994, 58(15): 3171- 3182.
[16] Landing W M, Bruland K W. The contrasting biogeochemistry of iron and manganese in the Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1986, 51: 29-43.
[17] O’Sullivan D W, Hanson A K. Measurement of Fe(Ⅱ) in surface water of the equatorial Pacific[J]. Limnology and Oceanography, 1991, 36(8): 1727-1741.
[18] Bennett W W, Teasdale P R, Welsha D T, et al. Optimization of colorimetric DET technique for the in situ, two-dimensional measurement of iron(Ⅱ) distributions in sediment porewaters[J]. Talanta, 2012, 88: 490-495.
[19] Breitbarth E, Gelting J, Walve J, et al. Dissolved iron(Ⅱ) in the Baltic Sea surface water and implications for cyanobacterial bloom development[J]. Biogeosciences, 2009, 6: 2397-2420.
[20] Boye M, Aldrich A P, van den Berg C M G, et al. Horizontal gradient of the chemical speciation of iron in surface waters of the northeast Atlantic Ocean[J]. Marine Chemistry, 2003, 80: 129-143.
[21] Hansard S P, Landing W M, Measures C I, et al. Dissolved iron(Ⅱ) in the Pacific Ocean: Measurements from the PO2and P16N CLIVAR/CO2repeat hydrography expeditions[J]. Deep-Sea Research I, 2009, 56: 1117-1129.
[22] Hong H, Kester D R. Redox state of iron in the offshore waters of Peru[J]. Limnology and Oceanography, 1986, 31(3): 512-524.
[23] Kieber R J, Williams K, Willey J D, et al. Iron speciation in coastal rainwater concentration and deposition to seawater[J]. Marine Chemistry, 2001, 73: 83-95.
[24] Lohan M C, Bruland K W. Elevated Fe(Ⅱ) and dissolved Fe in hypoxic shelf waters off Oregon and Washington: an enhanced source of iron to coastal upwelling regimes[J]. Environmental Science and Technology, 2008, 42(17): 6462-6468.
[25] Charette M A, Sholkovitz E R. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay[J]. Geophysical Research Letters, 2002, 29(10): 85.
[26] Sedwick P N, Ditullio G R. Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice[J]. Geophysical Research Letters, 1997, 24(20): 2515-2518.
[27] Cooper S R, Mcardle J V, Raymond K N. Siderophore electrochemistry: Relation to intracellular iron release mechanism[J]. Proceedings of the National Academy of Sciences, 1978, 75(8): 3551-3554.
[28] Lovley D R, Phillips E J P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1998, 54(6): 1472-1480.
[29] Morel F M M, Kustka A B, Shaked Y. The role of unchelated Fe in the iron nutrition of phytoplankton[J]. Limnology and Oceanography, 2008, 53(1): 400-404.
[30] Millero. F J, Sotolongo S, Izaguirre M. The oxidation kinetics of Fe(Ⅱ) in seawater[J]. Geochimica et Cosmochimica Acta, 1987, 51: 793-801.
[31] Widdel F, Schnell S, Heising S, et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria[J]. Nature, 1993, 362(29): 834-836.
[32] Sharma S K, Greetham J M R, Schippers J C. Adsorption of iron(Ⅱ) onto filter media[J]. Journal of Water Supply: Research and Technology-AQUA, 1999, 48(3): 84-91.
[33] Cunningham K M, Goldberg M C, Weiner E R. Mechanisms for aqueous photolysis of adsorbed benzoate, oxalate, and succinate on iron oxyhydroxide (goethite) surfaces[J]. Environmental Science and Technology, 1988, 22(9): 1090-1097.
[34] Waite T D, Morel F M M. Photoreductive dissolution of colloidal iron oxide: effect of citrate[J]. Journal of Colloid and Interface Science, 1984, 102: 121-137.
[35] Kuma K, Nakabayashi S, Matsunaga K. Photoreduction of Fe(Ⅲ) by hydroxycarboxylic acids in seawater[J]. Water Research, 1995, 29(6): 1559-1569.
[36] Voelker B M, Morel F M M, Sulzberger B. Iron redox cycling in surface waters: effects of humic substances and light[J]. Environmental Science and Technology, 1997, 31: 1004-1011.
[37] Faust B C, Zepp R G. Photochemistry of aqueous iron(Ⅲ)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters[J]. Environmental Science and Technology, 1993, 27: 2517- 2522.
[38] Kuma K, Nakabayashi S, Suzuki Y, et al. Photo-redu-ction of Fe(Ⅲ) by dissolved organic substances and existence of Fe(Ⅱ) in seawater during spring blooms[J]. Marine Chemistry, 1992, 37: 15-27.
[39] Rijkenberg M J A, Loes J A G, Carolus V E, et al. Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater[J]. Geochimica et Cosmochimica Acta, 2006, 70: 2790-2805.
[40] Rijkenberg M J A, Fischer A C, Kroon K J, et al. The influence of UV irradiation on the photoreduction of iron in the Southern Ocean[J]. Marine Chemistry, 2005, 93: 119-129.
[41] Roy E G, Wells M L, King D W. Persistence of iron(Ⅱ) in surface waters of the western subarctic Pacific[J]. Limnology and Oceanography, 2008, 53(1):89-98.
[42] Kieber R J, Skrabal S A, Smith B J, et al. Organic complexation of Fe(Ⅱ) and its impact on the redox cycling of iron in rain[J]. Environmental Science and Technology, 2005, 39: 1576-1583.
[43] Willey J D, Kieber R J, Seaton P J, et al. Rainwater as a source of Fe(Ⅱ)-stabilizing ligands to seawater[J]. Limnology and Oceanography, 2008, 53(4): 1678-1684.
[44] Iwai H, Fukushima M, Yamamoto M. Binding characteristics and dissociation kinetics for iron(Ⅱ) complexes with seawater extractable organic matter and humic substances in a compost[J]. Analytical Sciences, 2012, 28: 819-821.
[45] Statham P J, Jacobson Y, van den Berg C M G. The measurement of organically complexed FeIIin natural waters using competitive ligand reverse titration[J]. Analytica Chimica Acta, 2012, 743: 111-116.
[46] Statham P J, German C R, Connelly D P. Iron(Ⅱ) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean[J]. Earth and Planetary Science Letters, 2005, 236(3-4): 588-596.
[48] Moffett J W, Zika R G. Reaction kinetics of hydrogen peroxide with copper and iron in seawater[J]. Environmental Science and Technology, 1987, 21(8): 804- 810.
[50] Kondo Y, Moffett J W. Dissolved Fe(Ⅱ) in the Arabian Sea oxygen minimum zone and western tropical Indian Ocean during the inter-monsoon period[J]. Deep Sea Research I, 2013, 73: 73-83.
[51] Moffett J W, Goepfert T J, Naqvi S W A. Reduced iron associated with secondary nitrite maxima in the Arabian Sea[J]. Deep Sea Research I, 2007, 54: 1341-1349.
[53] Williams A G B, Scherer M M. Spectroscopic evidence for Fe(Ⅱ)-Fe(Ⅲ) electron transfer at the iron oxide-water interface[J]. Environmental Science and Technology, 2004, 38: 4782-4790.
[54] Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57: 3867-3883.
[55] Shaked Y, Kustka A B, Morel F M M. A general kinetic model for iron acquisition by eukaryotic phytoplankton[J]. Limnology and Oceanography, 2005, 50(3): 872-882.
[56] Sunda W G. Bioavailability and bioaccumulation of iron in the sea[A].edited by: Turner D R. and Hunter K H, in: The biogeochemistry of iron in seawater[M]. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, 2001, 41-84, .
[57] Kranzler C, Lis H, Finkel O M, et al. Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria[J]. The ISME Journal, 2014, 8: 409- 417.
[58] Kranzler C, Lis H, Shaked Y, et al. The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium[J]. Environmental Microbiology, 2011, 13(11): 2990-2999.
[59] Vargas M, Kashefi K, Blunt-Harris E L, et al. Microbiological evidence for Fe(Ⅲ) reduction on early Earth[J]. Nature, 1998, 395: 65-67.
[60] 劉洪艷, 王紅玉, 謝麗霞, 等.海洋沉積物中一株鐵還原細(xì)菌分離及Fe(Ⅲ)還原性質(zhì)[J].海洋科學(xué), 2016, 40(3): 65-70. Liu Hongyan, Wang Hongyu, Xie Lixia, et al. Isolation and characterization of Fe(Ⅲ)-reducing bacteriumsp. KB52 from marine sediment[J]. Marine Sciences, 2016, 40(3): 65-70.
[61] Bridge T A M, Johnson D B. Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria[J]. Applied and Environmental Microbiology, 1998, 64(6): 2181-2186.
[62] Kashefi K, Lovley D R. Reduction of Fe(Ⅲ), Mn(IV), and toxic metals at 100℃ by[J]. Applied and Environmental Microbiology, 2000, 66(3): 1050-1056.
[63] 司友斌, 王娟.異化鐵還原對(duì)土壤中重金屬形態(tài)轉(zhuǎn)化及其有效性影響[J]. 環(huán)境科學(xué), 2015, 36(9): 3533- 3542. Si Youbin, Wang Juan. Influence of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil[J]. Environmental Science, 2015, 36(9): 3533-3542.
[64] Lovley D. Dissimilatory Fe(Ⅲ)-and Mn(IV)-reducing prokaryotes[J]. Prokaryotes, 2006, 2: 635-658.
[65] Weber K A, Achenbach L A, Coates J D. Microbes pumping iron: anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4: 752-764.
[66] White G F, Shi Z, Shi L, et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(Ⅲ) minerals[J]. Proceedings of the National Academy of Sciences, 2013, 110(16): 6346-6351.
[67] Gorby Y A, Yanina S, Mclean J S, et al. Electrically conductive bacterial nanowires produced bystrain MR-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences, 2006, 103(30): 11358-11363.
[68] Lovley D R, Coates J D, Blunt-Harris E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382: 445-448.
[69] Kotloski N J, Gralnick J A. Flavin electron shuttles dominate extracellular electron transfer by[J]. mBio, 2013, 4(1): 1-4.
[70] 陳潔. 奧奈達(dá)希瓦氏菌MR-1的Fe(Ⅲ)還原特性及其影響因素研究[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2011.Chen Jie. Dissimilatory Fe(Ⅲ) reduction byMR-1 and the influence factors[D]. Hefei: Anhui Agricultural University, 2011.
[71] Urrutia M M, Roden E E, Zachara J M. Influence of aqueous and solid-phase Fe(Ⅱ) complexants on microbial reduction of crystalline iron(Ⅲ) oxides[J]. Environmental Science and Technology, 1999, 33(22): 4022- 4028.
[72] 馮雅麗, 周良, 祝學(xué)遠(yuǎn), 等.異化還原鐵氧化物三種方式[J]. 北京科技大學(xué)學(xué)報(bào), 2006, 28(6): 524-529. Feng Yali, Zhou Liang, Zhu Xueyuan, et al. Three paths to reduce ferric oxides taken by[J]. Journal of University of Science and Technology Beijing, 2006, 28(6): 524-529.
[73] Yang W H, Weber K A, Silver W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5: 538-541.
[74] van de Vossenberg J, Rattray J E, Geerts W, et al. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production[J]. Environmental Microbiology, 2008, 10(11): 3120-3129.
[75] Li X, Hou L, Liu M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science and Technology, 2015, 49: 11560- 11568.
[76] Chan C S, Emerson D, Luther G W. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations[J]. Geobiology, 2016, 14: 509- 528.
[77] Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the Eastern Pacific[J]. Marine Geology, 1988, 81: 227-239.
[78] Kappler A, Newman D K. Formation of Fe(Ⅲ)-minerals by Fe(Ⅱ)-oxidizing photoautotrophic bacteria[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1217- 1226.
[79] Croal L R, Jiao Y, Newman D K. The foxoperon fromstrain SW2 promotes phototrophic Fe(Ⅱ) oxidation inSB1003[J]. Journal of Bacteriology, 2007, 189(5): 1774-1782.
[80] Jiao Y, Newman D K. The piooperon is essential for phototrophic Fe(Ⅱ) oxidation inTIE-1[J]. Journal of Bacteriology, 2007, 189(5): 1765-1773.
[81] Carlson H K, Clark I C, Blazewicz S J, et al. Fe(Ⅱ) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions[J]. Journal of Bacteriology, 2013, 195(14): 3260-3268.
[82] Chakraborty A, Roden E E, Schieber J, et al. Enhanced growth ofsp. strain 2AN during nitrate- dependent Fe(Ⅱ) oxidation in batch and continuous- flow systems[J]. Applied and Environmental Microbiology, 2011, 77(24): 8548-8556.
[83] Muehe E M, Gerhardt S, Schink B, et al. Ecophysiology and the energetic benefit of mixotrophic Fe(Ⅱ) oxidation by various strains of nitrate-reducing bacteria[J]. FEMS Microbiol Ecology, 2009, 70: 335-343.
[84] Straub K L, Buchholz-Cleven B E E. Enumeration and detection of anaerobic ferrous iron oxidizing, nitrate-reducing bacteria from diverse European sediments[J]. Applied and Environmental Microbiology, 1998, 64(12): 4846-4856.
[85] Croal L R, Johnson C M, Beard B L, et al. Iron isotope fractionation by Fe(Ⅱ)-oxidizing photoautotrophic bacteria[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1227-1242.
[86] Hegler F, Schmidt C, Schwarz H, et al. Does a low-pH microenvironment around phototrophic Fe(II)-oxidizing bacteria prevent cell encrustation by Fe(III)minerals?[J]. FEMS Microbiology Ecology, 2010, 74: 592-600.
[87] Hulth S, Aller R C, Canfield D E, et al. Nitrogen removal in marine environments: recent findings and future research challenges[J]. Marine Chemistry, 2005, 94(1-4): 125-145.
[88] Dalsgaard T, Canfield D E, Petersen J, et al. N2production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica[J]. Nature, 2003, 422: 606-608.
[90] Vedamati J, Goepfert T, Moffett J W. Iron speciation in the eastern tropical South Pacific oxygen minimum zone off Peru[J]. Limnology and Oceanography, 2014, 59(6): 1945-1957.
[91] Weber K A, Urrutia M M, Churchill P F, et al. Anaerobic redox cycling of iron by freshwater sediment microorganisms[J]. Environmental Microbiology, 2006, 8(1): 100-113.
[93] Jorgensen C J, Jacobsen O S, Elberling B, et al. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environmental Science and Technology, 2009, 43: 4851-4857.
[94] Clément J C, Shrestha J, Ehrenfeld J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328.
[95] Myers C R, Myers J M. Cloning and sequence of, a gene encoding a tetraheme cytochromerequired for reduction of iron(Ⅲ), fumarate, and nitrate byMR-1[J]. Journal of Bacteriology, 1997, 179(4): 1143-1152.
[96] Oshiki M, Ishii S, Yoshida K, et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria[J]. Applied and Environmental Microbiology, 2013, 79(13): 4087-4093.
[97] Kopf S H, Henny C, Newman D K. Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments[J]. Environmental Science and Technology, 2013, 47: 2602-2611.
[98] Ottow J C G. Selection, Characterization and iron- reducing capacity of nitrate reductaseless (nit) mutants of iron-reducing bacteria[J]. Journal of Basic Microbiology, 2010, 10(1): 55-62.
[99] Dichristina T J. Effects of nitrate and nitrite on dissimilatory iron reduction by200[J]. Journal of Bacteriology, 1992, 174(6): 1891-1896.
(本文編輯: 康亦兼)
A review of the behavior and microbial activity of Fe(Ⅱ) in seawater
QU Sheng-lu1, 2, YANG Ru-jun1, SU Han1, LIU Yuan1, GENG Qian-qian1
(1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; 2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China)
Fe(Ⅱ); microbialactivities; nitrogen removal
Apr. 28, 2017
P734.2
A
1000-3096(2017)10-0139-10
10.11759/hykx20170428001
2017-04-28;
2017-10-25
青島海洋科學(xué)與技術(shù)國(guó)家實(shí)驗(yàn)室海洋地質(zhì)過程與環(huán)境功能實(shí)驗(yàn)室開放基金資助項(xiàng)目(MGQNLM-KF201701)
[Supported by the Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, grant No. MGQNLM-KF201701]
曲勝路(1993-), 女, 河北衡水人, 碩士研究生, 主要從事海洋痕量元素生物地球化學(xué)研究, 電話: 17864277355, E-mail: 1175198588@qq.com; 楊茹君, 通信作者, 博士, 副教授, 電話: 0532-66781815, E-mail: yangrj@ouc.edu.cn