国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

應(yīng)重視硝態(tài)氮同化過程在降低土壤硝酸鹽濃度中的作用*

2017-02-06 16:08余云飛王慎強(qiáng)
土壤學(xué)報(bào) 2017年6期
關(guān)鍵詞:銨態(tài)氮硝態(tài)碳源

程 誼 黃 蓉 余云飛 王慎強(qiáng)?

(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室(中國科學(xué)院南京土壤研究所),南京 210008)

(2 江蘇省農(nóng)業(yè)委員會(huì),南京 210036)

應(yīng)重視硝態(tài)氮同化過程在降低土壤硝酸鹽濃度中的作用*

程 誼1黃 蓉1余云飛2王慎強(qiáng)1?

(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室(中國科學(xué)院南京土壤研究所),南京 210008)

(2 江蘇省農(nóng)業(yè)委員會(huì),南京 210036)

在保證生產(chǎn)力條件下,采取合理的氮肥管理措施降低土壤硝態(tài)氮濃度對(duì)降低氮污染至關(guān)重要。當(dāng)前,應(yīng)用硝化抑制劑能夠有效延緩銨態(tài)氮的硝化速率,進(jìn)而降低土壤硝態(tài)氮淋溶損失和氮氧化物排放,但是其缺點(diǎn)顯而易見:促進(jìn)氨揮發(fā)并引起硝化抑制劑污染。好氧條件下,土壤硝態(tài)氮凈變化量取決于產(chǎn)生(硝化)和消耗(硝態(tài)氮同化)的量。但是,一直以來,受微生物優(yōu)先利用銨態(tài)氮這一傳統(tǒng)觀點(diǎn)的影響,人們普遍認(rèn)為農(nóng)田土壤微生物較少利用硝態(tài)氮,很大程度上忽視了對(duì)硝態(tài)氮同化過程的研究。該過程獨(dú)具優(yōu)勢,它將硝態(tài)氮轉(zhuǎn)變?yōu)槲⑸锷锪康M(jìn)行短期儲(chǔ)存并發(fā)生再礦化,具有保氮功能且環(huán)境友好。加入特定的碳源可以提高硝態(tài)氮同化這已是不爭的事實(shí),未來應(yīng)加強(qiáng)硝態(tài)氮同化降低土壤硝酸鹽累積方面的研究:(1)外源碳影響硝態(tài)氮同化的微生物驅(qū)動(dòng)機(jī)制是什么?(2)怎樣才能操控硝態(tài)氮同化和再礦化過程,使得作物氮需求和土壤氮供應(yīng)相匹配,進(jìn)而降低氮損失?(3)在碳源充足的條件下,反硝化作用亦會(huì)增強(qiáng),如何才能做到在提高硝態(tài)氮同化的同時(shí)避免反硝化氮損失?

硝態(tài)氮累積;硝態(tài)氮同化;硝化抑制劑;碳源

施用氮肥是提高農(nóng)作物產(chǎn)量、保證糧食安全必不可少的措施。僅從2008—2012年的這四年間,世界化肥氮施用量從0.99億噸增加至1.2億噸,年平均增幅達(dá)5.3%[1]。隨著世界人口不斷增長,預(yù)計(jì)到2050年世界氮肥需求量將進(jìn)一步增長至2.4億噸[2]。在農(nóng)田土壤中,氮肥是養(yǎng)分,一旦脫離農(nóng)田土壤,它就可能成為污染物質(zhì)。因此,迫切需要研究使氮肥既能被土壤固持又能被植物和土壤微生物快速利用的關(guān)鍵技術(shù),盡可能地阻止氮肥從農(nóng)田擴(kuò)散至水體、大氣和陸地生態(tài)系統(tǒng)[3]。

1 控制農(nóng)田土壤硝態(tài)氮濃度是關(guān)鍵

土壤中的氮以有機(jī)氮、銨態(tài)氮、硝態(tài)氮等不同的形態(tài)存在。銨態(tài)氮是還原態(tài),為陽離子,在帶陰離子的土壤膠體中容易被吸附;硝態(tài)氮是氧化態(tài),為陰離子,具有更大的移動(dòng)性[4]。以尿素、碳酸氫銨等銨態(tài)氮形式施入的氮肥一般在2~3周內(nèi)即可通過硝化作用迅速轉(zhuǎn)變?yōu)橐苿?dòng)性較強(qiáng)的硝態(tài)氮[5]。在我國北方旱作土壤中這種轉(zhuǎn)化更為迅速(1~2周)[6-7]。對(duì)于喜銨態(tài)氮的植物,如水稻和茶樹,銨態(tài)氮迅速轉(zhuǎn)變?yōu)橄鯌B(tài)氮,不利于作物對(duì)肥料氮的吸收。即使對(duì)于玉米、小麥和蔬菜等喜硝態(tài)氮的植物,當(dāng)?shù)释度氤^了植物對(duì)氮的需求時(shí),也會(huì)造成農(nóng)田土壤硝態(tài)氮的大量累積。近期,對(duì)中國主要旱地土壤剖面硝酸鹽累積的綜合分析表明,小麥、玉米、菜地和果園0~4 m土壤剖面的硝態(tài)氮累積量分別高達(dá)453、749、1230、2 155 kg hm-2(以純氮計(jì)),土壤剖面硝態(tài)氮累積最容易發(fā)生在降水量為400~800 mm區(qū)間的華北地區(qū),且降水強(qiáng)度、氮肥用量以及盈余氮量是旱地土壤剖面硝態(tài)氮累積的驅(qū)動(dòng)因子[8]。此外,我國農(nóng)田還面臨著嚴(yán)重的土壤硝態(tài)氮徑流、反硝化等損失[9-11]。因此,控制農(nóng)田土壤中硝態(tài)氮的產(chǎn)生和累積是提高氮肥利用率、減少氮素?fù)p失的關(guān)鍵手段之一。

2 硝化抑制劑未必是最佳的選擇

目前,人們常常施用硝化抑制劑來抑制亞硝化單胞菌屬(Nitrosomonas)的活性,從而起到抑制NH4+至NO2-的氧化、減少硝態(tài)氮產(chǎn)生的作用[5,12]。大量的室內(nèi)和田間試驗(yàn)均表明,硝化抑制劑可以降低硝化速率、N2O排放以及徑流水和滲漏水中硝態(tài)氮的濃度[13-14]。但是,硝化抑制劑的施用使得土壤中銨態(tài)氮濃度長時(shí)間保持在較高水平,極大地增加了氨揮發(fā)損失風(fēng)險(xiǎn),尤其是在pH較高的土壤中增加更顯著[4,10-11]。Qiao等[13]分析了62篇關(guān)于田間硝化抑制劑應(yīng)用效果的文章,發(fā)現(xiàn)硝化抑制劑能夠降低48%的無機(jī)氮淋洗、44%的N2O排放和24%的NO排放,增加20%的氨揮發(fā)排放,但從整體來看,硝化抑制劑表現(xiàn)正環(huán)境效應(yīng),凈減少16.5%的氮損失。最佳的氮肥管理策略應(yīng)該滿足作物氮需求與土壤氮供應(yīng)相匹配。對(duì)于喜硝態(tài)氮植物,硝化抑制劑施用雖然減緩了銨態(tài)氮肥的硝化速率,但可能不利于作物對(duì)肥料氮的吸收。此外,硝化抑制劑的抑制效率高低、有效期長短及施用效果除取決于該抑制劑本身的性質(zhì)和生物活性外,還受土壤類型、有機(jī)質(zhì)含量、氮肥品種、施氮量、施氮時(shí)間、作物種類、溫度、水分以及土壤管理措施等諸多因素的影響[15-16]。鑒于硝化抑制劑的諸多局限性,是否可以在繼續(xù)加強(qiáng)硝化抑制劑研究的同時(shí),從另一個(gè)角度,即通過提高好氧條件下土壤硝態(tài)氮消耗速率來研究呢?答案是肯定的。

3 土壤硝態(tài)氮同化過程大有可為

硝態(tài)氮在土壤中的凈變化量取決于多個(gè)微生物過程綜合作用的結(jié)果[17]。一般而言,硝態(tài)氮的產(chǎn)生過程主要是硝化過程,消耗過程包括反硝化和微生物同化(又稱微生物固持)。因此,提高硝態(tài)氮在土壤中的消耗速率很有可能成為降低土壤硝酸鹽累積的有效措施之一。在好氧條件下,反硝化速率常常可以忽略不計(jì)[18],而在厭氧條件下,反硝化會(huì)產(chǎn)生大量的中間產(chǎn)物如N2O和NO[19]。土壤中硝態(tài)氮反硝化的最終結(jié)果均會(huì)引起農(nóng)業(yè)中氮素的損失,并影響大氣環(huán)境[4]。而硝態(tài)氮同化過程則是指土壤微生物利用硝態(tài)氮作為氮源并轉(zhuǎn)化為微生物生物量氮。這個(gè)過程獨(dú)具優(yōu)勢,因?yàn)樗粌H具有保氮功能,且對(duì)環(huán)境不會(huì)造成負(fù)面影響,此外,微生物生物量氮可以短期儲(chǔ)存,進(jìn)一步發(fā)生再礦化釋放出銨態(tài)氮,最終提高可供植物利用的有效態(tài)氮數(shù)量[20-22]。旱地土壤在大部分時(shí)間處于好氧條件下,反硝化作用比較微弱。因此,提高農(nóng)田土壤微生物同化硝態(tài)氮速率,將有助于降低土壤中硝酸鹽的累積及其向環(huán)境擴(kuò)散引起的環(huán)境污染。

然而,長期以來,受微生物優(yōu)先利用銨態(tài)氮這一傳統(tǒng)觀點(diǎn)的影響,人們普遍認(rèn)為農(nóng)田土壤微生物不利用硝態(tài)氮[23-28],因此,硝態(tài)氮同化作為一個(gè)具有保氮功能且環(huán)境友好的氮轉(zhuǎn)化過程一直不受重視,尤其是在我國,描述土壤氮素問題和研究成果的經(jīng)典專著《中國土壤氮素》[4]也未記錄此過程。與銨態(tài)氮相比,微生物利用硝態(tài)氮需要消耗更多的能量,且土壤銨態(tài)氮濃度高時(shí)會(huì)抑制硝態(tài)氮的轉(zhuǎn)運(yùn)或硝態(tài)氮還原酶的合成[29-30]。但是,旱地耕作土壤中硝態(tài)氮濃度常常高于銨態(tài)氮,而土壤中又存在著硝化細(xì)菌和異養(yǎng)微生物對(duì)銨態(tài)氮的強(qiáng)烈競爭作用,因而,當(dāng)銨態(tài)氮含量不足以滿足微生物需求時(shí),硝態(tài)氮的微生物同化作用就有可能發(fā)生[21]。此外,有效態(tài)碳(C)數(shù)量亦是限制硝態(tài)氮同化的關(guān)鍵因子。在森林和草地土壤中發(fā)現(xiàn)了顯著的硝態(tài)氮同化作用[20,31]。一般而言,森林和草地土壤的有機(jī)質(zhì)含量高于農(nóng)業(yè)土壤,這可能意味著農(nóng)業(yè)土壤所含的有效態(tài)碳數(shù)量較少,限制了微生物對(duì)硝態(tài)氮的利用。Recous等[25]發(fā)現(xiàn),耕作土壤中僅加入KNO3時(shí),微生物硝態(tài)氮同化速率忽略不計(jì),而在相同KNO3施用量的基礎(chǔ)上加入500 mg kg-1(以碳計(jì),下同)的葡萄糖時(shí)立即發(fā)生硝態(tài)氮同化。Romero等[32]也發(fā)現(xiàn),農(nóng)業(yè)土壤中同時(shí)加入葡萄糖和硝酸鈉可以明顯提高硝態(tài)氮同化速率,且硝態(tài)氮同化速率隨著葡萄糖加入量增加而提高,尤其當(dāng)葡萄糖加入量達(dá)5 000 mg kg-1時(shí),高達(dá)65.9%的標(biāo)記硝酸鈉可被微生物同化??梢?,土壤中加入足夠數(shù)量的純碳源完全可以刺激硝態(tài)氮同化。但是,農(nóng)業(yè)和養(yǎng)殖業(yè)廢棄物施入對(duì)硝態(tài)氮同化速率的影響卻明顯不同。大量的研究表明,土壤中加入動(dòng)物糞肥不能刺激硝態(tài)氮同化[26-27,33],而施用小麥秸稈可以提高硝態(tài)氮同化[34-35]。因此,有機(jī)物料能否促進(jìn)土壤微生物利用硝態(tài)氮可能取決于碳源類型。與小麥秸稈相比,堆肥、菜籽餅和雞糞的C/N較低,常常小于20,碳可利用性可能不足以支持微生物的生長需求。與此相反,高C/N有機(jī)物料的施入則會(huì)激發(fā)異養(yǎng)微生物吸收更多的外源氮來滿足自身生長對(duì)氮的需求,致使微生物在利用銨態(tài)氮的同時(shí)也利用硝態(tài)氮。這就解釋了為什么加入足夠數(shù)量的高C/N的有機(jī)物料才有可能提高微生物硝態(tài)氮同化速率。

此外,對(duì)于哪類微生物是土壤微生物硝態(tài)氮同化作用的執(zhí)行者目前尚不清楚。研究表明,細(xì)菌和真菌均參與土壤氮素的轉(zhuǎn)化過程[36]。目前,關(guān)于真菌與細(xì)菌在土壤N2O排放、自養(yǎng)硝化、異養(yǎng)硝化和反硝化過程的相對(duì)貢獻(xiàn)大小已有大量的報(bào)道[37-39],然而,鮮有研究關(guān)注真菌與細(xì)菌對(duì)硝態(tài)氮同化過程的相對(duì)貢獻(xiàn)[40]。從微生物選擇性看,細(xì)菌優(yōu)先利用NH4+-N作為氮源[29],其他微生物如真菌可能更傾向于將NO3--N作為氮源[41]。然而,目前為止,真菌是否參與土壤硝態(tài)氮同化過程仍然不清楚。Romero等[32]發(fā)現(xiàn),加入葡萄糖后細(xì)菌數(shù)量呈爆發(fā)性增長,且隨著葡萄糖用量的增加而增長。然而,他們并未測定真菌數(shù)量,無法明確真菌和細(xì)菌的相對(duì)貢獻(xiàn)。此外,微生物對(duì)氮源的選擇是與環(huán)境相適應(yīng)的,不同生態(tài)系統(tǒng)微生物的群落結(jié)構(gòu)不同,氮循環(huán)也隨之而變。越來越多的證據(jù)表明,真菌與細(xì)菌生物量的比值隨pH下降而增加,這意味著在酸性土壤中,真菌可能起更重要的作用[42-43]??梢?,真菌和細(xì)菌對(duì)土壤硝態(tài)氮同化的相對(duì)貢獻(xiàn)可能還受土壤pH的影響。但是,在硝態(tài)氮同化過程中,起作用的細(xì)菌和真菌的群落結(jié)構(gòu)和多樣性至今未知。因此,有待于深入研究不同環(huán)境條件下參與硝態(tài)氮同化作用的細(xì)菌和真菌群落組成與結(jié)構(gòu)的變化,從而揭示細(xì)菌和真菌在硝態(tài)氮同化過程中的作用。

4 展 望

盡管國內(nèi)外關(guān)于外源碳對(duì)土壤硝態(tài)氮同化過程的影響研究非常有限,但是加入特定的碳源可以刺激硝態(tài)氮同化這已是不爭的事實(shí)。硝態(tài)氮同化作為一個(gè)可降低土壤硝態(tài)氮濃度的保氮過程應(yīng)該獲得廣泛的關(guān)注。但是,針對(duì)該過程,目前尚有以下問題值得進(jìn)一步研究:(1)在大量碳源加入下,微生物同化硝態(tài)氮能力究竟有多大?(2)已被同化的硝態(tài)氮何時(shí)能再礦化,能礦化出來的比例是多少?(3)怎樣才能操控硝態(tài)氮同化和再礦化過程,使得作物氮需求和土壤氮供應(yīng)相匹配,進(jìn)而降低氮損失?(4)外源碳影響硝態(tài)氮同化的微生物驅(qū)動(dòng)機(jī)制是什么?(5)如何做到使土壤硝態(tài)氮濃度控制在一定范圍,既能滿足作物對(duì)氮的需求而又不造成土壤硝態(tài)氮過量累積?(6)在碳源充足的條件下,反硝化作用亦會(huì)增強(qiáng),如何才能做到在提高硝態(tài)氮同化的同時(shí)避免反硝化氮損失?

[1] 中華人民共和國國家統(tǒng)計(jì)局. 國際統(tǒng)計(jì)年鑒.北京:中國統(tǒng)計(jì)出版社,2014 National Bureau of Statistics of the People’s Republic of China. International statistical yearbook(In Chinese).Beijing:China Statistics Press,2014

[2] Tilman D,F(xiàn)argione J,Wolff B,et al. Forecasting agriculturally driven global environmental change.Science,2001,292(5515):281—284

[3] 蔡祖聰,顏曉元,朱兆良.立足于解決高投入條件下的氮污染問題.植物營養(yǎng)與肥料學(xué)報(bào),2014,20(1):1—6 Cai Z C,Yan X Y,Zhu Z L. A great challenge to solve nitrogen pollution from intensive agriculture(In Chinese). Journal of Plant Nutrition and Fertilizer,2014,20(1):1—6

[4] 朱兆良,文啟孝. 中國土壤氮素. 南京:江蘇科學(xué)技術(shù)出版社,1992 Zhu Z L,Wen Q X. Nitrogen in soil of China(In Chinese). Nanjing:Jiangsu Science and Technology Press,1992

[5] Huber D,Warren H,Nelson D,et al. Nitrification inhibitors:New tools for food production. BioScience,1977,27(8):523—529

[6] 巨曉棠,劉學(xué)軍,張福鎖. 冬小麥/夏玉米輪作中NO3--N在土壤坡面的累積及移動(dòng). 土壤學(xué)報(bào),2003,40(4):538—546 Ju X T,Liu X J,Zhang F S. Accumulation and movement of NO3-in soil profile in winter wheat-summer maize rotation system(In Chinese). Acta Pedologica Sinica,2003,40(4):538—546

[7] 巨曉棠,張福鎖. 中國北方土壤硝態(tài)氮的累積及其對(duì)環(huán)境的影響. 生態(tài)環(huán)境,2003,12(1):24—28 Ju X T,Zhang F S. Nitrate accumulation and its implication to environment in north China(In Chinese). Ecology and Environment,2003,12(1):24—28

[8] Zhou J,Gu B,Schlesinger W H,et al. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports,2016,6:25088. DOI:10.1038/srep25088

[9] Kramer S B,Reganold J P,Glover J D,et al. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proceedings of the National Academy of Sciences of the United States of America,2006,103(12):4522—4527

[10] Ju X T,Xing G X,Chen X P,et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America,2009,106(9):3041—3046

[11] Zhao X,Zhou Y,Wang S Q,et al.Nitrogen balance in a highly fertilized rice-wheat double-cropping system in Southern China. Soil Science Society of America Journal,2012,76(3):1068—1078

[12] Zerulla W,Barth T,Dressel J,et al. 3,4-Dimethylpyrazole phosphate(DMPP)-a new nitrification inhibitor for agriculture and horticulture:An introduction. Biology and Fertility of Soils,2001,34(2):79–84

[13] Qiao C L,Liu L L,Hu S J,et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.Global Change Biology,2015,21(3):1249—1257

[14] Ruser R,Schulz R. The effect of nitrification inhibitors on the nitrous oxide(N2O)release from agricultural soils-A review. Journal of Plant Nutrition and Soil Science,2015,178(2):171—188

[15] 孫志梅,武志杰,陳利軍,等. 土壤硝化作用的抑制劑調(diào)控及其機(jī)理. 應(yīng)用生態(tài)學(xué)報(bào),2008,19(6):1389—1395 Sun Z M,Wu Z J,Chen L J,et al. Regulation of soil nitrification with nitrification inhibitors and related mechanisms(In Chinese). Chinese Journal of Applied Ecology,2008,19(6):1389—1395

[16] 孫志梅,武志杰,陳利軍,等. 硝化抑制劑的施用效果、影響因素及其評(píng)價(jià). 應(yīng)用生態(tài)學(xué)報(bào),2008,19(7):1611—1618 Sun Z M,Wu Z J,Chen L J,et al. Application effect,affecting factors,and evaluation of nitrification inhibitor:A review(In Chinese). Chinese Journal of Applied Ecology,2008,19(7):1611—1618

[17] Di H J,Cameron K C,McLaren R G. Isotopic dilution methods to determine the gross transformation rates of nitrogen,phosphorus,and sulfur in soil:A review of the theory,methodologies,and limitations. Australian Journal of Soil Research,2000,38(1):213—230

[18] Murphy D V,Recous S,Stockdale E A,et al. Gross nitrogen fluxes in soil:Theory,measurement and application of15N pool dilution techniques. Advances in Agronomy,2003,79:69—118

[19] Zhang J B,Cai Z C,Cheng Y,et al. Denitrification and total nitrogen gas production from forest soils of Eastern China. Soil Biology and Biochemistry,2009,41(12):2551—2557

[20] Stark J M,Hart S C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests.Nature,1997,385(2):61—64

[21] Burger M,Jackson LE.Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry,2003,35(1):9—36

[22] 程誼,張金波,蔡祖聰.土壤中無機(jī)氮的微生物同化和非生物固定作用研究進(jìn)展. 土壤學(xué)報(bào),2012,49(5):1030—1036 Cheng Y,Zhang J B,Cai Z C. A research progress on biotic and abiotic inorganic n immobilization in soils(In Chinese). Acta Pedologica Sinica,2012,49(5):1030—1036

[23] Jansson S L,Hallam M J,Bartholomew W V.Preferential utilization of ammonium over nitrate by micro-organisms in the decomposition of oat straw. Plant and Soil,1955,6(4):382—390

[24] Rice C W,Tiedje J M. Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biology and Biochemistry,1989,21(4):597—602

[25] Recous S,Mary B,F(xiàn)aurie G. Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biology and Biochemistry,1990,22(7):913—922

[26] Shi W,Norton J M. Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer. Soil Biology and Biochemistry,2000,32(10):1453—1457

[27] Shi W,Miller B E,Stark J M,et al. Microbial nitrogen transformations in response to treated dairy waste in agricultural soils. Soil Science Society of America Journal,2004,68(6):1867—1874

[28] Zhang J B,Zhu T B,Meng T Z,et al. Agricultural land use affects nitrate production and conservation in humid subtropical soils in China. Soil Biology and Biochemistry,2013,62:107—114

[29] Cresswell R C,Syrett P J. Ammonium inhibition of nitrate uptake by the diatom,Phaeodactylum tricornutum. Plant Science Letters,1979,14(4):321—325

[30] Lindell A F,Post D. Ecological aspects of ntcA gene expression and its use as an indicator of the nitrogen status of marine Synechococcus spp. Applied and Environmental Microbiology,2001,67(8):3340—3349

[31] Davidson E A,Stark J M,F(xiàn)irestone M K. Microbial production and consumption of nitrate in an annualgrassland. Ecology,1990,71(5):1968—1975

[32] Romero C M,Engel R,Chen C C,et al. Microbial immobilization of nitrogen-15 labelled ammonium and nitrate in an agricultural soil. Soil Science Society of America Journal,2015,79(2):595—602

[33] Cheng Y,Zhang J B,Müller C,et al.15N tracing study to understand the N supply associated with organic amendments in a vineyard soil. Biology and Fertility of Soils,2015,51(8):983—993

[34] Cheng Y,Cai Z C,Chang S X,et al. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biology and Fertility of Soils,2012,48(8):941—946

[35] Nishio T,Komada M,Arao T,et al. Simultaneous determination of transformation rates of nitrate in soil.Jarq-Japan Agricultural Research Quarterly,2001,35(1):11—17

[36] Boyle S A,Yarwood R R,Bottomley P J,et al.Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon. Soil Biology and Biochemistry,2008,40(2):443—451

[37] Laughlin R J,Stevens R J,Müller C,et al. Evidence that fungi can oxidize NH4+to NO3-in a grassland soil.European Journal of Soil Science,2008,59(2):285—291

[38] Herold M B,Baggs E M,Daniell T J. Fungal and bacterial denitrification are differently affected by longterm pH amendment and cultivation of arable soil. Soil Biology and Biochemistry,2012,54:25—35

[39] 黃瑩,龍錫恩. 真菌對(duì)土壤N2O釋放的貢獻(xiàn)及其研究方法. 應(yīng)用生態(tài)學(xué)報(bào),2014,25(4):1213—1220 Huang Y,Long X E. Contribution of fungi to soil nitrous oxide emission and their research methods A review(In Chinese). Chinese Journal of Applied Ecology,2014,25(4):1213—1220

[40] Myrold D D,Posavatz N R. Potential importance of bacteria and fungi in nitrate assimilation in soils. Soil Biology and Biochemistry,2007,39(7):1737—1743

[41] Marzluf G A. Genetic regulation of nitrogen metabolism in the fungi. Microbiology and Molecular Biology Reviews,1997,61(1):17—32

[42] B??th E,Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry,2003,35(7):955—963

[43] Marstorp H,Guan X,Gong P. Relationship between dsDNA,chloroform labile C and ergosterol in soils of different organic matter contents and pH. Soil Biology and Biochemistry,2000,32(6):879—882

(責(zé)任編輯:陳榮府)

Role of Microbial Assimilation of Soil NO3-in Reducing Soil NO3-Concentration

CHENG Yi1HUANG Rong1YU Yunfei2WANG Shenqiang1?
(1 State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 Jiangsu Agriculture Commission,Nanjing 210036,China)

NO3-accumulation in the soil would trigger N losses through runoff,leaching and N2O emission. It is,therefore,of particular importance to take appropriate nitrogen(N)management strategies to reduce soil NO3-accumulation,and hence to enhance N use efficiency and reduce N losses to the environment.Application of nitrification inhibitor(NI)has been demonstrated to be effective in reducing soil NO3-concentration,NO3-leaching and N2O emission,and simultaneously increasing crop yield. However,there is an indisputable fact that NI application increases ammonia(NH3)emission and causes NI contamination.As a matter of fact,soil NO3-concentration varies with NO3-generation(nitrification)and consumption(assimilation)rates in aerobic conditions. Under the influence of the viewpoint that soil microbes prefer NH4+-N for their growth,it is commonly held that soil microbes rarely use NO3-in farmlands. Consequently,the study on processes of soil microbial NO3-assimilation has been neglected to a certain extent. The process of soil microbial NO3-assimilation is found to be unique in advantage. It turns NO3-into microbial biomass N for temporary storage before mineralization to be available to crops for a longer season or crops in the following season. There is no doubt that soil microbial NO3-immobilization is stimulated by specific extraneous C input,which deserves more attention in future studies concerning how to reduce soil NO3-accumulation. Further studies should primarily focus on the following several aspects:(1)to elucidate mechanism of the microbe driving NO3-assimilation under elevated C availability,(2)to explore how to control microbial assimilation and remineralization of NO3-to match soil N supply with crop N demand and reduce N losses,and(3)to explore how to avoid stimulating denitrification and associated N losses while enhancing microbial NO3-assimilation under the condition of sufficient C supply.

NO3-accumulation;NO3-immobilization;Nitrification inhibitor;Carbon source

S153

A

10.11766/trxb201706010145

* 國家自然科學(xué)基金項(xiàng)目(41671231,41571294)和國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0200106,2017YFD0800103)資助Supported by the National Natural Science Foundation of China(Nos. 41671231and 41571294)and the National Key Research and Development Program of China(Nos. 2017YFD0200106 and 2017YFD0800103)

? 通訊作者 Corresponding author,E-mail:sqwang@issas.ac.cn

程 誼(1983—),男,安徽績溪人,博士,副研究員,主要從事土壤氮素循環(huán)及其農(nóng)業(yè)與生態(tài)環(huán)境效應(yīng)研究。E-mail:ycheng@issas.ac.cn

2017-06-01;

2017-08-11;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-08-18

猜你喜歡
銨態(tài)氮硝態(tài)碳源
離子型稀土尾礦深層土壤剖面銨態(tài)氮污染特征及影響因素*
電化學(xué)法去除硝態(tài)氮的研究
緩釋碳源促進(jìn)生物反硝化脫氮技術(shù)研究進(jìn)展
錳離子對(duì)引黃灌區(qū)不同質(zhì)地土壤銨態(tài)氮吸附影響
竹豆間種對(duì)柑橘園土壤化學(xué)性質(zhì)及微生物碳源代謝特征的影響
不同碳源對(duì)銅溜槽用鋁碳質(zhì)涂抹料性能的影響
不同質(zhì)地土壤銨態(tài)氮吸附/解吸特征
不同鹽堿化土壤對(duì)NH+4吸附特性研究
新型復(fù)合碳源去除工業(yè)綜合園區(qū)廢水中硝酸鹽試驗(yàn)研究
活性碳源顯著降低蔬菜地土壤硝態(tài)氮