蔣鵬 宋科官
. 綜述 Review .
破骨細(xì)胞及其分化調(diào)節(jié)機(jī)制的研究進(jìn)展
蔣鵬 宋科官
破骨細(xì)胞;細(xì)胞分化;核因子 κB 受體活化因子配體;巨噬細(xì)胞集落刺激因子;信號傳導(dǎo)
人體骨骼是一個動態(tài)的、不斷更新的組織,據(jù)調(diào)查,成年人每年大約有 10% 的骨骼會發(fā)生骨重建[1],骨重建主要涉及骨吸收和骨形成兩個方面,二者保持動態(tài)平衡維系著骨的正常代謝,如果二者失去平衡將會引起相應(yīng)的骨骼疾病[2-5]。骨質(zhì)疏松癥和關(guān)節(jié)假體周圍骨溶解均是常見的骨代謝性疾病,主要原因就是由骨吸收功能強(qiáng)于骨形成,二者失去平衡引起。破骨細(xì)胞是人體惟一的具有骨吸收功能的細(xì)胞,因此研究破骨細(xì)胞的分化機(jī)制具有重要意義。然而正常人體破骨細(xì)胞數(shù)量少,且生存時間短,難以從骨質(zhì)中分離出來,這使對于破骨細(xì)胞形成的研究在很長一段時間內(nèi)停滯不前。在過去的十幾年內(nèi),隨著體外類破骨樣細(xì)胞模型的建立,人們對破骨細(xì)胞的研究取得了巨大的突破[6-7],發(fā)現(xiàn)在破骨細(xì)胞分化過程中有眾多的細(xì)胞因子參與其中,而核因子 κB 受體活化因子配體 ( receptor activator for nuclear factor-κB ligand,RANKL ) 和巨噬細(xì)胞集落刺激因子 ( macrophage colony-stimulating factor,MCSF ) 是最關(guān)鍵的兩種因子[8-10]?,F(xiàn)就破骨細(xì)胞的生物學(xué)特點及其分化機(jī)制的研究進(jìn)展作一綜述。
破骨細(xì)胞的形成是骨重建的核心。在正常的骨代謝過程中,破骨細(xì)胞吸收舊骨在原部位形成一個骨吸收陷窩,然后成骨細(xì)胞發(fā)揮成骨作用,在陷窩內(nèi)形成新骨,將陷窩填平,從而保證骨骼的完整,這種骨吸收和骨形成在時空上的緊密偶聯(lián)維持著骨重建的正常進(jìn)行,缺乏破骨細(xì)胞或者破骨細(xì)胞生成過多均將引起骨代謝的失衡。骨硬化病是一種以高骨密度為特點的先天性疾病,經(jīng)研究證明,這是由于體內(nèi)缺少有功能的破骨細(xì)胞[11-12]。破骨細(xì)胞前體細(xì)胞向破骨細(xì)胞的分化需要特定的微環(huán)境,需要細(xì)胞因子的參與,Yoshida 等[13]在研究中已經(jīng)證明,MCSF 是破骨細(xì)胞形成過程中的關(guān)鍵因子,先天骨石化癥小鼠正是因為缺少MCSF,導(dǎo)致破骨細(xì)胞合成受到影響,骨吸收功能減弱,進(jìn)而表現(xiàn)為骨硬化癥。而骨溶解和骨質(zhì)疏松癥恰與骨硬化病相反,是由于體內(nèi)破骨細(xì)胞形成過多,導(dǎo)致骨吸收強(qiáng)于骨形成而引起的。
在 20 紀(jì) 80 年代,Takahashi 等[14]將骨髓細(xì)胞和成骨細(xì)胞在體外進(jìn)行共培養(yǎng),成功得到了成熟的多核破骨細(xì)胞,這為破骨細(xì)胞在體外的研究提供了實驗基礎(chǔ)。通過這個共培養(yǎng)體系,使破骨細(xì)胞前體細(xì)胞和成骨細(xì)胞之間的聯(lián)系逐漸被人們重視,在研究中發(fā)現(xiàn),成骨細(xì)胞表達(dá)的細(xì)胞因子通過與破骨細(xì)胞前體細(xì)胞表面上的膜結(jié)合分子結(jié)合,細(xì)胞信號發(fā)生傳遞,來誘導(dǎo)破骨細(xì)胞的分化,其中,RANK / RANKL 信號通路是破骨細(xì)胞分化最重要的調(diào)節(jié)方式[15-16]。
核因子-κB 受體活化因子 ( RANK ),是腫瘤壞死因子( TNF ) 受體家族成員之一,屬于 I 型跨膜蛋白,由位于染色體 18q22.1 上的基因編碼,在破骨細(xì)胞前體細(xì)胞及成熟的破骨細(xì)胞表面均有高度的表達(dá)[17]。人的 RANK 蛋白有616 個氨基酸殘基,與小鼠有 70% 的同源性,其胞外結(jié)構(gòu)域為 N-末端,包含 208 個氨基酸,主要功能是與 RANKL的 C-端結(jié)合發(fā)生作用,產(chǎn)生并傳遞信號,在胞內(nèi)的區(qū)域有 383 個氨基酸,因為其缺乏內(nèi)在的活性激酶去磷酸化激活下游的信號分子,因此需要轉(zhuǎn)接分子 TRAFs ( 腫瘤壞死因子受體相關(guān)因子 ) 的參與,來誘導(dǎo)激發(fā) NF-κB 和 c-Jun氨基端激酶 ( JNK ) 的活性[18-22]。NF-κB 途徑和 JNK 途徑是 RANK 和 RANKL 結(jié)合后介導(dǎo)破骨細(xì)胞分化的重要調(diào)節(jié)途徑[23]。
RANKL,是 TNF 超家族成員之一,屬于 II 型跨膜蛋白,由位于染色體 13q14 上的基因編碼,其啟動子區(qū)含有成骨細(xì)胞分化的關(guān)鍵轉(zhuǎn)錄因子核心結(jié)合因子-α1 ( Cbf-α1 )的結(jié)合位點,RANKL 的表達(dá)依賴于 Cbf-α1 的活性,因此 Cbf-α1 也被認(rèn)為是聯(lián)系成骨細(xì)胞與破骨細(xì)胞的紐帶[24-25]。人的 RANKL 蛋白含有 317 個氨基酸,與小鼠有87% 的同源性。RANKL mRNA 在淋巴組織及骨組織中含量高,而在心、胎盤、骨骼肌等非淋巴樣組織中僅有低度表達(dá)[26-27]。在體內(nèi),RANKL 主要以膜結(jié)合型和可溶型兩種形式存在[28],膜結(jié)合型 RANKL 的生理功能較可溶型RANKL 更強(qiáng)[29-30],關(guān)于 RANKL 的研究大多都是針對結(jié)合形式的 RANKL。RANKL 有三個亞型,分別是 RANKL1、RANKL2、RANKL3,在細(xì)胞內(nèi),這三種亞型之間形成同源或異源三聚體,這種三聚體結(jié)構(gòu)對 RANKL 定位到膜上至關(guān)重要[31-32],并且這三種亞型具有共同的羧基末端活性受體結(jié)合域,因此他們能與相同的受體結(jié)合發(fā)揮作用[33-34]。研究表明,RANKL 的主要作用就是與破骨細(xì)胞前體細(xì)胞表面上的 RANK 結(jié)合,啟動下游的一系列信號通路,誘導(dǎo)破骨細(xì)胞的分化[35-37]。
骨保護(hù)蛋白 ( OPG ),也屬于 TNF 受體超家族成員,是一種分泌型糖蛋白,含有 401 個氨基酸殘基[26,38-39]。在體內(nèi),OPG 主要有兩種形式[40],通常以單體形式在細(xì)胞內(nèi)合成,然后以二聚體的形式分泌到胞外,單體的半衰期要比二聚體更長,而二聚體則比單體有更強(qiáng)的肝素結(jié)合能力[41],但是,二者的熱、酸穩(wěn)定性很相似,并且都具有抑制破骨細(xì)胞形成的能力。人體骨組織 OPG 主要在成骨細(xì)胞合成,淋巴組織中也可產(chǎn)生。OPG 主要功能是與RANKL 競爭性的結(jié)合,阻斷 RANKL / RANK 通路,抑制破骨細(xì)胞分化成熟[42-43],另外,OPG 還可與腫瘤壞死因子相關(guān)性細(xì)胞凋亡誘導(dǎo)配體 ( TRAIL ) 結(jié)合,抑制 TRAIL 引導(dǎo)的細(xì)胞凋亡[44]。
RANK / RANKL / OPG 系統(tǒng)被廣泛認(rèn)為是誘導(dǎo)破骨細(xì)胞分化過程中最重要的信號轉(zhuǎn)導(dǎo)通路,大部分的細(xì)胞因子都通過這個通路來調(diào)控成骨細(xì)胞和破骨細(xì)胞之間的動態(tài)平衡[45-46]。成骨細(xì)胞表達(dá)并釋放 RANKL,和破骨細(xì)胞前體細(xì)胞表面的 RANK 結(jié)合后,募集 TNF 受體相關(guān)因子( TRAFs ) 結(jié)合到 RANK 的胞質(zhì)區(qū),其中 TRAF2、TRAF5、TRAF6 都能與 RANK 結(jié)合,并通過 JNK 途徑、NF-κB 途徑和 Akt 途徑,啟動并傳遞破骨細(xì)胞的分化信號[47-48]。TRAF2、TRAF5 與 RANK 結(jié)合激活 c-Jun 氨基端激酶 ( JNK ),JNK 誘導(dǎo) c-Jun / Fos 活化蛋白 1 ( AP-1 )活化,調(diào)節(jié) c-Fos 的表達(dá),促進(jìn)破骨細(xì)胞前體發(fā)生增生、分化。TRAF6 與 RANK 結(jié)合激活磷脂酰肌醇 -3- 激酶( PI-3K ),繼而活化蛋白激酶 B ( PKB、Akt ),參與 NF-κB活化,使 c-Fos 的表達(dá)增加,c-Fos 與活化的 T 細(xì)胞核因子 ( NFAT-c1 ) 結(jié)合,啟動破骨細(xì)胞特異性基因的轉(zhuǎn)錄,誘導(dǎo)破骨細(xì)胞前體分化為成熟破骨細(xì)胞[49-50]。OPG 可與RANKL 競爭性結(jié)合,且結(jié)合能力要比 RANK 更強(qiáng),從而能有效阻斷 RANK / RANKL 信號通路,抑制破骨細(xì)胞分化,防止破骨細(xì)胞過度增長[51]。RANKL / OPG 比值關(guān)系著破骨細(xì)胞分化的強(qiáng)弱,如果比值減小,成骨細(xì)胞表面的RANKL 全部被 OPG 競爭性結(jié)合,而不能與破骨細(xì)胞前體上的 RANK 結(jié)合產(chǎn)生轉(zhuǎn)錄信號,從而導(dǎo)致破骨細(xì)胞的分化受到抑制;如果比值過度增大,OPG 難以拮抗 RANKL 和RANK 的結(jié)合,使破骨細(xì)胞生成增多,骨吸收能力增強(qiáng),因此 RANKL / OPG 保持一定的比值關(guān)系,對于維持破骨細(xì)胞分化和骨代謝平衡具有重要意義[52]。
巨噬細(xì)胞集落刺激因子 ( M-CSF ) 又稱為集落刺激因子-1 ( csf-1 ),是一種具有多種生物學(xué)功能的細(xì)胞因子,在臨床上應(yīng)用非常廣泛。M-CSF 可由巨噬細(xì)胞、內(nèi)皮細(xì)胞、成纖維細(xì)胞以及眾多腫瘤細(xì)胞產(chǎn)生,也可由成骨細(xì)胞與間充質(zhì)細(xì)胞產(chǎn)生,在微生物感染、炎癥及免疫應(yīng)答過程中,MCSF 的合成和分泌均有明顯增高。在對 op / op 小鼠的研究過程中發(fā)現(xiàn),M-CSF 在破骨細(xì)胞的分化過程中也具有重要的作用[53]。M-CSF 基因缺陷的 op / op 小鼠表現(xiàn)為天生的骨硬化癥,小鼠體內(nèi)巨噬細(xì)胞少,缺乏破骨細(xì)胞,而在髓腔注入 M-CSF 后,破骨細(xì)胞數(shù)量明顯增多。M-CSF 對破骨細(xì)胞的作用是通過與其位于破骨細(xì)胞前體細(xì)胞膜上的受體 c-fms 的結(jié)合來實現(xiàn)的。M-CSF 與 c-fms結(jié)合后,可激活 c-fms 的酪氨酸激酶活性,導(dǎo)致其自身磷酸化,磷酸化后為磷脂酰肌醇 3-激酶 ( PI3K )、生長因子受體結(jié)合蛋白 2 ( Grb2 ) 提供了結(jié)合區(qū)[54-55]。隨后,與c-fms 結(jié)合的 Grb2 激活細(xì)胞外調(diào)節(jié)蛋白激酶 ( ERK ),而PI3K 則激活蛋白激酶 B ( Akt ),由此促進(jìn)破骨細(xì)胞前體的存活[56-57]。此外,M-CSF 可誘導(dǎo)骨髓細(xì)胞表達(dá) RANK受體,RANKL 與 RANK 發(fā)生結(jié)合,誘導(dǎo)破骨細(xì)胞分化[58-60]。并且,M-CSF 可通過激活 Akt 及 ERK 信號通路與 RANKL 相互作用,進(jìn)而參與破骨細(xì)胞分化形成的晚期階段[56]。
骨質(zhì)疏松癥是一種全身性骨骼退化相關(guān)的代謝障礙性疾病,可由多種病因引起,RANK / RANKL / OPG 系統(tǒng)在其致病過程中發(fā)揮著重要的作用。雌激素缺乏相關(guān)性骨質(zhì)疏松癥也被稱為絕經(jīng)后骨質(zhì)疏松癥,是女性常見的一種骨質(zhì)疏松癥。研究表明,雌激素一方面可以上調(diào) OPG mRNA 的表達(dá)和蛋白的分泌,另一方面抑制 MCSF 的表達(dá),同時還可以下調(diào) JNK 途徑,抑制 RANKL 誘導(dǎo)破骨細(xì)胞分化[61-63]。雌激素缺乏導(dǎo)致 OPG 分泌減少,生物效應(yīng)降低,而 MCSF 和 RANKL 的生物學(xué)作用增強(qiáng),破骨細(xì)胞分化增多,骨吸收功能增強(qiáng)。糖皮質(zhì)激素性骨質(zhì)疏松癥,糖皮質(zhì)激素可以直接上調(diào)成骨細(xì)胞中 RANKL 的表達(dá),使RANKL / OPG 的比值增大,增加破骨細(xì)胞數(shù)量[64]。類風(fēng)濕性關(guān)節(jié)炎,在患病關(guān)節(jié)中存在多種炎癥因子,這些炎癥因子同樣可以促進(jìn) RANKL 的表達(dá),使 RANKL / OPG 比值上調(diào)[65-66]。
人工關(guān)節(jié)置換術(shù)是目前治療嚴(yán)重關(guān)節(jié)疾患、重建關(guān)節(jié)功能的重要手段,但是假體松動問題嚴(yán)重影響著關(guān)節(jié)假體的使用質(zhì)量和壽命。經(jīng)研究發(fā)現(xiàn)[67],引起關(guān)節(jié)假體松動的主要原因在于假體植入人體后隨關(guān)節(jié)活動過程中會產(chǎn)生大量的磨損顆粒,這些磨損顆粒在關(guān)節(jié)周圍引起機(jī)體反應(yīng),使假體與人體骨之間形成一層界膜組織,而形成的界膜組織中含有大量的單核巨噬細(xì)胞,這些細(xì)胞在磨損顆粒的刺激下釋放大量的細(xì)胞因子,并通過 RANK / RANKL / OPG 信號轉(zhuǎn)導(dǎo)通路發(fā)揮作用,誘導(dǎo)破骨細(xì)胞分化,使破骨細(xì)胞形成增多,骨吸收功能增強(qiáng),進(jìn)而導(dǎo)致關(guān)節(jié)假體周圍發(fā)生骨溶解[68-69]。Ramage 等[70]在關(guān)節(jié)假體周圍的界膜組織中發(fā)現(xiàn)了大量的 RANKL,Masui 等[71]同樣發(fā)現(xiàn)在松動的關(guān)節(jié)假體周圍,RANKL / OPG 比值明顯增高。這些均證明了磨損顆粒刺激 RANKL 釋放增多,導(dǎo)致了骨溶解的發(fā)生。目前人們正在積極尋找一種可以有效抑制磨損顆粒誘導(dǎo)的破骨細(xì)胞過度增長的方法,減少假體松動的發(fā)生。有學(xué)者在研究中[72],以期過表達(dá) OPG 蛋白,使 RANKL / OPG 比值下降,降低 RANKL 的作用,進(jìn)而使破骨細(xì)胞分化減少,但在結(jié)果中發(fā)現(xiàn)破骨細(xì)胞并沒有顯著的變化。高坤等[73]利用 RNA 干擾技術(shù),降低 RANKL mRNA 的水平,發(fā)現(xiàn)破骨細(xì)胞生成可明顯受到抑制,但是這種抑制作用在 2~3 天后逐漸下降。這說明單獨干擾 RANKL mRNA存在一定的缺陷,因為人體內(nèi)還存在另外一種促進(jìn)破骨細(xì)胞分化的關(guān)鍵因子——MCSF。有研究[74]發(fā)現(xiàn)當(dāng)假體周圍磨損顆粒較多的情況下,MCSF 等炎性因子可不通過RANK / RANKL / OPG 系統(tǒng),而是直接發(fā)揮作用來誘導(dǎo)破骨細(xì)胞的分化。目前,我們正致力于構(gòu)建一種慢病毒可以在抑制 RANKL 表達(dá)的同時還可以抑制 MCSF 的表達(dá),使這兩種因子聯(lián)合沉默,并證實這種方法可以有效抑制磨損顆粒誘導(dǎo)的破骨細(xì)胞性骨溶解,從而為預(yù)防和治療假體無菌性松動提供新的手段。
在骨髓微環(huán)境中,存在眾多的細(xì)胞因子參與調(diào)解破骨細(xì)胞的分化與增殖,而在這些因子中,RANKL 和 M-CSF是最關(guān)鍵兩種因子[75]。在骨吸收過程中,成骨細(xì)胞在骨吸收刺激因子的作用下,分泌 RANKL 和 M-CSF,二者分別與破骨細(xì)胞前體細(xì)胞表面的 RANK 和 c-fms 結(jié)合,經(jīng)過下游一系列的復(fù)雜的信號轉(zhuǎn)導(dǎo)過程,誘導(dǎo)破骨細(xì)胞分化。破骨細(xì)胞的增多使骨吸收功能增強(qiáng),導(dǎo)致骨重建失衡,引起臨床上常見的骨質(zhì)疏松癥和人工關(guān)節(jié)假體無菌性松動。研究 RANKL 和 MCSF 兩種因子的生物特性,找到能夠抑制這兩種因子表達(dá)的有效可行的辦法,減少破骨細(xì)胞的生成,進(jìn)而緩解和治療病癥。近年來,有關(guān) RANKL 和M-CSF 對破骨細(xì)胞分化的研究已取得巨大突出的成績,但尚沒有相關(guān)研究能夠證明二者在表達(dá)上存在何種相關(guān)關(guān)系,如果能證實這一點,將為預(yù)防和治療假體周圍骨溶解提供新的思路。
[1]Nied?wiedzki T , Filipowska J. Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system[J]. J Mol Endocrinol, 2015, 55(2):R23-36.
[2]Jerez S, Chen B. Stability analysis of a komarova type model for the interactions of osteoblast and osteoclast cells during bone remodeling[J]. Math Biosci, 2015, 264(1):29-37.
[3]Id Boufker H, Lagneaux L, Najar M, et al. The Src inhibitor dasatinib accelerates the differentiation of human bone marrowderived mesenchymal stromal cells into osteoblasts[J]. Bmc Cancer, 2010, 10(1):298.
[4]Singh PP, van der Kraan AG, Xu J, et al. Membrane-bound receptor activator of NFκB ligand (RANKL) activity displayed by osteoblasts is differentially regulated by osteolytic factors[J]. Biochem Biophys Res Commun, 2012, 422(1):48-53.
[5]Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin[J]. Arthritis Res Ther, 2007, (9 Suppl 1):S1.
[6]Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development[J]. Deve Cell, 2002, 2(4):389-406.
[7]Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology[J]. J Mol Med (Berl), 2005, 83(3):170-179.
[8]Takayanagi H. Inf l ammatory bone destruction and osteoimmunology[J]. J Periodontal Res, 2005, 40(4):287-293.
[9]Cannon JG, Kraj B, Sloan G. Follicle-stimulating hormone promotes RANK expression on human monocytes[J]. Cytokine, 2011, 53(2):141-144.
[10]Zauli G, Rimondi E, Nicolin V. TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF[J]. Blood, 2004, 104(7):2044-2050.
[11]Sobacchi C, Frattini A, Guerrini MM, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL[J]. Nat Genet, 2007, 39(8):960-962.
[12]Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis[J]. N Engl J Med, 2004, 351(27):2839-2849.
[13]Yoshida H, Hayashi S, Kunisada T, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene[J]. Nature, 1990, 345(6274):442-444.
[14]Takahashi N, Akatsu T, Udagawa N, et al. Osteoblastic cells are involved in osteoclast formation[J]. Endocrinology, 1988, 123(5):2600-2602.
[15]Martin TJ, Sims NA. RANKL / OPG; Critical role in bone physiology[J]. Rev Endocr Metab Disord, 2015, 16(2):131-139.
[16]Leibbrandt A, Penninger JM. RANK (L) as a key target for controlling bone loss[J]. Adv Exp Med Biol, 2009, 647: 130-145.
[17]Wada T, Nakashima T, Hiroshi N, et al. RANKL-RANK signaling in osteoclastogenesis and bone disease[J]. Trends Mol Med, 2006, 12(1):17-25.
[18]Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation[J]. Oral Dis, 2002, 8(3):147-159.
[19]Darnay BG, Besse A, Poblenz AT, et al. TRAFs in RANK signaling[J]. Adv Exp Med Biol, 2007, 597(597):152-159.
[20]Poblenz AT, Jacoby JJ, Singh S, et al. Inhibition of RANKL-mediated osteoclast differentiation by selective TRAF6 decoy peptides[J]. Biochem Biophys Res Commun, 2007, 359(3): 510-515.
[21]宋才淵, 彭冰, 沈佳怡, 等. 破骨細(xì)胞分化調(diào)節(jié)機(jī)制的研究進(jìn)展[J]. 中國骨傷, 2015, 28(6):580-584.
[22]Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions[J]. J Dent Res, 2013, 92(10):860-867.
[23]Ma R, Xu J, Dong B, et al. Inhibition of osteoclastogenesis by RNA interference targeting RANK[J]. BMC Musculoskel Dis, 2012, 13(1):1-9.
[24]Dong SW, Ying DJ, Duan XJ, et al. Bone regeneration using an acellular extracellular matrix and bone marrow mesenchymal stem cells expressing Cbfa1[J]. Biosci Biotech Bioch, 2009, 73(10):2226-2233.
[25]李章華, 趙強(qiáng), 唐歡, 等. 成骨細(xì)胞特異性轉(zhuǎn)錄因子 Cbfa1重組腺病毒質(zhì)粒的構(gòu)建與鑒定[J]. 生物技術(shù)通訊, 2014, (4):511-514.
[26]張楠心. 假膜成纖維細(xì)胞誘導(dǎo)裸鼠骨溶解動物模型的實驗研究[J]. 上海交通大學(xué), 2007.
[27]Findlay D, Chehade M, Tsangari H, et al. Circulating RANKL is inversely related to RANKL mRNA levels in bone in osteoarthritic males[J]. Arthritis Res Ther, 2008, 10(1): 334-334.
[28]Silva I, Branco JC. Rank/Rankl/opg: literature review[J]. Acta Reumatol Port, 2011, 36(36):209-218.
[29]Mcgonigle JS, Giachelli CM, Scatena M. Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function[J]. Angiogenesis, 2009, 12(1):35-46.
[30]Leibbrandt A, Penninger JM. RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies[J]. Adv Exp Med Biol, 2009, 649:100-113.
[31]Nakashima T, Takayanagi H. New regulation mechanisms of osteoclast differentiation[J]. Ann N Y Acad Sci, 2011, 1240: E13-18.
[32]Lee CH, Kwak SC, Kim JY, et al. Genipin inhibits RANKL induced osteoclast differentiation through proteasome mediated degradation of c-Fos protein and suppression of NF kappa B activation[J]. J Pharmacol Sci, 2014, 124(3):344-353.
[33]Wada T, Nakashima T, Hiroshi N, et al. RANKL-RANK signaling in osteoclastogenesis and bone disease[J]. Trends Mol Med, 2006, 12(1):17-25.
[34]Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease[J]. Endocr Rev, 2008, 29(2):155-192.
[35]Wright HL, Mccarthy HS, Middleton J. RANK, RANKL and osteoprotegerin in bone biology and disease[J]. Curr Rev Musculoskelet Med, 2009, 2(1):56-64.
[36]Dougall WC, Chaisson M. The RANK/RANKL/OPG triad in cancer-induced bone diseases[J]. Cancer Metast Rev, 2006, 25(4):541-549.
[37]Kanazawa K, Kudo A. Self-assembled RANK induces osteoclastogenesis ligand-independently[J]. J Bone Miner Res, 2005, 20(11):2053-2060.
[38]Pivonka P, Zimak J, Smith DW, et al. Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling[J]. J Theor Biol, 2010, 262(2):306-316.
[39]Anandarajah AP, Schwarz EM. Bone loss in the spondyloarthropathies: role of osteoclast, RANKL, RANK and OPG in the spondyloarthropathies[J]. Adv Exp Med Biol, 2009, 649:85-99.
[40]Weitzmann MN. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis[J]. Scientifica, 2013, 2013(3):125705
[41]Liao EY, Luo XH, Su X. Comparison of the effects of 17β-E2 and progesterone on the expression of osteoprotegerin in normal human osteoblast-like cells[J]. J Endocrinol Invest, 2014, 25(9):785-790.
[42]Nakamichi Y, Udagawa N, Kobayashi Y, et al. Osteoprotegerin reduces the serum level of receptor activator of NF-kappa B ligand derivedfrom osteoblasts[J]. J Immunol, 2007, 178(1): 192-200.
[43]Luan X, Lu Q, Jiang Y, et al. Crystal structure of humanRANKL complexed with its decoy receptor osteoprotegerin[J]. J Immunol, 2012, 189(1):245-252.
[44]Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function[J]. Arterioscl Throm Vas, 2002, 22(4): 549-553.
[45]封志云, 賀振年, 陳中, 等. OPG/RANKL/RANK 系統(tǒng)與軟骨及軟骨下骨[J]. 國際骨科學(xué)雜志, 2013, 34(2):112-118.
[46]Maxhimer JB, Bradley JP, Lee JC. Signaling pathways in osteogenesis and osteoclastogenesis: Lessons from cranial sutures and applications to regenerative medicine[J]. Genes Dis, 2015, 33(1):57-68.
[47]Liang J, Saad Y, Lei T, et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling[J]. J Exp Med, 2010, 207(13):2959-2973.
[48]Reichardt AD, Pindado J, et al. TRAF protein function in noncanonical NF-κB signaling[J]. Methods Mol Biol, 2015, 1280:247-268.
[49]Baud’huin M, Lamoureux F, Duplomb L, et al. RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases[J]. Cell Mol Life Sci, 2007, 64(18): 2334-2350.
[50]Yamashita M, Fatyol K, Jin C, et al. TRAF6 mediates smadindependent activation of JNK and p38 by TGF-β[J]. Mol Cell, 2008, 31(6):918-924.
[51]Hamdy NA. Targeting the RANK/RANKL/OPG signaling pathway: a novel approach in the management of osteoporosis[J]. Curr Opin in Invest Dr, 2007, 8(4):299-303.
[52]Wakita T, Mogi M, Kurita K, et al. Increase in RANKL: OPG ratio in synovia of patients with temporomandibular joint disorder[J]. J Dent Res, 2006, 85(7):627-632.
[53]Fleisch H, Hofstetter W, Felix R, et al. The role of macrophage stimulating factor M-CSF in bone resorption[J]. Osteoporosis Int, 1993, 3(Suppl 1)(1):108-110.
[54]Faccio R, Takeshita S, Colaianni G, et al. M-CSF regulates the cytoskeleton via recruitment of a multimeric signaling complex to c-Fms Tyr-559/697/721[J]. J Biol Chem, 2007, 282(26): 18991-18999.
[55]Bourette RP, Rohrschneider LR. Early events in m-csf receptor signaling[J]. Growth Factors, 2000, 17(3):155-166.
[56]Ross FP. M-CSF, c-Fms, and signaling in osteoclasts and their precursors[J]. Ann N Y Acad Sci, 2006, 1068(1):110-116.
[57]Yang S, Li X, et al. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo[J]. Biochem Biophys Res Commun, 2015, 466(4):615-621.
[58]Kogan M, Haine V, et al. Macrophage colony stimulating factor regulation by nuclear factor kappa B: a relevant pathway in human immunodef i ciency virus type 1 infected macrophages[J]. Dna Cell Biol, 2012, 31(3):280-289.
[59]Mo XM, Wang Y, Hunter M, et al. Macrophage colonystimulating factor promotes monocyte survival through PKC {alpha} and NF {kappa} B[J]. FASEB J, 2006, 20(4):A544.
[60]Ross FP, Teitelbaum SL. Alphavbeta3 and macrophage colonystimulating factor: partners in osteoclast biology[J]. Immunol Rev, 2005, 208:88-105.
[61]Millán MM. The role of estrogen receptor in bone cells[J]. Clin Rev Bone Miner Metab, 2015, 13(2):105-112.
[62]Almeida M, Iyer S, Martinmillan M, et al. Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual[J]. J Clin Invest, 2013, 123(1):394-404.
[63]Bord S, Frith E, Ireland DC, et al. Synthesis of osteoprotegerin and RANKL by megakaryocytes is modulated by oestrogen[J]. Brit J Haematol, 2004, 126(2):244-251.
[64]Sambrook PN. Glucocorticoid-induced osteoporosis[J]. Int J Rheum Dis, 2008, 11(4):381-385.
[65]Ye XH, Cheng JL, et al. Osteoprotegerin polymorphisms in Chinese han patients with rheumatoid arthritis[J]. Genet Mol Res, 2015, 12;14(2):6569-6577.
[66]Romas E, Gillespie MT, et al. Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis[J]. Bone, 2002, 30(2): 340-346.
[67]Greenf i eld EM, Bechtold J. What other biologic and mechanical factors might contribute to osteolysis[J]? J Am Acad Orthop Surg, 2008, 16(Suppl 1):S56-62.
[68]Rao AJ, Gibon E, Ma T, et al. Revision joint replacement, wear particles, and macrophage polarization[J]. Acta Biomater, 2012, 8(7):2815-2823.
[69]Liu F, Zhu Z, Mao Y, et al. Inhibition of titanium particleinduced osteoclastogenesis through inactivation of NFATc1 by VIVIT peptide[J]. Biomaterials, 2009, 30(9):1756-1762.
[70]Ramage SC, Urban NH, Jiranek WA, et al. Expression of RANKL in osteolytic membranes: association with fi broblastic cell markers[J]. J Bone Joint Surg Am, 2007, 89(4):841-848.
[71]Masui T, Sakano S, Hasegawa Y, et al. Expression of inf l ammatory cytokines, RANKL and OPG induced by titanium, cobaltchromium and polyethylene particles[J]. Biomaterials, 2005, 26(14):1695-1702.
[72]Mandelin J, Li TF, Liljestr?m M, et al. Imbalance of RANKL/ RANK/OPG system in interface tissue in loosening of total hip replacement[J]. Bone Joint J, 2003, 85(8):1196-201.
[73]高坤, 鎬英杰, 張暉, 等. RNA 干擾技術(shù)抑制成骨細(xì)胞核激活因子受體配體基因?qū)ζ乒羌?xì)胞生成的影響[J]. 中國組織工程研究與臨床康復(fù), 2007, 11(27):5417-5420.
[74]Sabokbar A, Itonaga I, Sun SG, et al. Arthroplasty membranederived fibroblasts directly induce osteoclast formation and osteolysis in aseptic loosening[J]. J Orthop Res, 2005, 23(3): 511-519.
[75]Tripathi A, Pandey S, Singh SV, et al. Bisphosphonate therapy for skeletal malignancies and metastases: impact on jaw bones and prosthodontic concerns[J]. J Prosthodont, 2011, 20(7): 601-603.
( 本文編輯:裴艷宏 )
Research progress on osteoclast and its differentiation regulation mechanism
JIANG Peng, SONG Ke-guan. The
SONG Ke-guan, Email: songkeguan@sohu.com
Osteoclasts derive from mononuclear hematopoietic stem cells in the bone marrow, which are the major bone resorption cells in the human body and play an important role in the reconstruction of bone. The differentiation and maturation of osteoclasts are regulated by many factors, such as receptor activator for nuclear factor-κ B ligand ( RANKL ), macrophage colony-stimulating factor ( MCSF ), interleukin-1 ( IL-1 ), interleukin-6 ( IL-6 ) and tumor necrosis factor-alpha ( TNF-α ), which can promote osteoclast differentiation and increase osteoclast formation. And there are some other factors, such as osteoprotegerin ( OPG ) and interleukin-10 ( IL-10 ), which can inhibit osteoclast differentiation and thereby prevent excessive growth of osteoclasts. RANK / RANKL / OPG pathway is the hub of signal transduction in the process of osteoclast mobilization and differentiation. Most cytokines play roles in osteoclast differentiation through this transduction pathway. To explore its mechanism and make feasible and effective measures to prevent the impact which is caused by the increase or reduction of osteoclasts on the organism has become an important research fi eld in recent years.
Osteoclasts; Cell differentiation; Receptor activator for nuclear factor-κB ligand ( RANKL ); Macrophage colony-stimulating factor ( MCSF ); Signal transduction
10.3969/j.issn.2095-252X.2017.03.013
Q291
國家自然科學(xué)基金資助項目 ( 81270635 )
150001 黑龍江,哈爾濱醫(yī)科大學(xué)附屬第一醫(yī)院
宋科官,Email: songkeguan@sohu.comfi rst Aff i liated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
2016-08-30 )