嚴(yán) 偉,胡志超,吳 努,徐弘博,游兆延,周新星
(1. 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014;2. 南通大學(xué)機(jī)械工程學(xué)院,南通 226019)
鏟篩式殘膜回收機(jī)輸膜機(jī)構(gòu)參數(shù)優(yōu)化與試驗(yàn)
嚴(yán) 偉1,2,胡志超1※,吳 努2,徐弘博1,游兆延1,周新星1,2
(1. 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014;2. 南通大學(xué)機(jī)械工程學(xué)院,南通 226019)
壟作殘膜回收對(duì)機(jī)具幅寬要求較高、地膜利用低、壟體高、壟溝殘膜回收難、殘膜碎片多、埋膜深等特點(diǎn)。鏟篩式殘膜回收機(jī)對(duì)土下殘膜具有回收能力,在壟作殘膜回收領(lǐng)域具有良好的應(yīng)用前景。輸膜機(jī)構(gòu)纏膜率高和收獲后殘膜含土率高是制約鏟篩式殘膜回收機(jī)推廣的主要問題,為了提高鏟篩式殘膜回收機(jī)輸膜機(jī)構(gòu)作業(yè)質(zhì)量,降低輸膜機(jī)構(gòu)的纏膜率及收獲后殘膜的含土率,該文運(yùn)用單因素試驗(yàn)方法得出最優(yōu)篩面結(jié)構(gòu)形式,在單因素試驗(yàn)基礎(chǔ)上運(yùn)用Box-Benhnken的中心組合試驗(yàn)方法對(duì)殘膜回收機(jī)輸膜機(jī)構(gòu)的工作參數(shù)進(jìn)行了試驗(yàn)研究,以振動(dòng)篩振動(dòng)頻率、振動(dòng)篩振幅、齒片間距進(jìn)行三因素三水平二次回歸正交試驗(yàn)設(shè)計(jì)。建立了響應(yīng)面數(shù)學(xué)模型,分析了各因素對(duì)作業(yè)質(zhì)量的影響,同時(shí),對(duì)影響因素進(jìn)行了綜合優(yōu)化。試驗(yàn)結(jié)果表明:纏膜率影響顯著性順序?yàn)檎駝?dòng)篩振動(dòng)頻率>齒片間距>振動(dòng)篩振幅;含土率影響顯著性順序?yàn)辇X片間距>振動(dòng)篩振動(dòng)頻率>振動(dòng)篩振幅;最優(yōu)工作參數(shù)組合為振動(dòng)篩振動(dòng)頻率3.9 Hz、振動(dòng)篩振幅42 mm,齒片間距15 mm,對(duì)應(yīng)的纏膜率和含土率分別為1.72%、32.81%,且各評(píng)價(jià)指標(biāo)與其理論優(yōu)化值的相對(duì)誤差均小于5%。研究結(jié)果可為鏟篩式殘膜回收機(jī)輸膜機(jī)構(gòu)的結(jié)構(gòu)完善設(shè)計(jì)和作業(yè)參數(shù)優(yōu)化提供參考。
農(nóng)業(yè)機(jī)械;塑料薄膜;優(yōu)化;輸膜機(jī)構(gòu);單因素試驗(yàn);響應(yīng)曲面
近年來中國(guó)對(duì)農(nóng)村農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整力度不斷加大,地膜覆蓋種植技術(shù)得到了大面積推廣,地膜覆蓋種植技術(shù)可以提高糧食產(chǎn)量,進(jìn)而增加農(nóng)民收入,給農(nóng)民帶來了一定的經(jīng)濟(jì)效益[1-2]。地膜覆蓋栽培技術(shù)帶來了顯著的經(jīng)濟(jì)效益,地膜覆蓋面積每年都在不斷地?cái)U(kuò)大,覆膜的年限也在不斷地增長(zhǎng),使用過的地膜由于破碎、埋膜深等原因有很大一部分不能徹底地回收,逐年積累,滯留在農(nóng)田里的殘膜對(duì)作物的根系生長(zhǎng)、出苗和產(chǎn)量產(chǎn)生了嚴(yán)重影響,甚至也影響了農(nóng)田機(jī)械化作業(yè)的順利進(jìn)行,殘膜回收刻不容緩[3-5]。
中國(guó)對(duì)殘膜回收機(jī)械的研究可追溯到20世紀(jì)80年代,研究至今,各類殘膜回收機(jī)具被開發(fā)出來并得到了廣泛應(yīng)用[6]。但是,針對(duì)壟作地區(qū)殘膜回收的機(jī)具種類并不多,僅有耙齒式殘膜回收機(jī)、鏟鏈?zhǔn)綒埬せ厥諜C(jī)、齒鏈?zhǔn)綒埬せ厥諜C(jī)與鏟篩組合式殘膜回收機(jī)。從機(jī)具的實(shí)際使用情況來看,有待攻克和提升完善的技術(shù)問題還很多。耙齒式殘膜回收機(jī)在實(shí)際工作中存在壅土、漏膜現(xiàn)象;鏟鏈?zhǔn)綒埬せ厥諜C(jī)實(shí)際工作中纏膜、漏膜,回收的殘膜含土率高;齒鏈?zhǔn)綒埬せ厥諜C(jī)壅土、漏膜、纏膜現(xiàn)象嚴(yán)重;鏟篩組合式殘膜回收機(jī)清土效果好、殘膜回收率高,但是輸膜性能較差[7]。針對(duì)目前壟作地區(qū)殘膜回收機(jī)存在的問題,國(guó)內(nèi)對(duì)耙齒式、鏟鏈?zhǔn)?、齒鏈?zhǔn)綒埬せ厥諜C(jī)有了一定的研究[8-10],但是針對(duì)鏟篩組合式殘膜回收機(jī)研究較少,且并未對(duì)其關(guān)鍵部件結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化。輸膜機(jī)構(gòu)是鏟篩式殘膜回收機(jī)的核心工作部件,影響因素復(fù)雜多樣且相互制約,有效提高輸膜機(jī)構(gòu)的輸膜性能與膜土分離能力是鏟篩式殘膜回收設(shè)備研發(fā)中必須重點(diǎn)考慮的問題之一。
為了攻克輸膜機(jī)構(gòu)纏膜、壅土技術(shù)難題,提高機(jī)具適應(yīng)性、保證機(jī)具收獲質(zhì)量,本研究以該殘膜回收機(jī)的輸膜機(jī)構(gòu)為研究對(duì)象,以纏膜率、含土率為主控目標(biāo),對(duì)影響殘膜回收質(zhì)量的關(guān)鍵參數(shù)進(jìn)行試驗(yàn)研究,篩選出作業(yè)效果最佳的振動(dòng)篩,分析各參數(shù)對(duì)作業(yè)性能的影響主次關(guān)系,對(duì)輸膜機(jī)構(gòu)進(jìn)行優(yōu)化,尋求輸膜機(jī)構(gòu)最優(yōu)參數(shù)組合,以期為殘膜回收機(jī)設(shè)計(jì)與優(yōu)化提供參考。
1.1 工作原理
鏟篩式殘膜回收機(jī)為鏟篩組合式殘膜回收機(jī),主要由挖掘鏟1、機(jī)架2、傳動(dòng)裝置3、連桿機(jī)構(gòu)4、飛輪5、限深輪6、振動(dòng)篩7、集膜筐8組成,其結(jié)構(gòu)簡(jiǎn)圖見圖1。鏟篩式殘膜回收機(jī)工作原理及工作過程為:殘膜回收機(jī)利用拖拉機(jī)的三點(diǎn)懸掛裝置懸掛于拖拉機(jī)的后部,由拖拉機(jī)后動(dòng)力輸出軸通過萬向節(jié)傳送到收獲機(jī),由變速箱輸出軸經(jīng)傳動(dòng)裝置3帶動(dòng)飛輪5與連桿機(jī)構(gòu)4運(yùn)動(dòng),由連桿機(jī)構(gòu)4帶動(dòng)振動(dòng)篩7振動(dòng)。工作中,挖掘鏟將挖起的膜土向后輸送至振動(dòng)篩,振動(dòng)篩進(jìn)行膜土分離,同時(shí)振動(dòng)篩將分離后的殘膜向后輸送至集膜筐內(nèi),完成收膜。
圖1 鏟篩式殘膜回收機(jī)結(jié)構(gòu)簡(jiǎn)圖Fig.1 Structural diagram of shovel screen type plastic film residue collector
1.2 輸膜機(jī)構(gòu)及影響因素
輸膜機(jī)構(gòu)結(jié)構(gòu)簡(jiǎn)圖如圖2所示,主要包括連桿1、飛輪2、機(jī)架3、振動(dòng)篩4。評(píng)價(jià)輸膜機(jī)構(gòu)性能的指標(biāo)有纏膜率、含土率。
圖2 輸膜機(jī)構(gòu)結(jié)構(gòu)簡(jiǎn)圖Fig.2 Structural diagram of plastic film transport mechanism
試驗(yàn)中對(duì)各影響因素進(jìn)行分析,尋求各影響因素的最優(yōu)參數(shù)組合[11],使輸膜機(jī)構(gòu)具有良好的輸膜性能。對(duì)輸膜機(jī)構(gòu)的優(yōu)化設(shè)計(jì)須注意以下幾點(diǎn):①通過試驗(yàn)比較并確定振動(dòng)篩面的最佳結(jié)構(gòu)形式。②篩孔大小或篩片間隙選取要合適。篩孔尺寸或篩片間隙如果偏大,有利于降低含土率,但是容易增加殘膜從篩孔或篩片間掉落的幾率,同時(shí)孔間或篩片之間易掛膜纏膜;如果尺寸偏小,膜土分離效果變差,會(huì)出現(xiàn)擁堵、膜土難分離現(xiàn)象。③振動(dòng)篩振動(dòng)頻率設(shè)計(jì)要合理,振動(dòng)篩振動(dòng)頻率過小膜土在篩面不會(huì)被拋起[12-13],膜土分離率將會(huì)降低;振動(dòng)篩振動(dòng)頻率過大,機(jī)具振動(dòng)加大,工作可靠性降低。④振幅選取要合理[14-15],振幅選擇過小,殘膜通過篩面有效時(shí)間長(zhǎng),容易增加殘膜纏繞篩面的幾率;振幅選擇過大,膜土通過篩面有效時(shí)間短,會(huì)出現(xiàn)膜土分離不徹底現(xiàn)象。
綜上分析,確定輸膜機(jī)構(gòu)性能的試驗(yàn)因素為振動(dòng)篩振幅、振動(dòng)篩振動(dòng)頻率、篩孔大小或篩片間隙和篩面結(jié)構(gòu)形式。
為了確定最佳篩面結(jié)構(gòu)形式,在試驗(yàn)條件固定的情況下,進(jìn)行不同篩面結(jié)構(gòu)形式輸膜效果試驗(yàn),根據(jù)試驗(yàn)結(jié)果確定最佳篩面結(jié)構(gòu)形式。
2.1 試驗(yàn)條件
殘膜回收試驗(yàn)在江蘇農(nóng)業(yè)科學(xué)院收獲后的花生地進(jìn)行,試驗(yàn)地種植模式為壟作花生單壟雙行,土壤類型沙土,含水率10%(0~100 mm土深),所覆膜為厚度0.008 mm的黑膜,壟寬900 mm,覆膜寬度680 mm,壟高110 mm,機(jī)具作業(yè)速度1 m/s,振動(dòng)篩振動(dòng)頻率3.3 Hz,振動(dòng)篩振幅60 mm,篩面尺寸1 000 mm×1 100 mm。
2.2 試驗(yàn)儀器與設(shè)備
試驗(yàn)儀器設(shè)備主要有福田雷沃 254拖拉機(jī)、鏟篩式殘膜回收機(jī)、圓孔篩、編織篩、鋸齒篩(鋸齒形、齒高10 mm)、水分測(cè)定儀、電子天平、計(jì)算器、皮尺、轉(zhuǎn)速表等。圓孔篩篩孔直徑20 mm,篩面總鏤空面積0.52 m2;編織篩采用方孔編制形式,方孔長(zhǎng)寬均為20 mm,總鏤空面積0.52 m2;鋸齒篩齒片間距20 mm,總鏤空面積0.52 m2。篩面結(jié)構(gòu)形式如圖3所示。
圖3 篩面結(jié)構(gòu)形式Fig.3 Screen surface structure
2.3 評(píng)價(jià)指標(biāo)的測(cè)定
試驗(yàn)選擇土壤含水率基本相同的試驗(yàn)地作為測(cè)區(qū),測(cè)區(qū)長(zhǎng)度不少于100 m[16]。每次試驗(yàn)結(jié)束將集膜筐內(nèi)土壤稱重,并將收集好的殘地膜洗凈晾干后稱其質(zhì)量,分別測(cè)定纏膜率、含土率作為評(píng)價(jià)指標(biāo),上述評(píng)價(jià)指標(biāo)計(jì)算方法如下:
1)纏膜率Y1:
式中Y1為纏膜率,%;m1為測(cè)區(qū)內(nèi)纏繞在機(jī)器上地膜的質(zhì)量,g;m2為測(cè)區(qū)內(nèi)集膜箱內(nèi)殘地膜的質(zhì)量,g。
2)含土率Y2:
式中Y2為含土率,%;m0為測(cè)區(qū)內(nèi)集膜筐內(nèi)土壤的質(zhì)量,g。
2.4 試驗(yàn)結(jié)果與分析
表1為不同篩面結(jié)構(gòu)形式試驗(yàn)結(jié)果。由表1可知,固定其他條件不變,鋸齒篩篩面結(jié)構(gòu)形式纏膜率、含土率均低于其他篩面結(jié)構(gòu)形式。圓孔篩篩分精度高、不易磨損、壽命長(zhǎng)[17-19],但圓孔篩輸送能力差,擁堵,膜土分離效果差,圓孔之間易纏膜。編織篩不易擁堵,有利于膜土分離,但是編織篩順暢性差,橫桿纏膜嚴(yán)重,有些甚至堵塞方孔,不利于膜土分離與殘膜輸送。鋸齒篩篩分精度高,鋸齒條松破土性能較好,有利于土壤從齒片間通過,同時(shí)鋸齒條也可以阻止殘膜向下滑移并增強(qiáng)拋送能力,有利于殘膜向上輸送。綜合比較分析可知,鋸齒篩各方面性能優(yōu)于圓孔篩與編織篩,所以篩面結(jié)構(gòu)形式選用鋸齒篩。
表1 不同篩面結(jié)構(gòu)形式試驗(yàn)結(jié)果Table 1 Test results under different screen surface structure
試驗(yàn)條件、試驗(yàn)儀器設(shè)備、評(píng)價(jià)指標(biāo)與單因素試驗(yàn)相同,在此不再展開敘述。
3.1 試驗(yàn)設(shè)計(jì)與方法
在上述單因素試驗(yàn)基礎(chǔ)上,并依據(jù)Box-Benhnken中心組合設(shè)計(jì)理論[20-21],以纏膜率Y1、含土率Y2作為響應(yīng)值,對(duì)振動(dòng)篩振動(dòng)頻率、振動(dòng)篩振幅、鋸齒篩齒片間距開展響應(yīng)面試驗(yàn)研究。試驗(yàn)過程中通過曲柄在飛輪的不同連接位置來調(diào)節(jié)振幅,通過更換傳動(dòng)鏈輪來調(diào)節(jié)振動(dòng)篩振動(dòng)頻率。采用三因素三水平二次回歸正交試驗(yàn)設(shè)計(jì)方案,對(duì)影響纏膜率、含土率的3個(gè)主要參數(shù)組合完成優(yōu)化。試驗(yàn)中,振動(dòng)篩振動(dòng)頻率<2.3 Hz,膜土分離效果差;振動(dòng)篩振幅<40 mm,輸膜性能較差;齒片間距<8 mm膜土分離效果差;振動(dòng)篩振動(dòng)頻率>4.3 Hz,機(jī)器共振現(xiàn)象嚴(yán)重;振動(dòng)篩振幅>80 mm,膜土分離效果差;齒片間距>20 mm,殘膜現(xiàn)象嚴(yán)重;因此振動(dòng)篩振動(dòng)頻率選取2.3~4.3 Hz;振動(dòng)篩振幅選取40~80 mm;齒片間距選取8~20 mm。因素及水平設(shè)計(jì)見表2。
表2 試驗(yàn)因素和水平Table 2 Factors and levels of test
3.2 數(shù)據(jù)分析與處理
試驗(yàn)數(shù)據(jù)采用Design-Expert8.0.6.1軟件對(duì)纏膜率與含土率進(jìn)行二次多項(xiàng)式回歸分析,通過對(duì)回歸方程的分析來尋求最優(yōu)工作參數(shù),并利用響應(yīng)面分析法對(duì)各因素相關(guān)性和交互效應(yīng)的影響規(guī)律進(jìn)行分析研究,尋求最佳參數(shù)組合。
3.3 結(jié)果與分析
3.3.1 試驗(yàn)結(jié)果
根據(jù)Box-Behnken試驗(yàn)原理設(shè)計(jì)三因素三水平分析試驗(yàn)[22-24],試驗(yàn)方案包括17個(gè)試驗(yàn)點(diǎn),其中包括12個(gè)分析因子,5個(gè)零點(diǎn)估計(jì)誤差,試驗(yàn)方案與響應(yīng)值見表3。
表3 試驗(yàn)設(shè)計(jì)方案及響應(yīng)值Table 3 Experiment design and response values
3.3.2 回歸模型建立與顯著性檢驗(yàn)
根據(jù)表3中的數(shù)據(jù)樣本,利用Design-Expert8.0.6.1軟件開展多元回歸擬合分析尋求最優(yōu)工作參數(shù),建立纏膜率Y1、含土率Y2對(duì)振動(dòng)篩振動(dòng)頻率水平X1、振動(dòng)篩振幅水平X2、齒片間距水平X33個(gè)自變量的二次多項(xiàng)式響應(yīng)面回歸模型,如式(3)~式(4)所示,并對(duì)回歸方程進(jìn)行方差分析[25],結(jié)果如表4所示。
由表4分析可知,響應(yīng)面模型中的纏膜率Y1、含土率Y2模型P<0.000 1,表明回歸模型高度顯著;失擬項(xiàng)P>0.05(分別為0.100 9、0.060 7),表明回歸方程擬合度高;其決定系數(shù)R2值分別為0.989 9、0.984 2,表明這2個(gè)模型可以解釋98%以上的評(píng)價(jià)指標(biāo)。因此,輸膜機(jī)構(gòu)工作參數(shù)可以用該模型來優(yōu)化。
各參數(shù)對(duì)回歸方程的影響作用可以通過P值大小反應(yīng),P<0.01表明參數(shù)對(duì)模型影響極顯著,P<0.05表明參數(shù)對(duì)模型影響顯著。纏膜率Y1模型中有3個(gè)回歸項(xiàng)影響極顯著(P<0.01),分別為,3個(gè)回歸項(xiàng)對(duì)模型影響顯著(P<0.05),分別為X2、X1X2、;含土率Y2模型中有4個(gè)回歸項(xiàng)影響極顯著(P<0.01),分別為X1、。模型Y1中有3個(gè)回歸項(xiàng)對(duì)試驗(yàn)影響不顯著(P>0.05)分別為;模型Y2中有5個(gè)回歸項(xiàng)對(duì)試驗(yàn)影響不顯著(P>0.05),分別為X2、X1X2、X1X3、X2X3、。剔除模型不顯著回歸項(xiàng),對(duì)模型Y1、Y2進(jìn)行優(yōu)化,如式(5)~式(6)所示,分析優(yōu)化后的模型,根據(jù)模型Y1、Y2的P值(分別為P<0.000 1、P<0.001)與模型Y1、Y2的失擬項(xiàng)P值(分別為0.131 、0.0557)可知優(yōu)化模型可靠。
表4 回歸方程方差分析Table 4 Variance analysis of regression equation
3.3.3 各因素對(duì)性能影響效應(yīng)分析
貢獻(xiàn)率K值的大小可以體現(xiàn)各單因素對(duì)模型Y的影響程度[26],K值越大,各單因素對(duì)模型Y的影響越大,其計(jì)算方法見式(7)~式(8),各因素對(duì)纏膜率貢獻(xiàn)率大小順序?yàn)椋赫駝?dòng)篩振動(dòng)頻率>齒片間距>振動(dòng)篩振幅;各因素對(duì)含土率貢獻(xiàn)率大小順序?yàn)椋糊X片間距>振動(dòng)篩振動(dòng)頻率>振動(dòng)篩振幅,分析結(jié)果如表5所示。
式中:F為回歸方程中各回歸項(xiàng)的F值;δ為回歸項(xiàng)對(duì)F值的考核值;KXj為各因素貢獻(xiàn)率。
表5 各因素貢獻(xiàn)率分析Table 5 Analysis on contribution rate of each factor
3.3.4 交互因素對(duì)性能影響規(guī)律分析
根據(jù)回歸方程分析結(jié)果,利用Design-Expert8.0.6.1軟件繪制響應(yīng)面圖,根據(jù)響應(yīng)面圖考察振動(dòng)篩振動(dòng)頻率、振動(dòng)篩振幅、齒片間距交互因素對(duì)響應(yīng)值Y1、Y2的影響。
1)交互因素對(duì)纏膜率的影響規(guī)律分析
振動(dòng)篩振動(dòng)頻率、振動(dòng)篩振幅、齒片間距交互因素對(duì)響應(yīng)值Y1影響的響應(yīng)面曲線圖見圖4。圖4a為齒片間距位于中心水平(14 mm)時(shí),振動(dòng)篩振動(dòng)頻率與振動(dòng)篩振幅對(duì)纏膜率Y1交互作用的響應(yīng)面圖,從圖4a可以看出,增大振動(dòng)篩振動(dòng)頻率和振動(dòng)篩振幅有助于降低纏膜率;圖4b為振動(dòng)篩振幅位于中心水平(60 mm)時(shí),振動(dòng)篩振動(dòng)頻率與齒片間距對(duì)纏膜率Y1交互作用的響應(yīng)面圖,從圖4b可以看出,纏膜率的降低可以通過增大振動(dòng)篩振動(dòng)頻率和減小齒片間距實(shí)現(xiàn);圖4c為振動(dòng)篩振動(dòng)頻率位于中心水平(3.3 Hz)時(shí),振動(dòng)篩振幅與齒片間距對(duì)纏膜率Y1交互作用的響應(yīng)面圖,從圖4c可以看出,纏膜率的降低可以通過增大振動(dòng)篩振幅和減小齒片間距實(shí)現(xiàn)。
此外從各因素對(duì)響應(yīng)值Y1影響的響應(yīng)圖中(圖4)可以得知,響應(yīng)面變化規(guī)律與回歸方程方差分析結(jié)果(表4)及模型(5)一致,總體影響趨勢(shì)為振動(dòng)篩振動(dòng)頻率越高、振動(dòng)篩振幅越大、齒片間距越小,則殘膜率越低,反之則纏膜率高。其主要原因?yàn)椋寒?dāng)振動(dòng)篩振動(dòng)頻率加大時(shí),殘膜從篩面被拋起的能力增強(qiáng);當(dāng)振動(dòng)篩振幅增大時(shí),殘膜通過篩面的有效時(shí)間少;當(dāng)齒片間距減小時(shí),篩面自纏繞概率低。
2)交互因素對(duì)含土率的影響規(guī)律分析
振動(dòng)篩振動(dòng)頻率、振動(dòng)篩振幅、齒片間距交互因素對(duì)含土率Y2影響的響應(yīng)面曲線圖見圖4。圖4d為齒片間距位于中心水平(14 mm)時(shí),振動(dòng)篩振動(dòng)頻率與振動(dòng)篩振幅對(duì)含土率Y2交互作用的響應(yīng)面圖,從圖4d可以看出,含土率的降低可以通過增大振動(dòng)篩振動(dòng)頻率和減小振動(dòng)篩振幅來實(shí)現(xiàn);圖4e為振動(dòng)篩振幅位于中心水平(60 mm)時(shí),振動(dòng)篩振動(dòng)頻率與齒片間距對(duì)含土率Y2交互作用的響應(yīng)面圖,從圖4e可以看出,增大振動(dòng)篩振動(dòng)頻率與齒片間距有助于降低含土率;圖4f為振動(dòng)篩振動(dòng)頻率位于中心水平(3.3 Hz)時(shí),振動(dòng)篩振幅與齒片間距對(duì)含土率Y2交互作用的響應(yīng)面圖,從圖4f可以看出,增大齒片間距和降低振動(dòng)篩振幅有助于降低含土率。
此外從各因素對(duì)響應(yīng)值Y2影響的響應(yīng)圖中(圖4)可以得知,響應(yīng)面變化規(guī)律與回歸方程方差分析結(jié)果(表4)及模型(6)一致,總體影響趨勢(shì)為振動(dòng)篩振幅越小、振動(dòng)篩振動(dòng)頻率越高、齒片間距越大含土率越低,反之則含土率越高。其主要原因?yàn)椋寒?dāng)振動(dòng)篩振動(dòng)頻率加大時(shí),土壤被拋起的頻率越高;當(dāng)振動(dòng)篩振幅減小時(shí),土壤有效分離時(shí)間長(zhǎng),篩分率高;當(dāng)齒片間距加大時(shí),土壤透篩率高,含土率低。
圖4 振動(dòng)篩振動(dòng)頻率、振幅及齒片間距交互因素對(duì)纏膜率和含土率的影響Fig.4 Effects of interactive factors of vibration frequecy,amplitude and distance between jagged pieces of vibrating screen on wrap plastic film and soil content
4.1 參數(shù)優(yōu)化
為了使輸膜與膜土分離性能最佳,因此必須要求纏膜率較低、含土率較低,根據(jù)交互因素對(duì)纏膜率及含土率影響效應(yīng)分析可知:要獲得較低的殘膜率,就必須要求振動(dòng)篩振動(dòng)頻率高、振動(dòng)篩振幅小、齒片間距??;要獲得較低含土率,就必須要求振動(dòng)篩振動(dòng)頻率不應(yīng)過高、振動(dòng)篩振幅小、齒片間距大。為了尋求滿足輸膜與膜土分離性能的最佳參數(shù)組合,考慮各因素對(duì)響應(yīng)值的影響不盡相同,因此,必須進(jìn)行多目標(biāo)優(yōu)化。
本研究針對(duì)輸膜機(jī)構(gòu)工作參數(shù)優(yōu)化,要求滿足纏膜率低、含土率低的輸膜作業(yè)要求。其目標(biāo)函數(shù)如式(9)所示。
式中Yfmin為響應(yīng)值中最小值。
為了得到各因素最優(yōu)工作參數(shù),采用Design-Expert軟件對(duì)各參數(shù)進(jìn)行優(yōu)化求解。當(dāng)振動(dòng)篩振動(dòng)頻率為3.85 Hz、振動(dòng)篩振幅為42.04 mm、齒片間距為15.11 mm時(shí),此時(shí)纏膜率為1.68%、含土率為31.69%。
4.2 試驗(yàn)驗(yàn)證
為了驗(yàn)證模型預(yù)測(cè)的準(zhǔn)確性,采用上述參數(shù)在江蘇農(nóng)業(yè)科學(xué)院收獲后的花生地進(jìn)行3次重復(fù)試驗(yàn)。考慮試驗(yàn)的可行性,將振動(dòng)篩振動(dòng)頻率設(shè)置為3.9 Hz、振動(dòng)篩振幅為42 mm、齒片間距為15 mm,在此優(yōu)化方案下進(jìn)行試驗(yàn),結(jié)果見表6。
表6 優(yōu)化條件下各評(píng)價(jià)指標(biāo)實(shí)測(cè)值Table 6 Experimental value of evaluation indices at optimal condition
通過分析表6結(jié)果可知,各響應(yīng)值試驗(yàn)值與理論優(yōu)化值均比較吻合,試驗(yàn)值與理論優(yōu)化值相對(duì)誤差均小于5%,因此,參數(shù)優(yōu)化模型可靠。在收膜作業(yè)時(shí),采用該優(yōu)化參數(shù)組合,即振動(dòng)篩振動(dòng)頻率3.9 Hz、振動(dòng)篩振幅為42 mm、齒片間距為15 mm,此時(shí)纏膜率為1.72%,含土率為32.81%。
1)采用 Box-Benhnken中心組合試驗(yàn)方法對(duì)振動(dòng)篩振動(dòng)頻率、振動(dòng)篩振幅、齒片間距對(duì)纏膜率、含土率的影響趨勢(shì)進(jìn)行了分析并建立了優(yōu)化模型,通過試驗(yàn)驗(yàn)證了模型和優(yōu)化結(jié)果進(jìn)行準(zhǔn)確性,實(shí)測(cè)值與優(yōu)化值相對(duì)誤差均小于5%,表明模型可靠性較高。
2)輸膜機(jī)構(gòu)各因素對(duì)纏膜率影響顯著順序?yàn)檎駝?dòng)篩振動(dòng)頻率>齒片間距>振動(dòng)篩振幅;各因素對(duì)含土率影響顯著順序?yàn)辇X片間距>振動(dòng)篩振動(dòng)頻率>振動(dòng)篩振幅。
3)輸膜機(jī)構(gòu)最優(yōu)工作參數(shù)組合為振動(dòng)篩振動(dòng)頻率3.9 Hz、振動(dòng)篩振幅42 mm、齒片間距15 mm,試驗(yàn)結(jié)果為纏膜率1.72%、含土率32.81%。
4)該試驗(yàn)對(duì)輸膜機(jī)構(gòu)工作參數(shù)開展多因素分析,研究各因素對(duì)纏膜率、含土率的影響。由于本試驗(yàn)針對(duì)鋸齒條僅僅考慮了齒片間距工作參數(shù),對(duì)土壤含水率、齒片的形狀、齒片高度等因素未開展全面試驗(yàn),因此在后續(xù)輸膜機(jī)構(gòu)研究中因綜合考慮上述因素;
5)鏟篩式殘膜回收機(jī)雖然收膜完整,殘膜回收率高,但是實(shí)際工作中作業(yè)效率還不夠高,后續(xù)機(jī)具研發(fā)建議增大作業(yè)幅寬,由單壟收獲改為雙壟收獲,提升作業(yè)效率。
[1] 畢繼業(yè),王秀芬,朱道林. 地膜覆蓋對(duì)農(nóng)作物產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(11):172-175. Bi Jiye,Wang Xiufen,Zhu Daolin. Effect of plastic-film mulch on crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2008,24(11):172-175.(in Chinese with English abstract)
[2] 侯書林,胡三媛,孔建銘,等. 國(guó)內(nèi)殘膜回收機(jī)研究的現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(3):186 -190. Hou Shulin,Hu Sanyuan,Kong Jianming,et al. Present situation of research on plastic film residue collector in China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2002,18(3):186-190.(in Chinese with English abstract)
[3] 張惠友,侯書林,那明君,等. 收膜整地多功能作業(yè)機(jī)的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(8):130-134. Zhang Huiyou,Hou Shulin,Na Mingjun,et al. Multifunctional machine for retrieving the used plastic film after harvesting and soil preparation[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2007,23(8):130-134.(in Chinese with English abstract)
[4] 嚴(yán)昌榮,梅旭榮,何文清,等. 農(nóng)用地膜殘留污染的現(xiàn)狀與防治[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(11):269-272. Yan Changrong,Mei Xurong,He Wenqing,et al. Present situation of residue pollution of mulching plastic film and controlling measures[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2006,22(11):269-272.(in Chinese with English abstract)
[5] 何文清,嚴(yán)昌榮,趙彩霞,等.我國(guó)地膜應(yīng)用污染現(xiàn)狀及其防治途徑研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(3):533-538. He Wenqing,Yan Changrong,Zhao Caixia,et al. Study on the pollution by plastic mulch film and its countermeasures in China[J]. Journal of Agro-Environment Science,2009,28(3):533-538.(in Chinese with English abstract)
[6] 謝建華,侯書林,劉英超. 殘膜清理回收機(jī)具的研究現(xiàn)狀及存在的問題[J]. 中國(guó)農(nóng)機(jī)化,2012(5):41-44. Xie Jianhua,Hou Shulin,Liu Yingchao. Research status and trends of plastic film residue collectors[J]. Chinese Agricultural Mechanization,2012(5):41-44.(in Chinese with English abstract)
[7] 游兆延,顧峰瑋,吳峰,等. 壟作花生殘膜回收技術(shù)研究[J]. 農(nóng)機(jī)化研究,2016(1):207-211. You Zhaoyan,Gu Fengwei,Wu Feng,et al. Research on ridged peanut residue plastic film recycling technology[J]. Journal of Agricultural Mechanization Research,2016(1):207-211.(in Chinese with English abstract)
[8] 謝建華,侯書林,付宇,等. 殘膜回收機(jī)彈齒式拾膜機(jī)構(gòu)運(yùn)動(dòng)分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊1):94-99. Xie Jianhua,Hou Shulin,Fu Yu,et al. Motion analysis and experiment on spring-tooth mulching plastic film collector[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2013,44(Suppl 1):94-99.(in Chinese with English abstract)
[9] 胡凱,王吉奎,李斌,等. 棉稈粉碎還田與殘膜回收聯(lián)合作業(yè)機(jī)研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(19):24-32. Hu Kai,Wang Jikui,Li Bin,et al. Development and experiment of combined operation machine for cotton straw chopping and plastic film collecting[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(19):24-32.(in Chinese with English abstract)
[10] 呂釗欽,張磊,張廣玲,等. 鏈條導(dǎo)軌式地膜回收機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):48-54. Lü Zhaoqin,Zhang Lei,Zhang Guangling,et al. Design and test of chain guide rail-type plastic film collector[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(18):48-54.(in Chinese with English abstract)
[11] 鐘挺,胡志超,顧峰瑋,等. 4LZ-1.0Q型稻麥聯(lián)合收獲機(jī)脫粒清選部件試驗(yàn)與優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(10):76-81. Zhong Ting,Hu Zhichao,Gu Fengwei,et al. Optimization and experiment for threshing and cleaning parts of 4LZ-1.0Q cereal combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2012,43(10):76-81.(in Chinese with English abstract)
[12] 胡志超,陳有慶,王海鷗,等. 振動(dòng)篩式花生收獲機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):114-117. Hu Zhichao,Chen Youqing,Wang Haiou,et al. Design and experimental research on vibrating type peanut harvester[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2008,24(10):114-117.(in Chinese with English abstract)
[13] 張學(xué)軍,吳成武,王旭東,等. 殘膜分離篩機(jī)構(gòu)的運(yùn)動(dòng)仿真與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(7):113-116. Zhang Xuejun,Wu Chengwu,Wang Xudong,et al. Motion simulation and analysis of separating sieve mechanism for scrap plastic film[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2007,23(7):113-116.(in Chinese with English abstract)
[14] 耿瑞陽. 新編農(nóng)業(yè)機(jī)械學(xué)[M]. 北京:國(guó)防工業(yè)出版社,2011.
[15] 李剛,張林海,付宇,等. 曲柄搖桿式殘地膜撿拾機(jī)構(gòu)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(增刊1):63-67. Li Gang,Zhang Linhai,Fu Yu,et al. Crank-rocker mechanism for collecting plastic film[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2014,45(Suppl 1):63-67.(in Chinese with English abstract)
[16] 中國(guó)機(jī)械工業(yè)聯(lián)合會(huì):殘地膜回收機(jī)標(biāo)準(zhǔn):GB/25412-2010[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2011:3.
[17] 王志偉,孟玲琴,劉丹,等. 振動(dòng)篩選機(jī)的優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(5):67-71. Wang Zhiwei,Meng Lingqin,Liu Dan,et al. Optimal design of vibrating screener[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2006,37(5):67-71.(in Chinese with English abstract)
[18] 巫宗權(quán),周純德,吳也成. 振動(dòng)式篩選機(jī)的機(jī)理探討[J]. 甘蔗糖業(yè),1991(5):49-54. Wu Zongquan,Zhou Chunde,Wu Yecheng. The mechanism research of vibrating screen classifier[J]. Sugarcane and Cane Sugar,1991(5):49-54.(in Chinese with English abstract)
[19] 陳翠英,王志華,李青林. 油菜脫出物物理機(jī)械特性及振動(dòng)篩參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(3):60-63. Chen Cuiying,Wang Zhihua,Li Qinglin. Machaon physical properties of rape extractives and parametrical optimization of vibration sieve[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM),2005,36(3):60-63.(in Chinese with English abstract)
[20] 于昭洋,胡志超,王海鷗,等. 大蒜果秧分離機(jī)構(gòu)參數(shù)優(yōu)化及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):40-46. Yu Zhaoyang,Hu Zhichao,Wang Haiou,et al. Parameters optimization and experiment of garlic picking mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(1):40-46.(in Chinese with English abstract)
[21] 于昭洋,胡志超,王海鷗,等. 大蒜果秧分離試驗(yàn)裝置的設(shè)計(jì)與測(cè)試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(16):7-15. Yu Zhaoyang,Hu Zhichao,Wang Haiou,et al. Design and testing of head-stem segregation equipment for garlic[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(16):7-15.(in Chinese with English abstract)
[22] 張敏,金誠(chéng)謙,梁蘇寧,等. 風(fēng)篩選式油菜聯(lián)合收割機(jī)清選機(jī)構(gòu)參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):8-15. Zhang Min,Jin Chengqian,Liang Suning,et al. Parameter optimization and experiment on air-screen cleaning device of rapeseed combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(24):8-15.(in Chinese with English abstract)
[23] 丁素明,薛新宇,方金豹,等. 手持式風(fēng)送授粉機(jī)工作參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):68-75. Ding Suming,Xue Xinyu,Fang Jinbao,et al. Parameter optimization and experiment of air-assisted pollination device[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(8):68-75.(in Chinese with English abstract)
[24] 丁素明,薛新宇,蔡晨,等. 梨樹枝條切割裝置刀片參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊2):75-82. Ding Suming,Xue Xinyu,Cai Chen,et al. Optimization and experiment of blade parameter for pear branches cutting device[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(Suppl 2):75-82.(in Chinese with English abstract)
[25] 徐向宏,何明珠. 試驗(yàn)設(shè)計(jì)與 Design-Expert、SPSS 應(yīng)用[M]. 北京:科學(xué)出版社,2010.
[26] 明道緒. 高級(jí)生物統(tǒng)計(jì)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2006.
Parameter optimization and experiment for plastic film transport mechanism of shovel screen type plastic film residue collector
Yan Wei1,2,Hu Zhichao1※,Wu Nu2,Xu Hongbo1,You Zhaoyan1,Zhou Xinxing1,2
(1. Nanjing Research Institute of Agricultural Mechanization,Ministry of Agriculture,Nanjing 210014,China;2. School of Mechanical Engineering,Nantong University,Nantong 226019,China)
Residual film not only affects the crop emergence and yield but also causes serious soil and environmental damage and affects the smooth operation of the agricultural machinery,so residual film recovery is imperative. Ridge tillage residual film recovery has the same characteristics with the residual film recovery equipment,and it has higher requirements for ridge width of residual film recovery equipment. The plastic film has not been fully utilized and the ridge body is relatively high. Furrow residual film recovery is difficult and a lot of plastic films used can not be completely recovered. A lot of plastic films are buried very deep. As one of the key means to control plastic film residue pollution,mechanically collecting technique of plastic film residue has shown a good developing prospect. But,there are many problems in the existing residual film recycling machines,such as high rate of film wrapping,incomplete recovery of residual film,and so on. Shovel screen type plastic film residue collector has a recycling capacity to the film in soil. It has a good application prospect in the field of ridge tillage plastic film recycling. The high rate of film wrapping for plastic film transport mechanism and the high rate of soil content in residual film after harvest are the major problems in the promotion of shovel screen type plastic film residue collector. To reduce the high film wrapping rate and soil containing rate in residual film after harvest,and improve the working quality of plastic film transport mechanism,single-factor test was used to get the best form of the screen surface structure in this paper. The Box-Benhnken central composite experimental design principle was adopted on the basis of single factor experiment to research the working parameters of the plastic film transport mechanism of shovel screen type plastic film residue collector. The vibrating screen’s vibration frequency,vibrating screen amplitude,and distance between jagged pieces were taken as 3 factors which influenced the working quality,and a three-factor and three-level response surface experiment was conducted. In the experiment,when the vibration frequency of vibrating screen was less than 2.3 Hz,the separation effect was poor;when the altitude of vibrating screen was less than 40 mm,the film conveying performance was poor;when the distance between jagged pieces was less than 8 mm,the separation effect was poor;when the vibration frequency of vibrating screen was higher than 4.3 Hz,the resonance phenomenon was serious;when the altitude of vibrating screen was more than 80 mm,the effect of separation was poor;and when the distance between jagged pieces was more than 20 mm,the residual film phenomenon was serious. Therefore,the vibration frequency of vibrating screen was selected from 2.3 to 4.3 Hz,the altitude of vibrating screen from 40 to 80 mm,and the distance between jagged pieces from 8 to 20 mm. The mathematical model of the response surface was established. And the influence of each factor on the working quality was analyzed and each factor was optimized comprehensively. The results showed that the significant effects of vibration screen frequency,distance between jagged pieces and vibrating screen amplitude on reducing the rate of film wrapping were in a decreasing order,and the significant effects of distance between jagged pieces,vibrating screen amplitude and vibration screen frequency on reducing the rate of soil content were in a decreasing order. The best work parameters were as bellow:when the vibrating screen’s vibration frequency was 3.9 Hz,the vibrating screen amplitude was 42 mm and the distance between jagged pieces was 15 mm,the rate of film wrapping was 1.72%,and the rate of soil content was 32.81%. Through comparing the mathematical model and the experimental result,it turned out that the relative errors of all the property indices between the two were less than 5%,which meant that the model established was useful and could be used for prediction and optimization. The research results can provide the references for the plastic film transport mechanism of plastic film residue collector and the optimization of working parameters.
agricultural machinery;plastic films;optimization;plastic film transport mechanism;single factor experiment;response surface methodology
10.11975/j.issn.1002-6819.2017.01.003
S223.5
A
1002-6819(2017)-01-0017-08
嚴(yán) 偉,胡志超,吳 努,徐弘博,游兆延,周新星. 鏟篩式殘膜回收機(jī)輸膜機(jī)構(gòu)參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):17-24.
10.11975/j.issn.1002-6819.2017.01.003 http://www.tcsae.org
Yan Wei,Hu Zhichao,Wu Nu,Xu Hongbo,You Zhaoyan,Zhou Xinxing. Parameter optimization and experiment for plastic film transport mechanism of shovel screen type plastic film residue collector[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):17-24.(in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.01.003 http://www.tcsae.org
2016-04-28
2016-10-20
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)“殘膜污染農(nóng)田綜合治理技術(shù)方案”(201503105)
嚴(yán) 偉,男(漢),江蘇宿遷人,主要從事農(nóng)機(jī)化裝備研發(fā)。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。Email:974916120@qq.com
※通信作者:胡志超,男(漢),陜西藍(lán)田人,研究員,博士,博士生導(dǎo)師,主要從事農(nóng)作物收獲及產(chǎn)后加工技術(shù)與裝備研究。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。Email:zchu369@163.com