国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

間充質(zhì)干細(xì)胞在軟骨損傷修復(fù)中的研究進(jìn)展

2017-01-13 06:52衛(wèi)旭東黨源胡德慶
關(guān)鍵詞:充質(zhì)膠原軟骨

衛(wèi)旭東黨源胡德慶

間充質(zhì)干細(xì)胞在軟骨損傷修復(fù)中的研究進(jìn)展

衛(wèi)旭東1黨源1胡德慶2

關(guān)節(jié)軟骨損傷性疾病在臨床上日益多見(jiàn)。由于軟骨組織是一種高分化的、無(wú)血管、無(wú)神經(jīng)的終末分化組織,缺乏自身修復(fù)能力,關(guān)節(jié)軟骨損傷始終是亟待解決的一大難題。間充質(zhì)干細(xì)胞作為一類多能干細(xì)胞,具備強(qiáng)大的增殖和成軟骨細(xì)胞能力,被認(rèn)為可以有效修復(fù)關(guān)節(jié)軟骨損傷。本文回顧近年來(lái)國(guó)內(nèi)外學(xué)者在研究間充質(zhì)干細(xì)胞修復(fù)關(guān)節(jié)軟骨損傷方面進(jìn)展,為開展更為深入的研究建立基礎(chǔ)。

軟骨; 修復(fù); 間質(zhì)干細(xì)胞; 組織工程

干細(xì)胞(stem cells)是一類具有自我復(fù)制能力、未充分分化、尚不成熟的可誘導(dǎo)分化為各種組織和器官的潛能細(xì)胞。根據(jù)干細(xì)胞所處的發(fā)育階段將其分為兩類:胚胎干細(xì)胞(embryonic stem cells,ESC)和成體干細(xì)胞(somatic stem cells,SSC)[1]。胚胎干細(xì)胞系胚胎來(lái)源的未分化(原始)細(xì)胞,因具有分化為所有類型細(xì)胞的潛能,故稱為全能干細(xì)胞,由于涉及倫理問(wèn)題,其推廣應(yīng)用受到明顯限制。間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSC)是成體干細(xì)胞的一種,來(lái)源于發(fā)育早期的中胚層和外胚層,屬于多能干細(xì)胞,最初由Friedenstein等[2]發(fā)現(xiàn),在胚胎形成過(guò)程中,中胚層細(xì)胞最終分化為骨、軟骨、滑膜、肌腱、肌肉、脂肪和髓基質(zhì)等多種組織[3]。近年來(lái),深入研究發(fā)現(xiàn)MSC在體外仍然具有多向分化能力及強(qiáng)大的增殖能力,具有取材范圍廣、免疫原性低、自體移植易、涉及倫理少等優(yōu)點(diǎn),給軟骨缺損修復(fù)等臨床難題帶來(lái)一定的希望。由于MSC可以誘導(dǎo)真正的透明軟骨產(chǎn)生,并且不存在自體移植造成的供體位點(diǎn)發(fā)病或同種異體移植帶來(lái)的感染和免疫排斥等風(fēng)險(xiǎn),成為目前軟骨組織工程中種子細(xì)胞的研究熱點(diǎn)。

隨著生命科學(xué)和工程材料學(xué)的快速發(fā)展,組織工程學(xué)成為解決大塊軟骨缺損等臨床難題的較理想方法。作為替代治療,種子細(xì)胞、誘導(dǎo)因子和支架材料是決定軟骨修復(fù)成敗的三大要素,通過(guò)誘導(dǎo)種子細(xì)胞分化為軟骨細(xì)胞,擴(kuò)增并接種到合適的載體上,移植體內(nèi)以修復(fù)缺損的軟骨組織,從細(xì)胞水平上重建軟骨組織,使其在組織生物學(xué)、免疫、代謝、機(jī)械性能等方面可與天然軟骨相媲美。MSC易被外源基因轉(zhuǎn)染,導(dǎo)入的“外源基因”能夠有效擴(kuò)散,在體內(nèi)修復(fù)部位持續(xù)允許生長(zhǎng)因子表達(dá)及遞送,為治療提供了良好的微環(huán)境。

當(dāng)前MSC在軟骨組織修復(fù)方面的研究主要集中在臍帶間充質(zhì)干細(xì)胞(umbilical cord mesenchymal stem cells,UCMSC)、脂肪間充質(zhì)干細(xì)胞(adipose-derived stem cells,ADSC)、骨 髓 間 充 質(zhì) 干 細(xì) 胞(bone marrow derived mesenchymal stem cells,BMSC)及滑膜間充質(zhì)干細(xì)胞(synovial mesenchymal stem cells,SMSC)。

一、UCMSC

UCMSC來(lái)源于新生兒臍帶組織中的多潛能干細(xì)胞,在臍帶血管周圍的Wharton's Jelly組織中含量豐富,與原始細(xì)胞最為接近[4],具有發(fā)育靈活、增殖能力強(qiáng)和傳代穩(wěn)定等特點(diǎn)[5]。隨著體外培養(yǎng)時(shí)間的延長(zhǎng),UCMSC細(xì)胞集落不斷增多、擴(kuò)大及互相融合,連續(xù)長(zhǎng)期傳代培養(yǎng)并未發(fā)生形態(tài)學(xué)改變,無(wú)衰老現(xiàn)象,并同時(shí)保持穩(wěn)定的遺傳特征和內(nèi)胚層分化潛能[6]。人臍帶來(lái)源的UCMSC具有同種異體移植的天然優(yōu)勢(shì),低水平MHC-Ⅰ類分子、缺乏HLA-Ⅱ類分子及共刺激抗原(CD80,CD86)的表達(dá)增強(qiáng)了免疫“逃避”能力,使其在軟骨缺損的不利環(huán)境中(如炎癥)具有存活優(yōu)勢(shì)[3,7]。

(一)UCMSC成軟骨誘導(dǎo)的誘導(dǎo)條件

Mara等[8]使用BMP-2或BMP-6誘導(dǎo)UCMSC,發(fā)現(xiàn)Ⅱ型膠原和酸性蛋白聚糖(proteoglycan,PG)的表達(dá)具有時(shí)間依賴性,BMP-2能更高效地誘導(dǎo)軟骨形成。當(dāng)使用TGF-β3誘導(dǎo)時(shí),觀察到高強(qiáng)度的細(xì)胞外基質(zhì)及密集的軟骨結(jié)節(jié)樣結(jié)構(gòu)的連續(xù)細(xì)胞凝集,這些結(jié)節(jié)含有特別豐富的Ⅱ型膠原、PG和聚集蛋白聚糖(ACAN)積累,高度表達(dá)SOX9、COMP、ACAN和膠原X基因的mRNA[9]。軟骨分化和形成中SOX9基因是重要的轉(zhuǎn)錄因子,它能結(jié)合非軟骨細(xì)胞的軟骨基因的增強(qiáng)子序列并激活這個(gè)序列,使其呈軟骨細(xì)胞表型,從分子水平上證明了UCMSC具有前軟骨細(xì)胞的特征[10]。將人臍帶間充質(zhì)干細(xì)胞(human umbilical cord mesenchymal stem cells,hUCMSC)與兔軟骨細(xì)胞共培養(yǎng),觀察到誘導(dǎo)細(xì)胞具有軟骨細(xì)胞形態(tài)學(xué)特征,以1 : 3比例共培養(yǎng)組的ACAN和Ⅱ型膠原的mRNA及蛋白表達(dá)更高,并且發(fā)現(xiàn)添加IGF-1可以加強(qiáng)這些效應(yīng)[11]。細(xì)胞擴(kuò)增的持續(xù)時(shí)間和細(xì)胞接種密度對(duì)UCMSC衍生軟骨細(xì)胞群體的質(zhì)量具有顯著影響[12]。

(二)負(fù)載UCMSC的軟骨組織工程支架

許多研究表明將UCMSC嵌入生物相容性的3D支架可能在軟骨工程方面潛力巨大。Bailey等[13]應(yīng)用hUCMSC接種在聚乙醇酸(PGA)支架后,產(chǎn)生豐富的Ⅰ型膠原、Ⅱ型膠原及糖胺聚糖(GAG),增加了再生組織表面的規(guī)整性。Li等[14]評(píng)估了聚羥基鏈烷酸酯結(jié)合蛋白(PHBHHx)與精氨酰-甘氨酰天冬氨酸(PhaPRGD)融合的聚合支架促進(jìn)hUCMSC的增殖和軟骨形成分化的能力,檢測(cè)到大量的活性細(xì)胞,并且ACAN和膠原Ⅱ的表達(dá)增強(qiáng),蛋白多糖的產(chǎn)生明顯升高,促進(jìn)ECM的合成及軟骨形成分化。Fong等[15]從人臍帶分離獲取hUCMSC,以聚已酸內(nèi)酯/膠原蛋白(PCL/Coll)納米支架為載體,發(fā)現(xiàn)其與天然軟骨成分更加接近,GAG和透明質(zhì)酸(HA)含量明顯高于對(duì)照組,關(guān)鍵軟骨形成基因高度表達(dá),并證明添加堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF)有助于驅(qū)動(dòng)軟骨形成。Park等[16]使用4%透明質(zhì)酸水凝膠復(fù)合材料聯(lián)合hUCMSC修復(fù)大鼠的軟骨損傷,新生組織與周圍無(wú)明顯界限、整體性良好,修復(fù)效果優(yōu),組織學(xué)檢測(cè)為透明軟骨。比較hBMSC和hUCMSC的軟骨形成潛力,顯示hUCMSC組相比hBMSC組具有三倍的膠原量,但在BMSC中堿性磷酸酶(ALP)和骨橋蛋白表達(dá)量更高,提高了機(jī)械強(qiáng)度,說(shuō)明UCMSC也適合用于組織工程[17]。

(三)基因工程轉(zhuǎn)染的UCMSC結(jié)合組織工程

Wang等[18]使用含有SOX9質(zhì)粒轉(zhuǎn)染hUCMSC,培養(yǎng)發(fā)現(xiàn)細(xì)胞呈多邊形或不規(guī)則形,存在類似的硫酸化蛋白聚糖積累,PG和Ⅱ型膠原表達(dá)隨時(shí)間增長(zhǎng)而增高,且未檢出Ⅰ型膠原,表現(xiàn)出穩(wěn)定的透明軟骨表型;SOX9過(guò)表達(dá)顯著增強(qiáng)了其成軟骨效應(yīng),這種增強(qiáng)與用軟骨形成培養(yǎng)基(含10ng/mL TGF-β、IGF-1)處理組中觀察到相似的增強(qiáng)。Lu等[19]比較了腺病毒和慢病毒感染UCMSC后靶基因的表達(dá),發(fā)現(xiàn)經(jīng)慢病毒轉(zhuǎn)染的靶基因在UCMSC中可以更有效的轉(zhuǎn)導(dǎo)。UCMSC用于軟骨缺損的細(xì)胞移植和廣泛的基因治療具有廣泛前景。

二、脂肪間充質(zhì)干細(xì)胞

ADSC最早由Zuk等[20]發(fā)現(xiàn)并從脂肪組織分離培養(yǎng)獲得,在一定誘導(dǎo)條件下可以多向分化,體外穩(wěn)定增殖傳代。ADSC在生長(zhǎng)動(dòng)力學(xué),細(xì)胞衰老和多譜系分化能力與BMSC沒(méi)有顯著差異[21],而且來(lái)源廣泛、含量豐富、取材創(chuàng)傷小、培養(yǎng)效率高,具有低免疫原性和免疫調(diào)節(jié)功能等優(yōu)點(diǎn)[22]。從滑膜脂肪墊提取的ADSC有較高的粘附集落形成能力和細(xì)胞產(chǎn)量,5g脂肪墊組織可以在2至3周內(nèi)持續(xù)產(chǎn)生約1 000萬(wàn)個(gè)ADSC細(xì)胞[23-25]。

(一)ADSC成軟骨誘導(dǎo)的誘導(dǎo)條件

迄今為止,已有大量文獻(xiàn)報(bào)道證實(shí)生長(zhǎng)因子在調(diào)節(jié)ADSC的軟骨形成中起重要作用[26-28]。IGF-1是調(diào)節(jié)軟骨形成和代謝中最關(guān)鍵的細(xì)胞因子,它能促進(jìn)軟骨細(xì)胞分泌PG和Ⅱ型膠原,抑制正常軟骨中ECM的降解[29]。TGF-β是調(diào)節(jié)多種生物功能(包括干細(xì)胞的軟骨形成分化)的多功能多肽,使用TGF-β1處理的MSC單層培養(yǎng)物中可以觀察到部分軟骨形成[30]。TGF-β1為ADSC進(jìn)入軟骨表型分化提供了一個(gè)適宜的外部信號(hào),促進(jìn)軟骨細(xì)胞及細(xì)胞外基質(zhì)的合成,抑制成熟軟骨細(xì)胞的分化和增殖,雙向調(diào)節(jié)軟骨形成和分化,這在誘導(dǎo)中是必要的[31]。有研究表明當(dāng)BMP-2與其它生長(zhǎng)因子一起使用時(shí),BMP-2能夠刺激軟骨形成,并且可能潛在地誘導(dǎo)ADSC軟骨形成并最終導(dǎo)致軟骨細(xì)胞肥大[36]。BMP-6與TGF-β聯(lián)合使用可以上調(diào)骨聚糖和Ⅱ型膠原的表達(dá)而顯著增加軟骨形成,而且副作用較?。ㄈ缭黾幽z原X型表達(dá)或增生其他表型的特征)[32],它們的協(xié)同作用機(jī)制是由于BMP-6可以誘導(dǎo)ADSC表達(dá)TGF-β1受體[33]。各種生長(zhǎng)因子和介質(zhì)對(duì)ADSC細(xì)胞軟骨形成的影響可能是累加的或協(xié)同的,這取決于暴露的濃度和時(shí)間[34]。

(二)負(fù)載ADSC的軟骨組織工程支架

Hwang等[35]用分離的羊耳軟骨細(xì)胞聯(lián)合hADSC接種于PLLA/PLCL支架上植入6周齡裸鼠體內(nèi),在TGF-β1的存在下,共培養(yǎng)系統(tǒng)顯著上調(diào)軟骨相關(guān)基因ACAN、COMP和COL2A1,6周后取出的復(fù)合體,組織總體外觀類似于天然軟骨,番紅O染色顯示整體構(gòu)造均勻,具有均一的軟骨ECM分布,在組織-支架界面附近檢測(cè)到彈性蛋白的水平,存在強(qiáng)烈的Ⅱ型膠原染色區(qū),而X型的膠原染色程度低,表明與軟骨細(xì)胞共接種可能抑制肥大分化。Yoon等[36]制備PEGDG交聯(lián)的多孔3D HA支架,發(fā)現(xiàn)s-GAG含量和相關(guān)標(biāo)志物基因(SOX9、PG和Ⅱ型膠原)的mRNA表達(dá)水平明顯升高,其軟骨分化水平隨著BMP-2的升高進(jìn)一步增加,促進(jìn)關(guān)節(jié)軟骨缺損的再生修復(fù)和界面整合,提高修復(fù)質(zhì)量。Zhu Y等將ADSC接種于膠原/殼聚糖支架上,分別在3D靜態(tài)培養(yǎng)板和動(dòng)態(tài)旋轉(zhuǎn)培養(yǎng)瓶中培養(yǎng),發(fā)現(xiàn)動(dòng)態(tài)培養(yǎng)瓶中的細(xì)胞密度是靜態(tài)培養(yǎng)板的26倍,他們認(rèn)為,無(wú)論在細(xì)胞形態(tài)、生長(zhǎng)狀態(tài),還是細(xì)胞分化能力,動(dòng)態(tài)支架培養(yǎng)都優(yōu)于單純靜態(tài)支架培養(yǎng)[37],他們通過(guò)比較觀察支架孔隙率、孔徑大小、降解率、親和性等特性,發(fā)現(xiàn)7:3配比的膠原-殼聚糖支架最適合ADSC黏附、增殖[38]。

(三)基因工程轉(zhuǎn)染的ADSC結(jié)合組織工程

隨著對(duì)間充質(zhì)干細(xì)胞研究的不斷深入,研究者對(duì)其特定基因改造和修飾,使軟骨修復(fù)難題在一定程度上得到了解決。Nixon等[29]分離獲取兔的ADSC,將人IGF-1和BMP-2轉(zhuǎn)染ADSC,發(fā)現(xiàn)二者可以驅(qū)動(dòng)ADSC的軟骨形成,顯示出成熟的軟骨樣細(xì)胞和形成軟骨結(jié)節(jié),這些細(xì)胞還有增加Ⅱ型膠原的產(chǎn)生并減少M(fèi)MP-3分泌的功能。Lee等[39]使用SOX三聯(lián)反轉(zhuǎn)錄病毒轉(zhuǎn)導(dǎo)ADSC包裹纖維蛋白凝膠阻止了大鼠的骨關(guān)節(jié)炎進(jìn)展,成功促進(jìn)軟骨缺損的愈合,并發(fā)現(xiàn)三聯(lián)共轉(zhuǎn)導(dǎo)的ADSC表達(dá)蛋白匹配基因較單一轉(zhuǎn)導(dǎo)具有數(shù)百倍甚至更高的基因表達(dá),顯著增加GAG含量以及Ⅱ型膠原基因和蛋白質(zhì)表達(dá)。Im等[40]將SOX Trio的pcDNA載體導(dǎo)入ADSC后接種在PLGA水凝膠支架上,修復(fù)兔髕骨溝上的骨軟骨缺損,發(fā)現(xiàn)細(xì)胞轉(zhuǎn)染兩周效率最高,COL2A1基因和蛋白顯著增加,而COL10A1蛋白表達(dá)較少,增強(qiáng)再生軟骨的強(qiáng)度。因此,脂肪來(lái)源的間充質(zhì)干細(xì)胞可以結(jié)合基因工程學(xué),作為軟骨組織工程種子細(xì)胞為治療提供新途徑。

三、骨髓間充質(zhì)干細(xì)胞

BMSC是研究開發(fā)最早,也是目前研究最多、使用范圍較廣的一類干細(xì)胞,存在于全身結(jié)締組織和器官間質(zhì)中,其中以骨髓中含量最為豐富,屬非造血干細(xì)胞,對(duì)骨髓中的造血干細(xì)胞(HSC)不僅有機(jī)械支持作用,還能分泌多種生長(zhǎng)因子(如IL-6、IL-11、LIF、M-CSF及SCF等)以支持造血。由于其來(lái)源廣泛,易于分離培養(yǎng),并具有較強(qiáng)的多向分化潛能和可自體移植等優(yōu)點(diǎn)[41],BMSC越來(lái)越受到學(xué)者們的青睞。組織工程學(xué)研究表明BMSC分化為軟骨細(xì)胞修復(fù)軟骨缺損的療效確切,通過(guò)BMSC間的相互作用和分泌生物活性因子,可以達(dá)到免疫調(diào)節(jié)和抗炎功能,從而修復(fù)受損組織[42-43]。

(一)BMSC成軟骨誘導(dǎo)的誘導(dǎo)條件

Longobardi等[44]研究發(fā)現(xiàn)IGF-1可以刺激MSC增殖、調(diào)控細(xì)胞凋亡,能單獨(dú)誘導(dǎo)BMSC表達(dá)軟骨細(xì)胞特異性標(biāo)志Ⅱ型膠原蛋白和SOX9,并在TGF-β存在的條件下,兩者具有協(xié)同成軟骨能力。IGF-1能使MMP-1、MMP-2及MMP-3 mRNA表達(dá)顯著降低,減少M(fèi)MP的生成,從而維持軟骨膠原纖維的穩(wěn)定性,并且通過(guò)Akt途徑介導(dǎo)起始軟骨形成過(guò)程及誘導(dǎo)完全軟骨細(xì)胞成熟為肥大軟骨細(xì)胞[45]。Worster等[30]發(fā)現(xiàn)將BMSC暴露于5ng TGF-β1/ml的培養(yǎng)條件下,細(xì)胞分層和結(jié)節(jié)形成最為顯著,Ⅱ型膠原mRNA的表達(dá)是對(duì)照培養(yǎng)物的1.7倍,膠原免疫反應(yīng)面積和強(qiáng)度存在劑量相關(guān)性,且以劑量依賴性方式增強(qiáng)軟骨形成分化。用三種TGF-β亞型培養(yǎng)的hBMSC,發(fā)現(xiàn)不同亞型不同程度影響hBMSC的終末分化,以TGF-β3誘導(dǎo)的細(xì)胞具有更高的礦化水平[46]。BMP-7誘導(dǎo)BMSC分泌Ⅱ型膠原、GAG和分泌蛋白能力與TGF-β沒(méi)有顯著差異[47]。有學(xué)者比較了BMP-2、BMP-4和BMP-6在體外促進(jìn)BMSC向軟骨分化的能力,發(fā)現(xiàn)BMP-2的作用最為有效[48]。

(二)負(fù)載BMSC的軟骨組織工程支架

三維多孔支架為BMSC的增殖及軟骨分化提供了良好的微環(huán)境。Zhao等[49]將BMSC附著在PGA支架上用于修復(fù)兔的關(guān)節(jié)軟骨缺損,軟骨缺陷被光滑的白色修復(fù)組織填充,軟骨表面光滑、軟骨層厚、膠原組織豐富,并且在整個(gè)缺損區(qū)域中發(fā)現(xiàn)排列整齊的軟骨細(xì)胞,修復(fù)區(qū)GAG和DNA含量更高,能產(chǎn)生更多的軟骨組織,ICRS組織學(xué)評(píng)分較高。Ka fi enah等[50]發(fā)現(xiàn)在軟骨形成中X型膠原的mRNA維持高水平,細(xì)胞肥大的風(fēng)險(xiǎn)增加,而PTHrP對(duì)X型膠原表達(dá)具有抑制作用,并且明顯降低堿性磷酸酶的活性,軟骨特異性基質(zhì)蛋白沒(méi)有任何損失。PTHrP通過(guò)抑制終末分化,進(jìn)而增強(qiáng)軟骨形成[51],還通過(guò)阻斷經(jīng)典Wnt/β-聯(lián)蛋白信號(hào)傳導(dǎo)途徑的活化,顯著減少茜素紅染色和終末分化相關(guān)標(biāo)志物的表達(dá)[52],從而更好的軟骨再生及軟骨下骨的重建。Zhang等[53]使用功能納米纖維中空微球聯(lián)合兔BMSC為快速構(gòu)建軟骨供體提供了新方法。Wang等[54]將BMSC和含有TGF-β1的纖維蛋白凝膠填充PLGA支架用于修復(fù)兔全層軟骨缺損,經(jīng)CM-Dil染色跟蹤BMSC,在缺陷區(qū)域中可見(jiàn)紅色熒光,熒光強(qiáng)度比正常軟骨強(qiáng)得多,新軟骨與其軟骨下骨結(jié)合緊密,細(xì)胞密度與天然軟骨相似,并且具有豐富的腔隙和細(xì)胞簇,組織學(xué)顯示為天然軟骨的正常結(jié)構(gòu),并且軟骨特異基因的水平顯著增高。

(三)基因工程轉(zhuǎn)染的BMSC結(jié)合組織工程

近年來(lái),組織工程通過(guò)基因療法借助其他轉(zhuǎn)化生長(zhǎng)因子序列和病毒載體轉(zhuǎn)染,提高BMSC軟骨化效率并增強(qiáng)其生物活性,療效值得肯定。Guo等[55]應(yīng)用過(guò)表達(dá)TGF-β1的BMSC協(xié)同聚-L-賴氨酸包被的PLA仿生支架修復(fù)兔全層關(guān)節(jié)軟骨缺損,在缺損淺部合成透明軟骨ECM、深部的骨小梁和密質(zhì)骨隨時(shí)間推移而改善,同時(shí)抑制炎癥及同種異體免疫應(yīng)答反應(yīng),TGF-β1基因增強(qiáng)的組織工程策略可能具有潛在益處。Chen等[56]使用Chm-1腺病毒轉(zhuǎn)導(dǎo)BMSC并應(yīng)用細(xì)胞工程軟骨體內(nèi),使軟骨細(xì)胞特異性高表達(dá)的Chm-1基因在BMSC中高表達(dá),同時(shí)表達(dá)軟骨特異性基質(zhì)蛋白的基因ColⅡ和AGG,確定其在維持軟骨形成表型中起重要作用。有學(xué)者[57]以腺病毒介導(dǎo)的BMP-2和TGF-β3基因轉(zhuǎn)染豬BMSC,BMP-2和TGF-β3的表達(dá)逐漸增加,而且調(diào)控軟骨主要基質(zhì)成分基因SOX9、COL2A和ACAN的表達(dá)隨培養(yǎng)時(shí)間的增加而上調(diào),且比單獨(dú)治療的BMP-2或TGF-β3組誘導(dǎo)的軟骨細(xì)胞基因表達(dá)更強(qiáng);使用轉(zhuǎn)染的BMSC構(gòu)建DBM支架復(fù)合物,修復(fù)豬膝關(guān)節(jié)的股骨髁全層軟骨損傷,12周后全層軟骨損傷已愈合,股骨的輪廓幾乎完全修復(fù),而且修復(fù)組織的顏色和質(zhì)量與周圍軟骨相似。DBM支架隨著時(shí)間逐漸被吸收,軟骨細(xì)胞大大增加,修復(fù)組織為透明軟骨,有良好的生物相容性,能很好地誘導(dǎo)軟骨再生修復(fù)關(guān)節(jié)軟骨的缺陷。

四、滑膜間充質(zhì)干細(xì)胞

SMSC是一類存在于關(guān)節(jié)滑膜組織中的間充質(zhì)干細(xì)胞。De Bari等[58]首次從人關(guān)節(jié)周圍的滑膜組織中成功分離SMSC,發(fā)現(xiàn)其具有多向分化潛能。比較幾種間充質(zhì)干細(xì)胞在體內(nèi)外軟骨形成潛能時(shí),發(fā)現(xiàn)SMSC在集落形成率、倍增速率和生長(zhǎng)動(dòng)力學(xué)高于其他組織來(lái)源的MSC,修復(fù)軟骨損傷更具優(yōu)勢(shì)[59-61]?;ぶ蠱SC比例很高,擴(kuò)增10代以上仍保持相似的生長(zhǎng)動(dòng)力學(xué)特征,并且相同條件下滑膜來(lái)源的MSC成軟骨能力最強(qiáng)[62]。

(一)SMSCs成軟骨誘導(dǎo)的誘導(dǎo)條件

近年來(lái),誘導(dǎo)SMSC成軟骨的研究較多,細(xì)胞因子發(fā)揮了重要的作用。TGF-β是公認(rèn)的SMSC向軟骨細(xì)胞分化最關(guān)鍵因素之一,其能增強(qiáng)新生軟骨的生物力學(xué)[63]。TGF-β1與其受體結(jié)合激活了一系列基于磷酸化的信號(hào)級(jí)聯(lián)反應(yīng),這些信號(hào)通過(guò)Smad通路或非Smad通路傳導(dǎo)到細(xì)胞核,激活SOX9等能誘導(dǎo)成軟骨基因表達(dá)轉(zhuǎn)錄因子,從而促進(jìn)干細(xì)胞向軟骨細(xì)胞分化[64-65]。當(dāng)TGF-β聯(lián)合BMP-6使用時(shí),形成的軟骨顆粒重量可增加10倍之多,PG的染色更為廣泛[66]。誘導(dǎo)前加入bFGF能促進(jìn)SMSC的增殖和成軟骨分化[67]。此外聯(lián)合使用TGF-β、IGF-1和bFGF誘導(dǎo)SMSC向軟骨細(xì)胞分化能更好的促進(jìn)SMSC合成軟骨ECM[68]。以TGF-β3和BMP-2聯(lián)合誘導(dǎo)產(chǎn)生的軟骨微球直徑最大、重量最重,軟骨細(xì)胞外基質(zhì)產(chǎn)量顯著增加,且PG及Ⅱ型膠原合成量亦最多,軟骨相關(guān)基因的表達(dá)水平最高[62]。目前認(rèn)為,以TGF-β3、BMP-2和地塞米松三聯(lián)組合誘導(dǎo)培養(yǎng)SMSC成軟骨的方案最為有效。

(二)負(fù)載SMSC的軟骨組織工程支架

殼聚糖-藻酸鹽復(fù)合3D多孔支架可以提供有利的微環(huán)境支持細(xì)胞的增殖和軟骨形成分化。Qi等[65]將鼠CD105+SMSC接種到殼聚糖-藻酸鹽復(fù)合3D多孔支架上,以TGF-β1和BMP-2誘導(dǎo),觀察細(xì)胞在支架上附著均勻且增殖良好,細(xì)胞的總DNA和葡糖胺聚糖含量顯著增加,同時(shí)Ⅱ型膠原和Sox9高表達(dá),展現(xiàn)了穩(wěn)定的透明軟骨表型。Koga等[69]研究將SMSC包埋在膠原凝膠中用于修復(fù)兔的全層軟骨缺損,SMSC介導(dǎo)的遠(yuǎn)期治療成效良好,組織顆粒顯示出豐富的軟骨基質(zhì),發(fā)現(xiàn)其修復(fù)形成的是透明軟骨而非纖維軟骨。Chang等[70]將無(wú)細(xì)胞軟骨基質(zhì)(ACM)和人類SMSC混合到膠原凝膠中構(gòu)建支架,發(fā)現(xiàn)ACM和軟骨形成生長(zhǎng)因子在工程化軟骨形成中有協(xié)同效應(yīng),ACM在生長(zhǎng)因子缺乏環(huán)境中具有促進(jìn)Ⅱ型膠原基因表達(dá)的潛力,可以降低X型膠原蛋白的mRNA水平從而減少SMSC在軟骨形成中的肥大,有助于軟骨形成。Pei等[71]將兔的SMSC接種到有纖維蛋白膠原的PGA/Collagraft(一種骨替代材料含HA)復(fù)合支架,用于修復(fù)兔軟骨缺損,三周后與周圍的天然軟骨很好地整合,有大量Ⅱ型膠原和GAG的表達(dá),幾乎檢測(cè)不到Ⅰ型膠原的表達(dá),增加了軟骨機(jī)械強(qiáng)度;GAG含量與軟骨壓縮應(yīng)力相關(guān)的主要基質(zhì)成分以時(shí)間依賴的方式增加,而且GAG、DNA的比例和成軟骨分化指數(shù)隨時(shí)間增加。

(三)基因工程轉(zhuǎn)染的SMSC結(jié)合組織工程

有研究使用編碼TGF-β1的重組逆轉(zhuǎn)錄病毒(rRV)感染hSMSC,表現(xiàn)出間充質(zhì)干細(xì)胞應(yīng)有的結(jié)構(gòu)和表面標(biāo)志物,軟骨細(xì)胞特有的GAG、Ⅱ型膠原以及軟骨分化信號(hào)分子SOX9持續(xù)增高,過(guò)表達(dá)的TGF-β1以時(shí)間依賴性方式顯著增強(qiáng)細(xì)胞增殖,刺激并加速軟骨形成,證實(shí)其在不添加外源TGF-β1的體外環(huán)境下可自發(fā)向軟骨細(xì)胞分化,核型分析逆轉(zhuǎn)錄病毒感染的hSMSC具有安全性[72]。MSC在體外培養(yǎng)期間若有I型膠原的產(chǎn)生,這將破壞工程化軟骨的機(jī)械強(qiáng)度。Zhang等[73]首次使用了TGF-β3和靶向阻斷I型膠原的RNA片段構(gòu)建重組雙功能腺病毒載體并轉(zhuǎn)染豬SMSC,感染后TGF-β3表達(dá)增加,當(dāng)病毒滴度高于100時(shí),Ⅰ型膠原表達(dá)降低,隨著病毒滴度的上升,Ⅰ型膠原蛋白的表達(dá)下降,TGF-β3表達(dá)上升。SMSC應(yīng)用于軟骨工程方面極具潛力,亟待深入研究。

五、問(wèn)題與展望

近年來(lái),MSC在誘導(dǎo)分化及修復(fù)軟骨方面取得了較大的進(jìn)展,但調(diào)控MSC向軟骨分化的具體因子及多因子間的作用機(jī)制仍十分復(fù)雜,誘導(dǎo)產(chǎn)生的新生軟骨與天然軟骨之間仍然存在生物活性、使用壽命、機(jī)械性能及代謝平衡等方面差異,遠(yuǎn)期療效有待進(jìn)一步隨訪,諸多問(wèn)題亟待優(yōu)化和解決。目前使用“外源基因”誘導(dǎo)MSC修復(fù)軟骨方面已經(jīng)展現(xiàn)出部分成果,這為組織工程修復(fù)軟骨缺損提供了一種新方向,但同時(shí)也要面臨著轉(zhuǎn)染“外源基因”的致癌性、致畸性、及潛在的免疫原性等問(wèn)題。雖然不同研究存在差異,但它們?cè)谲浌切迯?fù)、形成及再生方面均取得較好的結(jié)果,特別是聯(lián)合誘導(dǎo)分化的MSC嵌合支架及基因轉(zhuǎn)染的修復(fù)方法,可獲得在組織學(xué)、形態(tài)學(xué)、生物力學(xué)等方面接近天然軟骨的新軟骨組織,從而使缺損軟骨得到修復(fù)。隨著組織工程的發(fā)展,新型支架材料在材料制備工藝、設(shè)計(jì)及性能優(yōu)化組合方面將得到細(xì)化而深入的研究,這也是今后組織工程材料研究發(fā)展的主要方向之一。未來(lái)軟骨組織工程的研究著重于:(1)探索更加科學(xué)合理的實(shí)驗(yàn)設(shè)計(jì)和研究方法并制定標(biāo)準(zhǔn);(2)在植入細(xì)胞數(shù)量上的優(yōu)化研究;(3)增加在大型動(dòng)物模型體內(nèi)的研究和修復(fù)效果評(píng)價(jià);(4)優(yōu)化MSC的誘導(dǎo)分化培養(yǎng)方案;(5)分析體內(nèi)植入細(xì)胞的遠(yuǎn)期結(jié)果;(6)研究深化人體物化因素對(duì)MSC的誘導(dǎo)分化影響;(7)評(píng)估各類MSC及轉(zhuǎn)染后的MSC的安全性和致腫瘤活性;(8)針對(duì)新型支架材料在生物相容性、人體力學(xué)、及營(yíng)養(yǎng)傳遞等方面的研發(fā)。相信在不久的將來(lái),MSC將可有效地應(yīng)用于臨床,為修復(fù)軟骨損傷帶來(lái)新的希望。

1 Ramalho-Santos M, Yoon S, Matsuzaki Y, et al. "Stemness":transcriptional pro fi ling of embryonic and adult stem cells[J]. Science,2002, 298(5593):597-600.

2 Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers[J]. Cell Tissue Kinet, 1987, 20(3):263-272.

3 Minguell JJ, Erices A, Conget P. Mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2001, 226(6):507-520.

4 Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord[J]. Stem Cells, 2004,22(7):1330-1337.

5 Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells[J]. Stem Cells, 2007, 25(11):2886-2895.

6 Scheers I, Lombard C, Paganelli M, et al. Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture[J]. PLoS One, 2013, 8(8):e71374.

7 Kim DW, Staples M, Shinozuka K, et al. Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications[J]. Int J Mol Sci,2013, 14(6):11692-11712.

8 De Mara CS, Duarte AS, Sartori-Cintra AR, et al. Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6[J].Rheumatol Int, 2013, 33(1):121-128.

9 Majore I, Moretti P, Stahl F, et al. Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord[J]. Stem Cell Rev, 2011, 7(1):17-31.

10 Furumatsu T, Shukunami C, Amemiya-Kudo M, et al. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription[J]. Int J Biochem Cell Biol, 2010, 42(1):148-156.

11 Zheng P, Ju L, Jiang B, et al. Chondrogenic differentiation of human umbilical cord blood derived mesenchymal stem cells by co culture with rabbit chondrocytes[J]. Mol Med Rep, 2013, 8(4):1169-1182.

12 Wang L, Seshareddy K, Weiss ML, et al. Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering[J]. Tissue Eng Part A, 2009,15(5):1009-1017.

13 Bailey MM, Wang L, Bode CJ, et al. A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage[J]. Tissue Eng, 2007, 13(8):2003-2010.

14 Li X, Chang H, Luo H, et al. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro[J]. J Biomed Mater Res A, 2015, 103(3):1169-1175.

15 Fong CY, Subramanian A, Gauthaman K, et al. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nano fi brous scaffolds and in a sequential two-stage culture medium environment[J]. Stem Cell Rev, 2012,8(1):195-209.

16 Park YB, Song M, Lee CH, et al. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model[J]. J Orthop Res, 2015, 33(11):1580-1586.

17 Wang L, Tran I, Seshareddy K, et al. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cordderived mesenchymal stromal cells for cartilage tissue engineering[J].Tissue Eng Part A, 2009, 15(8):2259-2266.

18 Wang ZH, Li XL, He XJ, et al. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model[J]. Braz J Med Biol Res,2014, 47(4):279-286.

19 Lu FZ, Fujino M, Kitazawa Y, et al. Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood[J]. J Lab Clin Med, 2005, 146(5):271-278.

20 Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002, 13(12):4279-4295.

21 De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multilineage cells from human adipose tissue and bone marrow[J]. Cells Tissues Organs, 2003, 174(3):101-109.

22 Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells[J]. Br J Haematol, 2005,129(1):118-129.

23 Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal,and the osteogenic potential of puri fi ed human mesenchymal stem cells during extensive subcultivation and following cryopreservation[J]. J Cell Biochem, 1997, 64(2):278-294.

24 Dragoo JL, Samimi B, Zhu M, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads[J]. J Bone Joint Surg Br, 2003, 85(5):740-747.

25 Khan WS, Tew SR, Adesida AB, et al. Human infrapatellar fat padderived stem cells Express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2[J].Arthritis Res Ther, 2008, 10(4):R74.

26 Erickson GR, Gimble JM, Franklin DM, et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo[J]. Biochem Biophys Res Commun, 2002, 290(2):763-769.

27 Guilak F, Awad HA, Fermor B, et al. Adipose-derived adult stem cells for cartilage tissue engineering[J]. Biorheology, 2004, 41(3/4):389-399.

28 Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro[J]. Stem Cells, 2004, 22(7):1152-1167.

29 Nixon AJ, Goodrich LR, Scimeca MS, et al. Gene therapy in musculoskeletal repair[J]. Ann N Y Acad Sci, 2007, 1117(1):310-327.

30 Worster AA, Nixon AJ, Brower-Toland BD, et al. Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells[J]. Am J Vet Res, 2000, 61(9):1003-1010.

31 Blunk T, Sieminski AL, Gooch KJ, et al. Differential effects of growth factors on tissue-engineered cartilage[J]. Tissue Eng, 2002, 8(1):73-84.

32 Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6[J]. Arthritis Rheum, 2006, 54(4):1222-1232.

33 Hennig T, Lorenz H, Thiel A, et al. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP pro fi le and is overcome by BMP-6[J]. J Cell Physiol,2007, 211(3):682-691.

34 Awad HA, Halvorsen YD, Gimble JM, et al. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells[J]. Tissue Eng, 2003, 9(6):1301-1312.

35 Hwang NS, Im SG, Wu PB, et al. Chondrogenic priming adiposemesenchymal stem cells for cartilage tissue regeneration[J]. Pharm Res, 2011, 28(6):1395-1405.

36 Yoon IS, Chung CW, Sung JH, et al. Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold[J]. J Biosci Bioeng, 2011,112(4):402-408.

37 Zhu Y, Liu T, Song K, et al. Ex vivo expansion of adipose tissue-derived stem cells in spinner fl asks[J]. Biotechnol J, 2009, 4(8):1198-1209.

38 Zhu Y, Liu T, Song K, et al. Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells[J]. J Mater Sci Mater Med, 2009, 20(3):799-808.

39 Lee JM, Im GI. SOX trio-co-transduced adipose stem cells in fi brin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat[J]. Biomaterials, 2012, 33(7):2016-2024.

40 Im GI, Kim HJ, Lee JH. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes[J]. Biomaterials, 2011, 32(19):4385-4392.

41 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.

42 Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics[J]. Tissue Eng, 2005, 11(7/8):1198-1211.

43 Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases[J].Arthritis Res Ther, 2008, 10(5):223.

44 Longobardi L, O'rear L, Aakula S, et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling[J]. J Bone Miner Res, 2006,21(4):626-636.

45 Longobardi L, Granero-Moltó F, O'rear L, et al. Subcellular localization of IRS-1 in IGF-I-mediated chondrogenic proliferation, differentiation and hypertrophy of bone marrow mesenchymal stem cells[J]. Growth Factors, 2009, 27(5):309-320.

46 Cals FL, Hellingman CA, Koevoet W, et al. Effects of transforming growth factor-β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells[J]. J Tissue Eng Regen Med, 2012, 6(1):68-76.

47 Bai X, Li G, Zhao C, et al. BMP7 induces the differentiation of bone marrow-derived mesenchymal cells into chondrocytes[J]. Med Biol Eng Comput, 2011, 49(6):687-692.

48 Sekiya I, Larson BL, Vuoristo JT, et al. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma[J]. Cell Tissue Res, 2005,320(2):269-276.

49 Zhao Q, Wang S, Tian J, et al. Combination of bone marrow concentrate and PGA scaffolds enhance bone marrow stimulation in rabbit articular cartilage repair[J]. J Mater Sci Mater Med, 2013,24(3):793-801.

50 Ka fi enah W, Mistry S, Dickinson SC, et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients[J].Arthritis Rheum, 2007, 56(1):177-187.

51 Zhang W, Chen J, Tao J, et al. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold[J].Biomaterials, 2013, 34(25):6046-6057.

52 Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein[J]. Science,1996, 273(5275):613-622.

53 Zhang Z, Gupte MJ, Jin X, et al. Injectable peptide decorated functional nano fi brous hollow microspheres to direct stem cell differentiation and tissue regeneration[J]. Adv Funct Mater, 2015, 25(3):350-360.

54 Wang W, Li B, Yang J, et al. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs[J]. Biomaterials, 2010, 31(34):8964-8973.

55 Guo X, Zheng Q, Yang S, et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene[J]. Biomed Mater, 2006,1(4):206-215.

56 Chen Z, Wei J, Zhu J, et al. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage[J]. Stem Cell Res Ther, 2016, 7(1):70.

57 Wang X, Li Y, Han R, et al. Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair[J]. PLoS One, 2014, 9(12):e116061.

58 De Bari C, Dell'accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J]. Arthritis Rheum,2001, 44(8):1928-1942.

59 Djouad F, Bony C, H?upl T, et al. Transcriptional pro fi les discriminate bone marrow-derived and synovium-derived mesenchymal stem cells[J]. Arthritis Res Ther, 2005, 7(6):R1304-R1315.

60 Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium,periosteum, adipose tissue, and muscle[J]. Cell Tissue Res, 2007,327(3):449-462.

61 Futami I, Ishijima M, Kaneko H, et al. Isolation and characterization of multipotential mesenchymal cells from the mouse synovium[J]. PLoS One, 2012, 7(9):e45517.

62 Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source[J]. Arthritis Rheum, 2005, 52(8):2521-2529.

63 Natoli RM, Revell CM, Athanasiou KA. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage[J]. Tissue Eng Part A, 2009, 15(10):3119-3128.

64 Jones BA, Pei M. Synovium-derived stem cells: a tissue-speci fi c stem cell for cartilage engineering and regeneration[J]. Tissue Eng Part B Rev, 2012, 18(4):301-311.

65 Qi J, Chen A, You H, et al. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds[J].Biomed Mater, 2011, 6(1):015006-015016.

66 Sekiya I, Colter DC, Prockop DJ. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells[J]. Biochem Biophys Res Commun, 2001, 284(2):411-418.

67 Kim JH, Lee MC, Seong SC, et al. Enhanced proliferation and chondrogenic differentiation of human synovium-derived stem cells expanded with basic fibroblast growth factor[J]. Tissue Eng Part A,2011, 17(7/8):991-1002.

68 Pei M, He F, Vunjak-Novakovic G. Synovium-derived stem cell-based chondrogenesis[J]. Differentiation, 2008, 76(10):1044-1056.

69 Koga H, Muneta T, Nagase T, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit[J]. Cell Tissue Res, 2008, 333(2):207-215.

70 Chang CH, Chen CC, Liao CH, et al. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells[J]. J Biomed Mater Res A,2014, 102(7):2248-2257.

71 Pei M, He F, Boyce BM, et al. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs[J]. Osteoarthritis Cartilage, 2009, 17(6):714-722.

72 Kim YI, Ryu JS, Yeo JE, et al. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synoviumderived stem cells[J]. Biochem Biophys Res Commun, 2014, 450(4):1593-1599.

73 Zhang F, Yao Y, Hao J, et al. A dual-functioning adenoviral vector encoding both transforming growth factor-beta3 and shRNA silencing type I collagen: construction and controlled release for chondrogenesis[J]. J Control Release, 2010, 142(1):70-77.

Repairing cartilage injury using mesenchymal stem cells: a literature review

Wei Xudong1,Dang Yuan1, Hu Deqing2.
1Bengbu Medical College, Affiliated Fuzhou general Hospital of Nanjing Command, People's Liberation Army of China, Fuzhou 350025, China;2Department of Orthopedics,The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China

Hu Deqing, Email:hudeqing1987@126.com

Incidence rate of articular cartilage injury is increasing. As cartilage is a highly differentiated tissue without direct supply of blood or nerve and has limited regeneration potential after injury, treatment of cartilage injury still poses a major challenge for both patients and orthopedic surgeons. Mesenchymal stem cells(MSCs)are a class of pluripotent stem cells with potent proliferative capacity and chondrogenic ability, and are being used to repair articular cartilage injury through tissue engineering. The aim of this article is to provide a comprehensive review of MSC transplantation for the treatment of articular cartilage injury.

Cartilage; Repair; Mesenchymal stem cells; Tissue engineering

2017-04-18)

(本文編輯:蔡曉珍)

10.3877/cma.j.issn.2095-1221.2017.03.011

軍隊(duì)實(shí)驗(yàn)動(dòng)物專項(xiàng)科研課題(SYDW-2016-007);福建省自然科學(xué)基金資助(2017J05122)

350025福州,蚌埠醫(yī)學(xué)院??偨虒W(xué)醫(yī)院(南京軍區(qū)福州總醫(yī)院)骨科研究所1;350005福州,福建醫(yī)科大學(xué)附屬第一醫(yī)院骨科2

胡德慶,Email:hudeqing1987@126.com

衛(wèi)旭東,黨源,胡德慶.間充質(zhì)干細(xì)胞在軟骨損傷修復(fù)中的研究進(jìn)展[J/CD].中華細(xì)胞與干細(xì)胞雜志(電子版),2017,7(3):178-184.

猜你喜歡
充質(zhì)膠原軟骨
采用熒光光譜技術(shù)分析膠原和?;z原的聚集行為
SOX9在SD大鼠胚胎發(fā)育髁突軟骨與脛骨生長(zhǎng)板軟骨中的時(shí)間表達(dá)研究
miR-490-3p調(diào)控SW1990胰腺癌細(xì)胞上皮間充質(zhì)轉(zhuǎn)化
間充質(zhì)干細(xì)胞外泌體在口腔組織再生中的研究進(jìn)展
間充質(zhì)干細(xì)胞治療老年衰弱研究進(jìn)展
三七總皂苷對(duì)A549細(xì)胞上皮-間充質(zhì)轉(zhuǎn)化的影響
膠原代謝與纖維化疾病研究進(jìn)展
鞍區(qū)軟骨黏液纖維瘤1例
髓外硬膜內(nèi)軟骨母細(xì)胞瘤1例
末端病大鼠跟腱修復(fù)中膠原表達(dá)的研究
尼木县| 吴忠市| 太原市| 阳高县| 楚雄市| 靖西县| 西峡县| 临城县| 理塘县| 漾濞| 万年县| 五大连池市| 碌曲县| 和林格尔县| 高密市| 武隆县| 尖扎县| 正镶白旗| 三门峡市| 正阳县| 汶上县| 句容市| 栾城县| 信丰县| 芜湖县| 斗六市| 县级市| 安丘市| 临泽县| 邹平县| 耿马| 莱芜市| 三河市| 宜章县| 桦川县| 余姚市| 临安市| 招远市| 年辖:市辖区| 汽车| 香港|