国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水分與氮素及其互作對(duì)水稻產(chǎn)量和水肥利用效率的影響研究進(jìn)展

2017-02-04 14:39:17李俊峰楊建昌
中國(guó)水稻科學(xué) 2017年3期
關(guān)鍵詞:水氮利用效率氮素

李俊峰 楊建昌

(揚(yáng)州大學(xué)江蘇省作物遺傳生理國(guó)家重點(diǎn)實(shí)驗(yàn)室培育點(diǎn)/糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心,江蘇揚(yáng)州225009;*通訊聯(lián)系人,E-mail: jcyang@yzu.edu.cn)

水分與氮素及其互作對(duì)水稻產(chǎn)量和水肥利用效率的影響研究進(jìn)展

李俊峰 楊建昌*

(揚(yáng)州大學(xué)江蘇省作物遺傳生理國(guó)家重點(diǎn)實(shí)驗(yàn)室培育點(diǎn)/糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心,江蘇揚(yáng)州225009;*通訊聯(lián)系人,E-mail: jcyang@yzu.edu.cn)

了解水分、氮素及其互作對(duì)水稻產(chǎn)量與水、氮利用效率的影響,對(duì)協(xié)同提高水稻產(chǎn)量與水氮利用效率有重要意義。本文概述了水稻節(jié)水灌溉技術(shù)、氮肥利用效率與氮肥施用技術(shù)、水分與氮素對(duì)水稻產(chǎn)量及水氮利用效率的耦合效應(yīng)、作物-土壤關(guān)系及水氮調(diào)控機(jī)制等方面取得的進(jìn)展;討論了存在的問(wèn)題,這些問(wèn)題包括:高產(chǎn)水稻作物與土壤的水氮互作效應(yīng)尚不明確;高產(chǎn)水稻水氮耦合與高效利用的分子機(jī)理不清楚;協(xié)同提高水稻產(chǎn)量與水氮利用效率的調(diào)控途徑尚未掌握。針對(duì)這些問(wèn)題,建議今后重點(diǎn)研究:高產(chǎn)水稻作物與土壤的水氮互作效應(yīng)及其機(jī)制;水氮互作調(diào)控水稻吸收利用水分和氮素的生理與分子機(jī)理;協(xié)同提高水稻產(chǎn)量和水氮利用效率的調(diào)控途徑與關(guān)鍵技術(shù)。

水稻;水氮互作;產(chǎn)量;水分利用效率;氮肥利用率

水稻是我國(guó)主要的糧食作物[1]。隨著人口的增長(zhǎng)和經(jīng)濟(jì)的發(fā)展,需要不斷增加糧食產(chǎn)量。但另一方面,隨著產(chǎn)量的增加,需要加大水肥資源的投入,在生產(chǎn)上往往出現(xiàn)高產(chǎn)、水肥利用效率低的情況。如何實(shí)現(xiàn)高產(chǎn)與水肥利用效率的協(xié)同提高,這是生產(chǎn)上亟待解決的問(wèn)題,也是國(guó)內(nèi)外水稻栽培研究領(lǐng)域的熱點(diǎn)[1,2]。在諸多影響作物生長(zhǎng)的因素中,水分和氮素是決定作物產(chǎn)量的兩個(gè)最重要因素,也是人為調(diào)控最頻繁、影響最大的作物生長(zhǎng)環(huán)境因子[3-5]。在水、肥供應(yīng)不受限制的條件下,水分和氮素對(duì)作物產(chǎn)量和品質(zhì)的影響在數(shù)量和時(shí)間上存在著最佳的匹配或耦合。在水分虧缺條件下,氮素是開(kāi)發(fā)土-水系統(tǒng)生產(chǎn)效能的激活劑,水是肥效發(fā)揮的關(guān)鍵。水分和氮素這兩者既互相促進(jìn),又互為制約。只要水分和氮肥供應(yīng)合理匹配,就會(huì)產(chǎn)生相互促進(jìn)機(jī)制,實(shí)現(xiàn)作物產(chǎn)量、水分與氮肥利用效率的協(xié)同提高[6-8]。因此,國(guó)內(nèi)外對(duì)于水稻高產(chǎn)與水分養(yǎng)分高效利用的管理技術(shù)及水、氮的互作效應(yīng)等進(jìn)行了大量研究。本文概述了以下幾個(gè)方面取得的進(jìn)展:水稻節(jié)水灌溉技術(shù),水稻氮肥利用效率與氮肥施用技術(shù),水分與氮素對(duì)水稻產(chǎn)量及水、氮利用效率的耦合效應(yīng),作物-土壤關(guān)系及其水氮調(diào)控機(jī)制,討論了存在的問(wèn)題并對(duì)今后研究重點(diǎn)提出了建議,以期為協(xié)同提高水稻產(chǎn)量、水分與氮肥利用效率提供參考。

1 水稻節(jié)水灌溉技術(shù)

二十一世紀(jì)的全球農(nóng)業(yè)面臨兩大挑戰(zhàn):一是為滿足人口的增長(zhǎng)需要不斷增加糧食產(chǎn)量;二是在不斷增加糧食產(chǎn)量的同時(shí)需要應(yīng)對(duì)水資源的日益減少[9]。中國(guó)是世界上13個(gè)水資源貧乏國(guó)家之一,人均擁有的水資源量?jī)H為世界平均水平的四分之一。水稻是我國(guó)主要的糧食作物,也是用水的第一大戶,約占農(nóng)業(yè)用水的60%~70%[10]。在過(guò)去10年中,平均每年農(nóng)業(yè)灌溉缺水300億m3,每年受旱面積2000萬(wàn)~2600萬(wàn)hm2,即使在水資源豐富的南方,每年有160萬(wàn)~200萬(wàn)hm2水稻因季節(jié)性干旱而嚴(yán)重減產(chǎn)[11-12]。不僅如此,我國(guó)稻田的灌溉用水量大,水分利用效率低。在水稻生育期內(nèi)降雨量相近情況下,我國(guó)水稻的灌溉水量比美國(guó)高出30%~40%,灌溉水利用效率(單位灌溉水的稻谷生產(chǎn)量)比美國(guó)低40%~50%[12]。隨著人口的增長(zhǎng)、城鎮(zhèn)和工業(yè)的發(fā)展、全球氣候的變化以及環(huán)境污染的加重,用于作物灌溉的水資源愈來(lái)愈匱乏,嚴(yán)重威脅作物特別是水稻生產(chǎn)的發(fā)展[5,12,13]。

為減輕水資源緊缺對(duì)水稻生產(chǎn)的威脅,國(guó)內(nèi)外稻作科學(xué)工作者對(duì)水稻的需水供水規(guī)律、需水供水的形態(tài)生理指標(biāo)、不同稻作制度下的灌溉模式和技術(shù)等進(jìn)行了大量的研究,創(chuàng)建了多種節(jié)水灌溉技術(shù)如畦溝灌溉、干濕交替灌溉、間歇濕潤(rùn)灌溉、覆膜旱種、生育中期擱田、無(wú)水層種稻、旱育秧、水稻強(qiáng)化栽培等[5,14-19],為推動(dòng)稻作科學(xué)的進(jìn)步和發(fā)展做出了重要貢獻(xiàn)。在眾多的節(jié)水技術(shù)模式中,水稻干濕交替灌溉被認(rèn)為是最為行之有效的節(jié)水灌溉技術(shù)之一。目前該技術(shù)已在亞洲主要水稻生產(chǎn)國(guó)推廣應(yīng)用[20-22]。干濕交替灌溉主要技術(shù)特點(diǎn)是在水稻生育過(guò)程中,在一段時(shí)間里保持水層,自然落干至土壤不嚴(yán)重干裂再灌水,再落干,再灌水,如此循環(huán)[20-22]。干濕交替灌溉技術(shù)雖然有顯著的節(jié)水和提高水分利用效率的效果,但對(duì)水稻產(chǎn)量的影響,因土壤質(zhì)地、土壤落干程度以及水稻生長(zhǎng)季節(jié)溫度和降雨量等因素不同而異,有的報(bào)道增產(chǎn),有的報(bào)道減產(chǎn)[20-25]。

Yang等[23]和Zhang等[26]研究表明,在溫帶地區(qū)(如江蘇?。?,干濕交替灌溉對(duì)水稻產(chǎn)量的正負(fù)效應(yīng)主要取決于土壤落干的程度。在干濕交替灌溉中進(jìn)行輕度土壤落干(土壤水勢(shì)不低于-15 kPa,或中午葉片水勢(shì)不低于-1.1 MPa),則這種干濕交替灌溉(稱之為輕干濕交替灌溉),不僅可以節(jié)約用水和提高水分利用效率,而且可以較常規(guī)灌溉(以水層灌溉為主,中期擱田,收獲前一周斷水)顯著提高產(chǎn)量和改善稻米品質(zhì)。在輕干濕交替灌溉條件下,根干質(zhì)量和根系活性的增加、無(wú)效分蘗的減少和分蘗成穗率的提高、冠層結(jié)構(gòu)的改善(頂部葉片挺立和綠葉面積持續(xù)期長(zhǎng))、花前儲(chǔ)存在莖鞘中非結(jié)構(gòu)性碳水化合物(NSC)向籽粒運(yùn)轉(zhuǎn)的增多、灌漿期遲開(kāi)花弱勢(shì)粒中蔗糖-淀粉代謝途徑關(guān)鍵酶活性的增強(qiáng),是該灌溉模式提高產(chǎn)量和品質(zhì)的重要生理原因[23,25-27]。

有關(guān)干濕交替灌溉對(duì)水稻氮肥利用效率影響的研究,不僅數(shù)量少,而且存在不同的研究結(jié)果。一些研究者認(rèn)為,干濕交替灌溉會(huì)增強(qiáng)土壤硝化與反硝化作用,增加氧化亞氮的排放,因而可減少氮素在稻株中的積累,降低氮肥利用效率[24,28-30]。但Liu等[8]和Wang等[31]研究表明,在輕干濕交替灌溉模式下,稻株中氮的吸收量、單位吸氮量的生產(chǎn)力(產(chǎn)量/氮吸收量)和氮肥偏生產(chǎn)力(產(chǎn)量/施氮量)均顯著高于常規(guī)灌溉。但對(duì)于在干濕交替灌溉模式下氮肥利用效率降低或提高的機(jī)理尚不清楚。

2 我國(guó)的氮肥利用效率與氮肥施用技術(shù)

氮素是水稻生產(chǎn)中另一個(gè)關(guān)鍵因子,也是水稻生產(chǎn)成本投入的重要部分。遺傳改良、栽培技術(shù)進(jìn)步和化肥投入量的不斷增加使得我國(guó)水稻單產(chǎn)從1950年的2.1 t/hm2增加到2014年的6.81 t/hm2[32,33],為保證我國(guó)糧食安全和社會(huì)穩(wěn)定起到了十分重要的作用。但自20世紀(jì)90年代開(kāi)始,我國(guó)作物生產(chǎn)出現(xiàn)了氮肥投入過(guò)量、利用效率低的問(wèn)題[34]。我國(guó)目前水稻平均氮肥施用量為180 kg/hm2,比世界水稻氮肥平均施用量高出75%[34-36]。在高產(chǎn)的太湖稻區(qū),近年水稻平均產(chǎn)量為8.6 t/hm2,較全國(guó)平均產(chǎn)量高出37%,氮肥(以純氮計(jì))平均施用量為300 kg/hm2,較全國(guó)一季水稻的平均氮肥施用量高出67%,氮肥平均農(nóng)學(xué)利用率(單位施氮量增加的產(chǎn)量)不足12 kg/kg,不到發(fā)達(dá)國(guó)家一半[36-38]。氮肥投入量過(guò)多、利用效率低不僅增加生產(chǎn)成本,而且還會(huì)造成嚴(yán)重的環(huán)境污染[36-39]。

為了提高氮肥利用效率,減少氮素?fù)p失對(duì)環(huán)境的不利影響,我國(guó)農(nóng)業(yè)科學(xué)工作者對(duì)水稻氮肥吸收規(guī)律、氮肥的損失途徑和施用技術(shù)等進(jìn)行了大量研究,創(chuàng)建、集成或引進(jìn)了一系列水稻氮肥高效利用施肥技術(shù)。這些技術(shù)包括:氮肥總量控制與作物分生育期調(diào)控相結(jié)合的氮素管理技術(shù)、實(shí)地養(yǎng)分管理技術(shù)、水稻精確施肥技術(shù)、測(cè)土配方施肥、“三定”栽培技術(shù)、“三控”施肥技術(shù)等[34,40-43]。這些技術(shù)的共同特點(diǎn)是:根據(jù)目標(biāo)產(chǎn)量和土壤供肥能力確定總施氮量,根據(jù)水稻長(zhǎng)勢(shì)長(zhǎng)相或葉色對(duì)追肥進(jìn)行調(diào)節(jié);減少基肥施用量,增加穗肥施用比例(前氮后移)。這些技術(shù)可以減少無(wú)效分蘗,減輕病蟲(chóng)害發(fā)生和倒伏。但這些技術(shù)大多集中在保持目前產(chǎn)量水平或略有增產(chǎn)前提下提高氮肥利用效率[44]。自1997年以來(lái),盡管化肥投入量不斷增加,但我國(guó)水稻單產(chǎn)增加卻十分緩慢。我國(guó)水稻單產(chǎn)的年增產(chǎn)率,20世紀(jì)80年代為3.7%,90年代為0.9%[45];2000-2007年為0.5%[46]。

值得一提的是,日本農(nóng)學(xué)家對(duì)稻田“反硝化脫氮損失”研究以及采用深層施肥、施用緩釋肥、控釋肥和硝化抑制劑等措施減少了稻田氮的損失,取得了一定的節(jié)氮和提高氮肥利用率的效果[47]。但這些措施或因生產(chǎn)成本高,或因增產(chǎn)不顯著,未能在我國(guó)水稻生產(chǎn)上大面積推廣應(yīng)用。

隨著人口增長(zhǎng)和經(jīng)濟(jì)發(fā)展,我國(guó)的糧食需求仍將呈現(xiàn)持續(xù)剛性增長(zhǎng)。到2030年,我國(guó)的水稻產(chǎn)量必須較現(xiàn)有水平提高20%[13]。因此,實(shí)現(xiàn)作物高產(chǎn)高效的任務(wù)非常艱巨。為了加強(qiáng)作物高產(chǎn)與資源高效利用的基礎(chǔ)研究,實(shí)現(xiàn)作物高產(chǎn)高效,2009年,國(guó)家啟動(dòng)了重點(diǎn)基礎(chǔ)研究項(xiàng)目(973計(jì)劃)“主要糧食作物高產(chǎn)栽培與資源高效利用的基礎(chǔ)研究”,擬解決“作物群體結(jié)構(gòu)與花后物質(zhì)生產(chǎn)、分配的動(dòng)態(tài)協(xié)調(diào)及其栽培調(diào)控原理”與“穩(wěn)定實(shí)現(xiàn)作物高產(chǎn)高效的土壤條件及其調(diào)控途徑”這兩個(gè)關(guān)鍵科學(xué)問(wèn)題。中國(guó)科學(xué)院南京土壤研究所和揚(yáng)州大學(xué)等單位的一些科技工作者承擔(dān)了以上973項(xiàng)目的第三課題“南方水稻高產(chǎn)與氮肥高效利用的機(jī)制與途徑”的研究。他們分析了南方水稻主產(chǎn)區(qū)水稻產(chǎn)量與氮肥效率的限制因子,探索了維持和提高水稻產(chǎn)量和氮肥利用效率的技術(shù)途徑與原理,評(píng)估了這些技術(shù)措施的環(huán)境影響。通過(guò)培育壯秧、增加栽插密度、前氮后移、增施有機(jī)肥、輕干濕交替灌溉和花后噴施葉面肥等措施,在試驗(yàn)和示范田實(shí)現(xiàn)了增產(chǎn)10%~15%、氮肥利用效率提高15%~20%的預(yù)期目標(biāo)[37,44]。但對(duì)于高產(chǎn)水稻的水肥互作效應(yīng)及其機(jī)理、高產(chǎn)水稻的作物-土壤互作機(jī)制等尚缺乏深入研究。

3 水分與氮素對(duì)水稻產(chǎn)量和水、氮利用效率影響的耦合效應(yīng)

作物的水氮耦合,通常是指土壤水分和氮肥相互作用,共同影響作物生長(zhǎng)、產(chǎn)量和品質(zhì)[48-53]。有關(guān)土壤水分與肥料(主要是氮素)耦合效應(yīng)的研究,早期的工作主要集中在干旱土壤增施氮肥的“以肥補(bǔ)水”、“以肥調(diào)水”或“以水調(diào)肥”作用以及水氮互作產(chǎn)生協(xié)同作用的條件和互作效應(yīng)等方面[48-53]。較多的結(jié)果表明:在土壤干旱條件下作物的“以肥調(diào)水”作用受到土壤干旱程度及施氮量的影響,土壤干旱程度輕,增施氮肥后“以肥調(diào)水”作用明顯,在土壤干旱程度較重時(shí),“以肥調(diào)水”的效應(yīng)減小或不明顯;水分不足會(huì)限制肥效的正常發(fā)揮,水分過(guò)多則易導(dǎo)致肥料的淋溶損失和作物減產(chǎn);施肥過(guò)量或不足均會(huì)影響作物對(duì)水分的吸收利用,進(jìn)而影響作物產(chǎn)量;在一定的范圍內(nèi),氮素和水分對(duì)作物產(chǎn)量、品質(zhì)及養(yǎng)分和水分利用效率有明顯的協(xié)同促進(jìn)作用[48-53]。但也有不同的研究結(jié)果,Sadras等[54,55]在小麥上觀察到,在施氮量不過(guò)量情況下,單位吸氮量的生產(chǎn)力(產(chǎn)量/氮吸收量)隨著施氮量的增加而降低,但水分利用效率(產(chǎn)量/蒸騰蒸發(fā)量)隨著施氮量的增加而提高。

近年來(lái),水稻水氮互作效應(yīng)的研究主要集中在灌溉模式與施氮量或施肥模式對(duì)水稻產(chǎn)量和品質(zhì)的互作效應(yīng)方面[55-59]。這些研究的共同結(jié)論是,干濕交替灌溉配合適宜的施氮量可較“常規(guī)灌溉+低施氮量”或“常規(guī)灌溉+高施氮量”處理組合顯著提高產(chǎn)量、改善稻米品質(zhì)。干濕交替灌溉配合適宜施氮量對(duì)水稻產(chǎn)量和品質(zhì)的協(xié)同效應(yīng),其原因主要在于這種水氮管理模式增加了水稻各器官氮、磷、鉀的有效積累,提高了葉片光合速率,增強(qiáng)了葉片中氮代謝有關(guān)酶如硝酸還原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)活性和根系氧化力,促進(jìn)了結(jié)實(shí)期營(yíng)養(yǎng)器官礦質(zhì)養(yǎng)分和光合同化物向籽粒的轉(zhuǎn)運(yùn)[55-59]。

以上研究雖然明確了水氮對(duì)水稻產(chǎn)量和品質(zhì)影響的互作效應(yīng),但從土壤水分與施氮量與產(chǎn)量關(guān)系的數(shù)學(xué)模型[50](Y=b0+b1x1+b2x2+b3x12+b4x22+b5x1x2, b0、1、2、3、4、5為模型系數(shù),x1為施氮量,x2為土壤水勢(shì),Y為產(chǎn)量)可以看出,獲取一定產(chǎn)量的適宜施氮量因土壤水分不同而異,或適宜的土壤水分因施氮量不同而異。因此,對(duì)于提高水稻產(chǎn)量的水氮耦合模型需要深入研究。

有研究表明,灌溉方式和施氮模式對(duì)氮肥利用的影響有明顯的互作效應(yīng)[8,31]。Liu等[8]觀察到,在“輕干濕交替灌溉+實(shí)地氮肥管理模式、輕干濕交替灌溉+當(dāng)?shù)厥┑J?、常?guī)灌溉+實(shí)地氮肥管理模式、常規(guī)灌溉+當(dāng)?shù)厥┑J健?種處理中,氮肥利用效率以輕干濕交替灌溉+實(shí)地氮肥管理模式處理最高,以常規(guī)灌溉+當(dāng)?shù)厥┑J教幚碜畹?。Wang等[31]最近報(bào)道,水稻產(chǎn)量、水分利用效率和氮肥利用效率不僅受到灌溉模式的影響,而且受到灌溉模式與施氮量互作的影響。采用輕干濕交替灌溉(土壤落干至土壤水勢(shì)-15 kPa時(shí)復(fù)水,或生育前、中期中午的葉片水勢(shì)分別為-0.69 MPa和-0.86 MPa時(shí)復(fù)水)和適宜的施氮量(200 kg/hm2,或生育前、中期單位葉面積的含氮量分別為2.2~2.3 g/m2和2.0~2.1 g/m2)可以協(xié)同提高產(chǎn)量、水分利用效率和氮肥利用效率。

需要指出的是,以往對(duì)水氮互作效應(yīng)的研究,大多在盆缽栽培條件下進(jìn)行,研究結(jié)果難以反映大田生產(chǎn)的實(shí)際情況,對(duì)于水氮互作效應(yīng)的機(jī)理也缺乏深入探討。

4 作物-土壤關(guān)系及其水氮調(diào)控機(jī)制

作物與土壤關(guān)系研究的重點(diǎn)是作物根系與土壤關(guān)系[60]。植物根系不僅是水分和養(yǎng)分吸收的主要器官,而且可以通過(guò)調(diào)節(jié)根系構(gòu)型,合成或分泌激素、有機(jī)酸和酶等物質(zhì)來(lái)適應(yīng)多變的土壤環(huán)境,調(diào)節(jié)根系對(duì)水分和養(yǎng)分的吸收和植株的生長(zhǎng)[61-64]。人們認(rèn)識(shí)到,植物根系可以產(chǎn)生脫落酸,對(duì)干旱土壤作出響應(yīng)并通過(guò)木質(zhì)部輸送到地上部分調(diào)控葉片氣孔的開(kāi)閉,從而減少葉片蒸騰失水,減少干旱對(duì)植株的傷害[65,66]。水稻根系通過(guò)分泌過(guò)氧化物酶和過(guò)氧化氫來(lái)氧化根際環(huán)境,免受H2S和Fe2+等還原性強(qiáng)的有毒物質(zhì)對(duì)根系呼吸和代謝的影響[67,68]。另一方面,土壤結(jié)構(gòu)和養(yǎng)分與水分等條件、根際微生物種類和數(shù)量等可以影響根系生長(zhǎng)發(fā)育、形態(tài)和分布、分泌物的種類和數(shù)量及其對(duì)水分養(yǎng)分的吸收利用[67-69]。

隨著分子生物學(xué)研究的發(fā)展,人們用分子生物學(xué)手段來(lái)研究根-土關(guān)系以及根系吸收和利用水分養(yǎng)分的機(jī)理[70-72]。研究表明,在土壤干旱條件下通過(guò)提高水稻深根基因(DEEPER ROOTING 1,DRO1)表達(dá)或?qū)⒃摶蜣D(zhuǎn)入淺根系水稻后,根系角度發(fā)生改變而向土壤深處下扎,使得水稻根系能有效吸收土壤水分而提高產(chǎn)量[64];水稻和擬南芥在適度干旱條件下根系中ABA合成基因表達(dá)量上調(diào),ABA累積量增加,ABA的增加促進(jìn)了生長(zhǎng)素向根尖的運(yùn)輸,生長(zhǎng)素向根尖運(yùn)輸?shù)脑黾蛹せ钯|(zhì)膜ATP酶,促使根尖分泌更多的質(zhì)子(H+),從而使根系適應(yīng)干旱,維持根系生長(zhǎng)[73]。有研究表明,低氮脅迫可以誘導(dǎo)水稻根中銨轉(zhuǎn)運(yùn)基因OsAMT1;1和硝酸鹽轉(zhuǎn)運(yùn)基因OsNRT2;1在轉(zhuǎn)錄水平上的表達(dá),從而促進(jìn)根對(duì)氮素的吸收[74]。Kamada-Nobusada等[75]觀察到,氮素能促進(jìn)水稻根和苗中細(xì)胞分裂素合成酶—腺苷磷酸異戊烯基轉(zhuǎn)移酶(IPT)相關(guān)基因(OsIPT4,OsIPT5, OsIPT7,OsIPT8)的表達(dá),增加稻株體內(nèi)細(xì)胞分裂素含量和氮素累積;抑制這些基因表達(dá)則會(huì)降低稻株體內(nèi)細(xì)胞分裂素含量和氮素累積,水稻生長(zhǎng)受阻。這些研究進(jìn)展為人們對(duì)根-土關(guān)系尤其是作物吸收水分和氮素的機(jī)理提供了新的認(rèn)識(shí)。但有關(guān)水氮互作對(duì)水稻吸收利用水分和氮素的分子機(jī)理,尚未見(jiàn)研究報(bào)道。

5 存在問(wèn)題與研究展望

5.1 存在問(wèn)題

雖然國(guó)內(nèi)外科技工作者為實(shí)現(xiàn)水稻高產(chǎn)與水分、養(yǎng)分高效利用進(jìn)行了大量的研究并取得了重要進(jìn)展,但仍存在許多問(wèn)題。

1)高產(chǎn)水稻作物與土壤的水氮互作效應(yīng)尚不明確。水分和氮素是決定作物產(chǎn)量的兩個(gè)最重要因素,兩者對(duì)產(chǎn)量及水分和氮肥利用效率存在著顯著的互作效應(yīng)。雖然以往有關(guān)水、肥對(duì)水稻產(chǎn)量和品質(zhì)的影響進(jìn)行了較多的研究,但多集中于水、肥單因子效應(yīng)方面,對(duì)于水氮的耦合效應(yīng)研究較少;或農(nóng)學(xué)家主要重視作物的研究,土壤學(xué)家主要重視土壤的研究,有關(guān)高產(chǎn)水稻水氮互作的作物-土壤效應(yīng)及其機(jī)制缺乏深入研究。

2)高產(chǎn)水稻水氮耦合與高效利用的分子機(jī)理不清楚。分子生物學(xué)的發(fā)展為人們研究水稻對(duì)水分和養(yǎng)分吸收利用機(jī)理提供了新的手段,開(kāi)辟了新的途徑。但目前有關(guān)水氮互作對(duì)水稻吸收利用水分和氮素的分子機(jī)理,尚未有相關(guān)研究報(bào)道。

3)協(xié)同提高水稻產(chǎn)量與水氮利用效率的調(diào)控途徑尚未掌握。經(jīng)過(guò)廣大科技工作者的多年努力,我國(guó)創(chuàng)建或引進(jìn)、集成了一批水稻高產(chǎn)的水分和養(yǎng)分管理技術(shù),為穩(wěn)定和發(fā)展水稻生產(chǎn)做出了重要貢獻(xiàn)。但是,我國(guó)的水、氮投入量仍然很高,水、氮利用效率仍然很低,目前水稻單產(chǎn)增長(zhǎng)率還不能滿足人口增長(zhǎng)和社會(huì)經(jīng)濟(jì)發(fā)展的需求。此外,當(dāng)前水稻生產(chǎn)上還出現(xiàn)機(jī)插稻穗型不整齊和小穗多、秸稈還田后僵苗不發(fā)等問(wèn)題,嚴(yán)重影響產(chǎn)量和水分養(yǎng)分的高效利用。

5.2 研究展望

針對(duì)以上問(wèn)題,建議今后擬重點(diǎn)研究以下幾個(gè)方面。

1)高產(chǎn)水稻作物與土壤的水氮互作效應(yīng)及其生物學(xué)過(guò)程。研究在不同土壤水分和供氮水平下水氮互作對(duì)水稻產(chǎn)量形成的影響,水稻高產(chǎn)與水氮高效利用的水氮耦合模型;從內(nèi)源激素、酶學(xué)機(jī)制、物質(zhì)生產(chǎn)與運(yùn)轉(zhuǎn)、產(chǎn)量形成等方面研究水氮互作調(diào)控水稻產(chǎn)量形成及水氮吸收利用的生物學(xué)過(guò)程;研究水稻主要生育期水氮互作對(duì)根系形態(tài)生理的影響及其與地上部生長(zhǎng)發(fā)育的關(guān)系,從根系形態(tài)生理方面闡明水氮互作調(diào)控水稻產(chǎn)量形成及水氮吸收利用的機(jī)制;研究水氮互作對(duì)土壤物理性狀、化學(xué)性狀、生物學(xué)性狀、硝化與反硝化作用、氨揮發(fā)和氮淋失的影響;分析上述土壤質(zhì)量指標(biāo)與水稻根系形態(tài)生理、地上部生長(zhǎng)發(fā)育、產(chǎn)量形成和水氮吸收利用的關(guān)系,闡明高產(chǎn)水稻水氮互作的作物-土壤效應(yīng)。

2)水氮互作調(diào)控水稻吸收利用水分和氮素的生理與分子機(jī)理。研究水稻根系激素對(duì)水氮互作的響應(yīng)及其對(duì)水氮吸收利用的調(diào)控機(jī)制;研究水稻抗旱性和氮敏感性不同品種在不同水氮處理下的蛋白質(zhì)表達(dá)差異,并分析其功能,從蛋白質(zhì)表達(dá)方面揭示水稻對(duì)水氮互作的響應(yīng)與水氮高效吸收利用的機(jī)理;研究水氮互作對(duì)水稻根系激素和氮代謝相關(guān)基因及籽粒中蔗糖-淀粉代謝途徑關(guān)鍵酶基因表達(dá)的影響及其與水氮吸收利用和產(chǎn)量形成的關(guān)系,揭示高產(chǎn)水稻水氮耦合與水氮高效利用的生理與分子機(jī)理。

3)協(xié)同提高水稻產(chǎn)量和水氮利用效率的調(diào)控途徑與關(guān)鍵技術(shù)。研究不同灌溉模式和養(yǎng)分管理模式及各模式組合對(duì)產(chǎn)量形成、水氮利用效率及土壤質(zhì)量的影響,建立產(chǎn)量和水氮利用效率協(xié)同提高的水肥管理模式;研究在不同稻作方式下水氮互作對(duì)水稻生長(zhǎng)發(fā)育、產(chǎn)量形成和土壤質(zhì)量的影響,構(gòu)建適合于各稻作方式的協(xié)同提高水稻產(chǎn)量和水氮利用效率的水肥管理技術(shù);研究在秸稈還田條件下,水氮互作對(duì)水稻生長(zhǎng)發(fā)育、產(chǎn)量形成和水氮利用效率、土壤質(zhì)量、氮損失和稻田溫室氣體排放的影響,構(gòu)建在秸稈還田條件下協(xié)同提高水稻產(chǎn)量和水氮利用效率及減少氮損失和稻田溫室氣體排放的水氮管理技術(shù)。

通過(guò)以上研究,不僅可以探明水稻特別是水稻根系的水分養(yǎng)分利用能力和根系-土壤互作這一重要的科學(xué)前沿問(wèn)題,而且可以找到控制水稻群體質(zhì)量和提高水分養(yǎng)分利用效率技術(shù)的突破口[36,60,76,77]。這對(duì)于進(jìn)一步闡明水稻高產(chǎn)與水分養(yǎng)分高效利用的機(jī)制,充分發(fā)揮水氮耦合效應(yīng)以提高水分和氮肥利用效率,節(jié)約水資源和保護(hù)環(huán)境均具有十分重要的科學(xué)價(jià)值和實(shí)踐意義。

[1]Yang J.Approaches to achieve high yield and high resource use efficiency in rice,Front Agric Sci Engin, 2015,2(2):115-123.

[2]GRiSP(Global Rice Science Partnership),Rice almanac, 4th edition,Los Baňos(Philippines):International Rice Research Institute,2013,283.

[3]Haefele S M,Jabbar S M A,Siopongco J D L C, Tirol-Padre A,Amarante S T,Cruz P C S,Cosico W C. Nitrogen use efficiency in selected rice(Oryza sativa L.) genotypes under different water regimes and nitrogen levels.Field Crop Res,2008,107(2):137-146.

[4]Pan S G,Cao C G,Cai M L,Wang J P,Wang R H,Zhai J, Huang S Q.Effects of irrigation regime and nitrogen managementongrainyield,qualityandwater productivity in rice.J Food Agric Environ,2009,7(2): 559-564.

[5]Bouman B A M,Peng S,Castaneda A R,Visperas R M. Yield and water use of irrigated tropical aerobic rice, systems.Agric Water Manag,2005,74(2):87-105.

[6]孫永健,孫園園,李旭毅,張榮萍,郭翔,馬均.水氮互作對(duì)水稻氮磷鉀吸收、轉(zhuǎn)運(yùn)及分配的影響.作物學(xué)報(bào), 2010,36(4):655-664. Sun Y J,Sun Y Y,Li X Y,Zhang R P,Guo X,Ma J. Effectsofwater-nitrogeninteractiononabsorption, translocation and distribution of nitrogen,phosphorus, and potassium in rice.Acta Agron Sin,2010,36(4): 655-664.(in Chinese with English abstract)

[7]孫愛(ài)華,朱士江,郭亞芬,張忠學(xué).控灌條件下稻田田面水含氮量、土壤肥力及水氮互作效應(yīng)試驗(yàn)研究.土壤通報(bào),2012,43(2):362-368. Sun A H,Zhu S J,Guo Y F,Zhang Z X.Experimental researchonnitrogencontent,soilfertilityand water-nitrogen interaction in surface water of rice field under controlled irrigation model.Chin J Soil Sci,2012, 43(2):362-368.(in Chinese with English abstract)

[8]Liu L J,Chen T T,Wang Z Q,Zhang H,Yang J C,Zhang J H.Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crop Res,2013,154:226-235.

[9]Bouman B A M.A conceptual framework for the improvement of crop water productivity at different spatial scales.Agric Syst,2007,93(1-3):43-60.

[10]李保國(guó),彭世琪.1998-2007年中國(guó)農(nóng)業(yè)用水報(bào)告.北京:中國(guó)農(nóng)業(yè)出版社,2009:72-78. Li B G,Peng S Q.Chinese Agricultural Water Use Bulletin 1998-2007.Beijing:Chinese Agricultural Press, 2009:72-78.(in Chinese).

[11]Qin J T,Hu F,Zhang B,Wei Z,Li H.Role of straw mulching in non-continuously flooded rice cultivation. Agric Water Manag,2006,83(3):252-260.

[12]鄭捷,李光永,韓振中.中美主要農(nóng)作物灌溉水分生產(chǎn)率分析.農(nóng)業(yè)工程學(xué)報(bào),2008,24(11):46-50. Zheng J,Li Y G,Han Z Z.Sino-US irrigation water use efficiencies of main crops.Trans CSAE,2008,24(11): 46-50.(in Chinese with English abstract)

[13]Peng S B,Tang Q Y,Zou Y B.Current status and challenges of rice production in China.Plant Prod Sci, 2009,12(1):3-8.

[14]Borrell A,Garside A,Fukai S.Improving efficiency of water use for irrigated rice in a semi-arid tropical environment.Field Crop Res,1997,52(3):231-248.

[15]Ockerby S E,Fukai S.The management of rice grown on raised beds with continuous furrow irrigation.Field Crop Res,2001,69(3):215-226.

[16]Liu X J,Wang J C,Lu S H,Zhang F S,Zeng X Z,Ai Y W, Peng S B,Christie P.Effects of non-flooded mulching cultivation on crop yield,nutrient uptake and nutrient balance in rice-wheat cropping systems.Field Crop Res, 2003,83(3):297-311.

[17]Zhang H,Li H W,Yuan L M,Wang Z Q,Yang J C,Zhang J H.Post-anthesis alternate wetting and moderate soil dryingenhancesactivitiesofkeyenzymesin sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot,2012,63(1):215-227.

[18]Zhang Y B,Tang Q Y,Peng S B,Xing D Y,Qin J Q,Laza RC,PunzalanBR.Wateruseefficiencyand physiological response of rice cultivars under alternate wetting and drying conditions.Sci World J,2012,(6): 287-907.

[19]Thakur A K,Rath S,Mandal K G.Differential responses of system of rice intensification(SRI)and conventional flooded-rice management methods to applications of nitrogen fertilizer.Plant Soil,2013,370(1-2):59-71.

[20]Bouman B A M,Tuong T P.Field water management to save water and increase its productivity in irrigated lowland rice.Agric Water Manag,2001,49(1):11-30.

[21]Belder P,Spiertz J H J,Bouman BA M,Lu G,Tuong T P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation.Field Crop Res,2005, 93(2-3):169-185.

[22]Yao F,Huang J,Cui K,Nie L,Xiang J,Liu X,Wu W, ChenM,PengS.Agronomicperformanceof high-yielding rice variety grown under alternate wetting and drying irrigation.Field Crop Res,2012,126:16-22.

[23]Yang J C,Liu K,Wang Z Q,Du Y,Zhang J H. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential.J Integr Plant Biol,2007,49(10):1445-1454.

[24]Wang J Y,Jia J X,Xiong Z Q,Khalil M A K,Xing G X. Waterregime-nitrogenfertilizer-strawincorporation interaction:Field study on nitrous oxide emissions from a rice agroecosystem in Nanjing,China.Agric Ecosyst Environ,2011,141(3-4):437-446.

[25]Wang X T,Suo Y Y,Feng Y,Shohag M J I,Gao J,Zhang Q C,Xie S,Lin X Y.Recovery of N15labeled urea and soilnitrogendynamicsasaffectedbyirrigation management and nitrogen application rate in a double ricecroppingsystem.PlantSoil,2011,343(1-2): 195-208.

[26]Zhang H,Xue Y G,Wang Z Q,Yang J C,Zhang J H.An alternatewettingandmoderatesoildryingregime improves root and shoot growth in rice.Crop Sci,2009, 49(6):2246-2260.

[27]Xue Y G,Duan H,Liu L J,Wang Z Q,Yang J C,Zhang J H.An improved crop management increases grain yield and nitrogen and water use efficiency in rice.Crop Sci, 2013,53(1):271-284.

[28]Belder P,Bouman B A M,Cabangon R,Guoan L,Quilang E J P,Li Y,Spiertz J H J,Tuong T P.Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia.Agric Water Manage, 2004,65(3):193-210.

[29]Sah R N,Mikkelsen D S.Availability and utilization of fertilizer nitrogen by rice under alternate flooding.Plant Soil,1983,75(2):227-234.

[30]Eriksen A B,Kjeldby M,Nilsen S.The effect of intermittent flooding on the growth and yield of wetland rice and nitrogen-loss mechanism with surface applied and deep placed urea.Plant Soil,1985,84(3):387-401.

[31]Wang Z Q,Zhang W Y,Beebout S S,Zhang H,Liu L J, Yang J C,Zhang J H.Grain yield,water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates.Field Crops Res, 2016,193(4):54-69.

[32]FAO.Statisticaldatabases,FoodandAgriculture Organization(FAO)oftheUnitedNations,2015. http://www.faostat.fao.org.

[33]國(guó)家統(tǒng)計(jì)局.糧食產(chǎn)量公告http://data.stats.gov.cn,2015-12-09. National Bureau of Statistics of China.Grain yield Announcement.http://data.stats.gov.cn,2015-12-09.(in Chinese)

[34]Ju X T,Xing G X,Chen X P,Zhang S L,Zhang L J,Liu X J,Cui Z L,Yin B,Christiea P,Zhu Z L,Zhang F S. ReducingenvironmentalriskbyimprovingN management in intensive Chinese agricultural systems. PNAS,2009,106(9):3041-3046.

[35]Peng S B,Buresh R J,Huang J L,Zhong X H,Zou Y B, Yang J C,Wang G H,Liu YY,Tang Q Y,Cui K H,Zhang F S,Dobermann:A.Improving nitrogen fertilization in rice by site-specific N management.A review.Agron Sustain Dev,2010,30(3):649-656.

[36]Zhang F S,Chen X P,Vitousek P.An experiment for the world.Nature,2013,497(7447):33-35.

[37]薛亞光,葛立立,王康君,顏曉元,尹斌,劉立軍,楊建昌.不同栽培模式對(duì)雜交粳稻群體質(zhì)量的影響.作物學(xué)報(bào),2013,39(2):280-291. Xue Y G,Ge L L,Yang K J,Yan X Y,Yin B,Liu L J, Yang J C.Effects of different cultivation patterns on population quality of japonica hybrid rice.Acta Agron Sin, 2013,39(2):280-291.(in Chinese with English abstract)

[38]Zhang Z J,Chu G,Liu L J,Wang Z Q,Wang X M,Zhang H,Yang J C,Zhang J H.Mid-season nitrogen application strategies for rice varieties differing in panicle size.Field Crop Res,2013,150:9-18.

[39]Guo J H,Liu X J,Zhang Y,Shen J L,Han W X,Zhang W F,Christie P,Goulding K W T,Vitousek P M,Zhang F S. Significant acidification in major Chinese croplands. Science,2010,327(5968):1008-1010.

[40]張福鎖,馬文奇,陳新平.養(yǎng)分資源綜合管理理論與技術(shù)概論.北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2006:48-58. Zhang F S,Ma W Q,Chen X P.Theory and technology of the integrated nutrient resource management.Beijing: China Agricultural University Press,2006:48-58.(in Chinese)

[41]凌啟鴻.水稻精確定量栽培理論與技術(shù).北京:中國(guó)農(nóng)業(yè)出版社,2007. Ling Q H.Theory and technology of precise and quantitative cultivation in rice.Beijing:China Agriculture Press,2007.(in Chinese)

[42]蔣鵬,黃敏,Md.Ibrahim,曾燕,夏冰,施婉菊,謝小兵,鄒應(yīng)斌.“三定”栽培對(duì)雙季超級(jí)稻養(yǎng)分吸收積累及氮肥利用率的影響.作物學(xué)報(bào),2011,37(12):2194-2207. Jiang P,Huang M,Ibrahim M,Zeng Y,Xia B,Shi W J, Xie X B,Zou Y B.Effects of“sanding”cultivation method on nutrient uptake and nitrogen use efficiency in double cropping super rice.Acta Agron Sin,2011,37(12): 2194-2207.(in Chinese)

[43]鐘旭華,黃農(nóng)榮,胡學(xué)應(yīng).水稻“三控”施肥技術(shù).北京:中國(guó)農(nóng)業(yè)出版社,2011. Zhong X H,Huang N R,Hu X Y.“Three Controls”Nutrient Management Technology for Rice.Beijing: ChinaAgriculture Press,2011.(in Chinese)

[44]張福鎖,范明生.主要糧食作物高產(chǎn)栽培與資源高效利用的基礎(chǔ)研究.北京:中國(guó)農(nóng)業(yè)出版社,2013. Zhang F S,Fan M S.Basic research on high yield cultivation and efficient use of resources in main grain crops.Beijing:China AgriculturePress,2013.(in Chinese)

[45]Katsura K,Maeda S,Horie T,Shiraiwa T.Analysis of yieldattributesandcropphysiologicaltraitsof Liangyoupeijiu,a hybrid rice recently bred in China. Field Crop Res,2007,103(3):170-177.

[46]Normile D.Reinventing rice to feed the world.Science, 2008,321(5887):330-333.

[47]Horie T,Shiraiwa T,Homma K,Katsura K,Maeda Y, Yoshida H.Can yields of lowland rice resume the increases that they showed in the 1980s?Plant Prod Sci, 2005,8(3SI):259-274.

[48]戴慶林,楊文耀.陰山丘陵旱農(nóng)區(qū)水肥效應(yīng)與耦合模式的研究.干旱地區(qū)農(nóng)業(yè)研究,1995,13(1):20-24. Dai Q L,Yang W Y.Water-fertilizer effects and their couplingreactionmodelinYinshanhillyrainfed agricultural region.Agric Res Arid Areas,1995,13(1): 20-24.(in Chinese with English abstract)

[49]楊建昌,王志琴,朱慶森.不同土壤水分狀況下氮素營(yíng)養(yǎng)對(duì)水稻產(chǎn)量的影響及其生理機(jī)制的研究.中國(guó)農(nóng)業(yè)科學(xué),1996,29(4):59-67. Yang J C,Wang Z Q,Zhu Q Z.Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture.Sci Agric Sin,1996, 29(4):59-67.(in Chinese with English abstract)

[50]陳新紅.土壤水分與氮素對(duì)水稻產(chǎn)量和品質(zhì)的影響及其生理機(jī)制.揚(yáng)州:揚(yáng)州大學(xué),2004. Chen X H.Effect of moisture and nitrogen nutrient on grain yield and quality of rice and their physiological mechanism.Yangzhou:Yangzhou University,2004.(in Chinese with English abstract)

[51]王紹華,曹衛(wèi)星,丁艷鋒,田永超,姜東.水氮互作對(duì)水稻氮吸收與利用的影響.中國(guó)農(nóng)業(yè)科學(xué),2004,37(4): 497-501. Wang S H,Cao W X,Ding Y F,Tian Y C,Jiang D. Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice.Sci Agric Sin,2004,37(4):497-501.(in Chinese with English abstract)

[52]王小燕,于振文.水氮互作對(duì)小麥籽粒蛋白質(zhì)組分和品質(zhì)的影響.麥類作物學(xué)報(bào),2009,29(03):518-523. Yang X Y,Yu Z W.Effect of interactions between water management and nitrogen fertilizer on wheat processing quality and their relationship to protein fractions.J Triticeae Crops,2009,29(03):518-523.(in Chinese with English abstract)

[53]Li Y,Yin Y P,Zhao Q,Wang Z L.Changes of Glutenin Subunits due to Water-Nitrogen Interaction Influence Size and Distribution of Glutenin Macropolymer Particles and Flour Quality.Crop Sci,2011,51(6):2809-2819.

[54]Sadras V O,Rodriguez D.Modelling the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency of wheat in eastern Australia.FieldCrop Res,2010,118(3):297-305.

[55]Sadras V O,Lawson C.Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007.Eur J Agron,2013,46:34-41.

[56]李國(guó)生,王志琴,袁莉民,劉立軍,楊建昌.結(jié)實(shí)期土壤水分和氮素營(yíng)養(yǎng)對(duì)水稻產(chǎn)量與品質(zhì)的交互影響.中國(guó)水稻科學(xué),2008,22(2):161-166. Li G S,Wang Z Q,Yuan L M,Liu L J,Yang J C. Coupling effects of soil moisture and nitrogen nutrient during grain filling on grain yield and quality of rice. Chin J Rice Sci,2008,22(2):161-166.(in Chinese with English abstract)

[57]孫永健,孫園園,劉樹(shù)金,楊志遠(yuǎn),程洪彪,賈現(xiàn)文,馬均.水分管理和氮肥運(yùn)籌對(duì)水稻養(yǎng)分吸收、轉(zhuǎn)運(yùn)及分配的影響.作物學(xué)報(bào),2011,37(12):2221-2232. Sun Y J,Sun YY,Liu S J,Yang Z Y,Cheng H B,Jia X W, Ma J.Effectsofwatermanagementandnitrogen application strategies on nutrient absorption,transfer,and distribution in rice.Acta Agron Sin,2011,37(12): 2221-2232.(in Chinese with English abstract)

[58]Xu B C,Xu W Z,Gao Z J,Wang J,Huang J.Biomass production,relative competitive ability and water use efficiency of two dominant species in semiarid Loess Plateau under different water supply and fertilization treatments.Ecol Res,2013,28(5):781-792.

[59]Ye Y S,Liang X Q,Chen Y X,Liu J,Gu J T,Guo R,Li L. Alternatewettinganddryingirrigationand controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation,yield,water and nitrogen use.Field Crop Res,2013,144:212-224.

[60]Chen X P,Cui Z L,Vitousek P M,Cassman K G,Matson P A,Bai J S,Meng Q,Hou P,Yue S C,Romheld V, Zhang F S.Integrated soil-crop system management for food security.PNAS,2011,108(16):6399-6404.

[61]Inukai Y,Ashikari M,Kitano H.Function of the root systemandmolecularmechanismofcrownroot formation in rice.Plant Cell Physiol,2004,45(S):17.

[62]Kiba T,Kudo T,Kojima M,Sakakibara H.Hormonal control of nitrogen acquisition:roles of auxin,abscisic acid,and cytokinin.J Exp Bot,2011,62(4):1399-1409.

[63]Khan A L,Hamayun M,Kang S M,Kim Y H,Jung H Y, Lee J H,Lee I J.Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress:an example of Paecilomyces formosus LHL10.BMC Microbiol,2012,12(1):1-14.

[64]Uga Y,Sugimoto K,Ogawa S,Rane J,Ishitani M,Hara N, Kitomi Y,Inukai Y,Ono K,Kanno N,Inoue H,Takehisa H,Motoyama R,Nagamura Y,Wu J,Matsumoto T,Takai T,Okuno K,Yano M.Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.Nat Genet,2013,45(9):1097.

[65]Davies W J,Zhang J H.Root signals and the regulation of growth and development of plant in drying soil.Annu Rev Plant Physiol Plant Mol Biol,1991,42(1):55-76.

[66]Davies W J,Kudoyarova G,Hartung W.Long-distance ABA signalinganditsrelationtoothersignaling pathways in the detection of soil drying and the mediation of the plant's response to drought.J Plant Growth Regul, 2005,24(4):285-295.

[67]Mishra A,Uphoff N.Morphological and physiological responses of rice roots and shoots to varying water regimes and soil microbial densities.Arch Agron Soil Sci, 2013,59(5):705-731.

[68]Zhang H,Forde B G.An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science,1998,279(5349):407-409.

[69]肖新,楊露露,鄧艷萍,汪建飛.水氮耦合對(duì)水稻田間氨揮發(fā)規(guī)律的影響.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(10): 2066-2071. Xiao X,Yang L L,Deng Y P,Wang J F.Effects of irrigationandnitrogenfertilizationonammonia volatilization in paddy field.J Agro-Environ Sci,2012, 31(10):2066-2071.(in Chinese with English abstract)

[70]Ruffel S,Krouk G,Ristova D,Shasha D,Birnbaum K D, Coruzzi G M.Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs.demand. PNAS,2011,108(45):18524-18529.

[71]Humbert S,Subedi S,Cohn J,Zeng B,Bi Y M,Chen X, Zhu T,McNicholas P D,Rothstein S J.Genome-wide expression profiling of maize in response to individual andcombinedwaterandnitrogenstresses.BMC Genomics,2013,14(3).

[72]Shaik R,Ramakrishna W.Genes and Co-Expression Modules Common to Drought and Bacterial Stress Responses in Arabidopsis and Rice.Plos One,2013, 8(UNSP e7726110).

[73]Xu W F,Jia L G,Shi W M,Liang J S,Zhou F,Li Q F, Zhang J H.Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol,2013,197(1):139-150.

[74]Shi W M,Xu W F,Li S M,Zhao X Q,Dong G Q. Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions.Plant Soil,2010,326(1-2):291-302.

[75]Kamada-Nobusada T,Makita N,Kojima M,Sakakibara H.Nitrogen-dependent regulation of de Novo cytokinin biosynthesis in rice:The role of glutamine metabolism as an additional signal.Plant Cell Physiol,2013,54(11): 1881-1893.

[76]Liang Y C,Zhu Y G,Smith F A,lambers H.Soil-plant interactions and sustainability of eco-agriculture in arid region:a crucially important topic to address.Plant Soil, 2010,326(1-2):1-2.

[77]Chu G,Wang Z Q,Zhang H,Liu L J,Yang J C,Zhang J H.Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation.Food Ener Secur, 2015,4(3):238-254.

Research Advances in the Effects of Water,Nitrogen and Their Interaction on the Yield, Water and Nitrogen Use Efficiencies of Rice

LI Junfeng,YANG Jianchang*

(Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops,Yangzhou University, Yangzhou 225009,China;*Corresponding author,E-mail:jcyang@yzu.edu.cn)

Understanding the effects of water,nitrogen(N)and their interaction on the yield,water and N use efficiencies of rice would have great significance in synergistically realizing high yield,high water use efficiency(WUE)and high N use efficiency(NUE).This paper reviewed the advances achieved in water-saving irrigation techniques,NUE and N fertilizer application techniques,coupling effect of water and N on grain yield,WUE and NUE in rice,and crop-soil relationship and its mechanism regulated by water and N.The existing problems were discussed,i.e.,very limited work on synergistic interaction between water and N on the crop growth and soil quality;little information on the molecular mechanism that water and nitrogen interact on the efficient absorption and utilization of water and nitrogen in high-yielding rice;and yet to be established the crop-soil integrative management system for simultaneous increases in grain yield,WUE and NUE.Aiming to solve these problems,several important issues meriting further investigation were suggested,that is,the synergistic interaction between water and N on the crop and soil for high yield,high WUE and high NUE and its biological process,the physiological and molecular mechanism in which high-yielding rice absorbs and utilizes water and N efficiently,and crop-soil integrative approaches and key techniques to simultaneously increase grain yield,WUE,and NUE in rice.

rice;water-nitrogen interaction;grain yield;water use efficiency;nitrogen use efficiency

S143.1;S511.062

:A

:1001-7216(2017)03-0327-08

2016-05-11;修改稿收到日期:2016-8-22。

國(guó)家自然科學(xué)基金資助項(xiàng)目(31461143015,31271641,31471438);國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2014AA10A605,2013BAD07B09);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(PAPD);揚(yáng)州大學(xué)高端人才支持計(jì)劃資助項(xiàng)目(2015-1)。

猜你喜歡
水氮利用效率氮素
避免肥料流失 提高利用效率
體制改革前后塔里木河流域水資源利用效率對(duì)比分析
水氮耦合對(duì)煙株生長(zhǎng)、產(chǎn)量及主要化學(xué)成分的影響
水氮交互作用對(duì)棉花產(chǎn)量的影響研究
水氮耦合對(duì)膜下滴灌棉花干物質(zhì)積累的影響研究
膜下滴灌水氮耦合對(duì)棉花干物質(zhì)積累和氮素吸收及水氮利用效率的影響
不同白菜品種對(duì)鋅的響應(yīng)及鋅利用效率研究
嫁接與施肥對(duì)番茄產(chǎn)量及氮、磷、鉀吸收利用效率的影響
楸樹(shù)無(wú)性系苗期氮素分配和氮素效率差異
基于光譜分析的玉米氮素營(yíng)養(yǎng)診斷
清水河县| 开化县| 浑源县| 厦门市| 迁西县| 陆川县| 广昌县| 瓦房店市| 运城市| 梓潼县| 凤城市| 桃江县| 陈巴尔虎旗| 浦东新区| 札达县| 平潭县| 卢湾区| 宁波市| 霍山县| 乐陵市| 台前县| 灵璧县| 肃宁县| 湾仔区| 定结县| 沂源县| 平湖市| 乌鲁木齐县| 镇康县| 汝州市| 清涧县| 漳浦县| 永寿县| 阳信县| 和静县| 平顺县| 确山县| 岐山县| 伊宁县| 祥云县| 赣榆县|