胡 紅,李洪文,王慶杰,何 進(jìn),張翼夫,陳婉芝,王憲良
?
玉米行間定點(diǎn)扎穴深施追肥機(jī)的設(shè)計(jì)與試驗(yàn)
胡 紅,李洪文※,王慶杰,何 進(jìn),張翼夫,陳婉芝,王憲良
(中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
為解決玉米生長(zhǎng)中后期追肥機(jī)械化水平低且追肥困難的問(wèn)題,結(jié)合追肥農(nóng)藝要求,設(shè)計(jì)了一種玉米行間定點(diǎn)扎穴深施追肥機(jī),能夠在行距為600 mm的玉米行間進(jìn)行追肥作業(yè),1次完成2行玉米追肥。該機(jī)采用植株位置探測(cè)機(jī)構(gòu)和棘輪離合機(jī)構(gòu)確定扎穴深施追肥的位置,采用水平位移補(bǔ)償裝置和曲柄連桿機(jī)構(gòu)共同控制扎穴施肥機(jī)構(gòu)的運(yùn)動(dòng)軌跡,實(shí)現(xiàn)玉米定點(diǎn)扎穴深施追肥與扎穴施肥機(jī)構(gòu)在入土排肥過(guò)程中垂直運(yùn)動(dòng),滿足零速排肥要求,減少肥料滾動(dòng)。該文采用理論計(jì)算與經(jīng)驗(yàn)設(shè)計(jì),對(duì)凸輪、探測(cè)桿等關(guān)鍵零部件進(jìn)行了參數(shù)設(shè)計(jì),采用MATLAB軟件對(duì)扎穴器尖部運(yùn)動(dòng)軌跡進(jìn)行了仿真分析。追肥機(jī)田間追肥性能試驗(yàn)結(jié)果表明,排肥軸含肥腔長(zhǎng)度為20 mm時(shí)的穴追肥量為2.3 g,總排肥量穩(wěn)定性變異系數(shù)為3.2%,平均追肥深度和平均追肥距離分別為91.3和127.5 mm,追肥深度合格率和追肥距離合格率分別為88.3%和96.7%,漏追率為2.7%,相關(guān)指標(biāo)均達(dá)到技術(shù)要求。該研究為應(yīng)用于玉米中后期行間精確追肥機(jī)械的設(shè)計(jì)提供了參考。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);農(nóng)作物;玉米行間;定點(diǎn)扎穴;深施追肥機(jī)
玉米是重要的糧食作物和飼料來(lái)源,在解決人類糧食問(wèn)題中意義重大[1-2]。提高玉米單產(chǎn)和總產(chǎn)水平,是確保國(guó)家糧食安全的重要途徑[3]。實(shí)踐證明,生育期內(nèi)合理追肥特別是氮素化肥能夠有效促進(jìn)玉米生長(zhǎng),提高玉米產(chǎn)量[4-5]。
大喇叭口期是玉米生長(zhǎng)發(fā)育最為旺盛的階段,是養(yǎng)分需求最大的時(shí)期,大喇叭口期追肥對(duì)玉米產(chǎn)量具有決定性的作用。但由于玉米大喇叭口期植株高大,機(jī)械進(jìn)地困難,往往采用人工追肥或小型追肥器追肥。人工追肥效率低下,肥料撒施地表利用率低,污染環(huán)境,威脅人類飲水安全[6-7];小型追肥器主要靠人工操作,勞動(dòng)強(qiáng)度大,且追肥量難以精確控制,造成肥料浪費(fèi),利用率差[8-9]。為提高追肥作業(yè)機(jī)械化水平,科研工作者們結(jié)合中耕作業(yè),在玉米拔節(jié)期左右提前進(jìn)行追肥,研制出集深松、除草和追肥于一體的中耕追肥機(jī)[10-12],但存在傷根傷苗現(xiàn)象,影響玉米植株生長(zhǎng)發(fā)育。
定點(diǎn)扎穴追肥是指在玉米植株根部附近進(jìn)行一對(duì)一的扎穴深施追肥,而對(duì)沒(méi)有玉米植株區(qū)域不進(jìn)行追肥的施肥方式,能夠減輕化肥濫用,提高肥料利用效率,減輕環(huán)境污染。目前國(guó)內(nèi)外主要采用紅外線探測(cè)技術(shù)[13-14]、超聲波測(cè)距傳感器[15-17]、機(jī)器視覺(jué)和圖像處理技術(shù)等進(jìn)行目標(biāo)識(shí)別[18-21],將遙感技術(shù)、全球定位系統(tǒng)和地理信息系統(tǒng)融合在一起獲取目標(biāo)的綜合信息,主要應(yīng)用于果樹及農(nóng)作物等的病蟲害防治,減少農(nóng)藥的濫用和用藥不足[22-24],但用于玉米追肥還未見報(bào)道。而扎穴施肥的方式主要有2種:一是扎穴施肥分段實(shí)施,首先采用人工扎穴,然后用手將肥料放入穴中,工作效率低,勞動(dòng)強(qiáng)度大;二是采用曲柄搖桿機(jī)構(gòu)或行星齒輪等驅(qū)動(dòng)扎穴機(jī)構(gòu)作有規(guī)律的復(fù)合運(yùn)動(dòng),實(shí)現(xiàn)扎穴深施追肥[25-27],但存在扎穴器與土壤的相互作用力較大,增大了牽引阻力,且扎穴器尺寸較小,一般適用于液態(tài)肥追肥,不適宜固態(tài)肥追肥。
為解決上述問(wèn)題,本文結(jié)合追肥農(nóng)藝要求,設(shè)計(jì)開發(fā)一種玉米行間定點(diǎn)扎穴深施追肥機(jī),通過(guò)經(jīng)驗(yàn)設(shè)計(jì)和理論計(jì)算,對(duì)各個(gè)工作機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)學(xué)分析,對(duì)整機(jī)進(jìn)行了田間性能試驗(yàn),以期達(dá)到玉米對(duì)株定點(diǎn)扎穴、零速排肥、化肥精量深施的效果。
1.1 設(shè)計(jì)依據(jù)
針對(duì)玉米生長(zhǎng)中后期行間追肥存在的問(wèn)題,結(jié)合傳統(tǒng)追肥農(nóng)藝經(jīng)驗(yàn)和相關(guān)試驗(yàn)研究,確定了玉米行間定點(diǎn)扎穴深施追肥機(jī)的設(shè)計(jì)依據(jù):
1)追肥機(jī)行距適應(yīng)性:合理密植可以使群體和個(gè)體協(xié)調(diào)發(fā)展,近年來(lái)玉米密植技術(shù)在中國(guó)得到大力推廣與應(yīng)用,按1公頃52 500~67 500株玉米計(jì)算,則行距為600 mm為最佳,增產(chǎn)效果最明顯[28],比較適合機(jī)械化田間作業(yè),且具有較好的增產(chǎn)效果。
2)追肥方式:目前玉米中后期追肥主要采用開溝條施和表面撒施,存在肥料利用率低以及污染環(huán)境的問(wèn)題,因此采取扎穴深施的追肥方式,將肥料深施于玉米根部,供玉米吸收,減少了肥料施用量,提高了肥料利用效率,減少環(huán)境污染。
3)追肥距離及深度:根據(jù)已有研究和追肥經(jīng)驗(yàn),扎穴點(diǎn)與玉米植株距離確定為100~150 mm,追肥深度確定為80~100 mm[29]。
1.2 整機(jī)結(jié)構(gòu)
玉米行間定點(diǎn)扎穴深施追肥機(jī)的結(jié)構(gòu)示意圖如圖1所示,主要由轉(zhuǎn)向輪1、機(jī)架2、動(dòng)力輸出總成3、轉(zhuǎn)向機(jī)構(gòu)4、肥箱8、棘輪離合裝置9、曲柄連桿機(jī)構(gòu)10、扎穴施肥機(jī)構(gòu)11、水平位移補(bǔ)償裝置12、覆土鎮(zhèn)壓裝置13、植株位置探測(cè)機(jī)構(gòu)14和傳動(dòng)系統(tǒng)16等組成。其中植株位置探測(cè)機(jī)構(gòu)、棘輪離合機(jī)構(gòu)、水平位移補(bǔ)償裝置、曲柄連桿機(jī)構(gòu)、扎穴施肥機(jī)構(gòu)和覆土鎮(zhèn)壓裝置均為2組,對(duì)稱安裝于機(jī)架兩側(cè),位于驅(qū)動(dòng)輪后方。曲柄連桿機(jī)構(gòu)與棘輪離合機(jī)構(gòu)固定連接,與扎穴施肥機(jī)構(gòu)鉸接,其初始位置為曲柄位于上止點(diǎn)的位置;棘輪離合機(jī)構(gòu)與水平位移補(bǔ)償裝置1∶1鏈傳動(dòng)連接,與植株位置探測(cè)機(jī)構(gòu)通過(guò)接觸面接觸;覆土鎮(zhèn)壓裝置安裝在機(jī)架末端,位于扎穴施肥機(jī)構(gòu)正后方;肥箱與機(jī)架固定連接,位于座椅正后方。整機(jī)的主要結(jié)構(gòu)參數(shù)如表1所示。
1.3 工作原理
發(fā)動(dòng)機(jī)啟動(dòng)后,追肥機(jī)在玉米行間行進(jìn)。當(dāng)植株位置探測(cè)機(jī)構(gòu)未探測(cè)到玉米植株時(shí),棘輪離合機(jī)構(gòu)處于斷開狀態(tài),追肥機(jī)在玉米行間行進(jìn)但動(dòng)力不會(huì)傳遞到水平位移補(bǔ)償裝置和曲柄連桿機(jī)構(gòu),因而扎穴施肥機(jī)構(gòu)仍處于相對(duì)靜止?fàn)顟B(tài);當(dāng)植株位置探測(cè)機(jī)構(gòu)探測(cè)到玉米植株時(shí),棘輪離合機(jī)構(gòu)結(jié)合,動(dòng)力傳遞到曲柄連桿機(jī)構(gòu)和水平位移補(bǔ)償裝置,共同驅(qū)動(dòng)扎穴施肥機(jī)構(gòu)作有規(guī)律的復(fù)合運(yùn)動(dòng),水平位移補(bǔ)償裝置驅(qū)動(dòng)扎穴施肥機(jī)構(gòu)向機(jī)具運(yùn)動(dòng)方向相反的方向運(yùn)動(dòng),其水平速度與機(jī)具前進(jìn)速度大小相等,方向相反,則在此過(guò)程中扎穴施肥機(jī)構(gòu)的水平速度為零,水平位移為0;曲柄連桿機(jī)構(gòu)驅(qū)動(dòng)扎穴施肥機(jī)構(gòu)作上下往復(fù)運(yùn)動(dòng),完成入土扎穴與排肥。當(dāng)植株位置探測(cè)機(jī)構(gòu)繞過(guò)玉米植株時(shí),植株位置探測(cè)機(jī)構(gòu)回到初始位置,曲柄連桿機(jī)構(gòu)運(yùn)動(dòng)一個(gè)周期后回到初始位置,棘輪離合機(jī)構(gòu)斷開,水平位移補(bǔ)償裝置和扎穴追肥機(jī)構(gòu)回到初始位置,與機(jī)架保持相對(duì)靜止?fàn)顟B(tài),直至下一次檢測(cè)到玉米植株重復(fù)上訴步驟,追肥機(jī)定點(diǎn)扎穴深施追肥過(guò)程原理結(jié)構(gòu)簡(jiǎn)圖如圖2所示。
表1 玉米行間定點(diǎn)扎穴深施追肥機(jī)的主要結(jié)構(gòu)參數(shù)
2.1 水平位移補(bǔ)償裝置的設(shè)計(jì)
由參考文獻(xiàn)[27]可知,現(xiàn)有的扎穴裝置存在入出土垂直度差的問(wèn)題,在土壤中運(yùn)動(dòng)復(fù)雜,土壤擾動(dòng)量大;排出的肥料作平拋運(yùn)動(dòng),具有較大的跳動(dòng)或滾動(dòng),影響施肥精準(zhǔn)度,降低肥料利用效率[30]。因此,保證扎穴裝置垂直出入土,是獲得精準(zhǔn)施肥的關(guān)鍵。為確保扎穴裝置入出土過(guò)程作垂直運(yùn)動(dòng),即水平速度為零,則需要對(duì)扎穴裝置進(jìn)行水平位移補(bǔ)償,且補(bǔ)償大小與追肥機(jī)前進(jìn)距離大小相等,方向相反。
2.1.1 水平位移補(bǔ)償裝置與驅(qū)動(dòng)輪傳動(dòng)比
為保證水平位移補(bǔ)償裝置與追肥機(jī)具有確定的相對(duì)運(yùn)動(dòng),則水平位移補(bǔ)償裝置與追肥機(jī)驅(qū)動(dòng)輪之間具有固定的傳動(dòng)比。水平位移補(bǔ)償裝置與驅(qū)動(dòng)輪的傳動(dòng)比可以根據(jù)最小扎穴距離確定
式中為驅(qū)動(dòng)輪直徑,=450 mm,為水平位移補(bǔ)償裝置與驅(qū)動(dòng)輪的傳動(dòng)比;P為最小扎穴距離,根據(jù)玉米密植要求,保證機(jī)具的株距適應(yīng)性,取P=180 mm。
由式(1)算出,=7.85,為保證扎穴距離取到最小,因此取=8時(shí)方便傳動(dòng)鏈輪的齒數(shù)選取與傳動(dòng)計(jì)算。
2.1.2 水平位移補(bǔ)償裝置結(jié)構(gòu)參數(shù)
水平位移補(bǔ)償裝置由凸輪、凸輪軸、異型軸承、推桿、滑塊和水平導(dǎo)軌組成。當(dāng)凸輪軸轉(zhuǎn)動(dòng)時(shí),凸輪隨著一起轉(zhuǎn)動(dòng),推動(dòng)推桿和滑塊在水平導(dǎo)軌上滑動(dòng),從而驅(qū)動(dòng)扎穴施肥機(jī)構(gòu)相對(duì)機(jī)架運(yùn)動(dòng),實(shí)現(xiàn)扎穴施肥機(jī)構(gòu)的水平位移補(bǔ)償。
凸輪端面開設(shè)凹槽,凹槽內(nèi)壁推動(dòng)推桿,實(shí)現(xiàn)水平位移補(bǔ)償功能;外壁拉動(dòng)推桿,使凸輪與推桿始終保持緊密結(jié)合,實(shí)現(xiàn)初始位置回復(fù)功能。凹槽與推桿通過(guò)異型軸承連接,異型軸承在凹槽內(nèi)運(yùn)動(dòng),考慮到凸輪安裝空間和異型軸承軸的強(qiáng)度,選取異型軸承為S726 GB/292-1994,其外徑為19 mm,厚度為6mm,且選擇2個(gè)異型軸承并聯(lián)使用,增加接觸面積。凸輪凹槽寬度設(shè)計(jì)為20 mm,深度設(shè)計(jì)為10 mm,內(nèi)外壁厚均設(shè)計(jì)為5 mm,凸輪厚度設(shè)計(jì)為15 mm。
水平位移補(bǔ)償裝置的補(bǔ)償位移大小由凹槽中心線的瞬時(shí)半徑?jīng)Q定,根據(jù)水平補(bǔ)償位移大小等于機(jī)具前進(jìn)距離的要求,可以計(jì)算出一半凸輪凹槽中心線的半徑變化曲線
(3)
式中為驅(qū)動(dòng)輪轉(zhuǎn)速,r/min;為水平位移補(bǔ)償裝置的運(yùn)動(dòng)周期,s;R為凸輪凹槽中心線半徑變化量,mm。
計(jì)算得到R=88.3 mm,凸輪轉(zhuǎn)過(guò)的角度為180°,為方便計(jì)算可取R=90 mm。假設(shè)追肥機(jī)為勻速前進(jìn),則凹槽中心線半徑變化為線性,即凸輪每轉(zhuǎn)過(guò)1°,半徑變化0.5 mm。繪制凹槽中心線時(shí),取最小半徑為30 mm,每隔20°取一點(diǎn),半徑增加10 mm,直至取到最大值處,然后將各點(diǎn)通過(guò)樣條曲線連接起來(lái),形成溝槽中心線軌跡一半的繪制,遞減曲線段與遞增曲線段對(duì)稱圖3a為凹槽中心線軌跡。由圖3a可以看出,在對(duì)稱曲線過(guò)渡點(diǎn)處凹槽中心線軌跡突變,容易造成大的沖擊甚至卡死,所以在突變點(diǎn)采用倒圓角30 mm處理,得到的凸輪三維模型如圖3b所示。
2.2 植株位置探測(cè)機(jī)構(gòu)和棘輪離合機(jī)構(gòu)的設(shè)計(jì)
植株位置探測(cè)機(jī)構(gòu)的主要功能是準(zhǔn)確找到玉米植株的位置,然后將檢測(cè)信號(hào)傳遞給棘輪離合機(jī)構(gòu),決定是否連通動(dòng)力,驅(qū)動(dòng)扎穴施肥機(jī)構(gòu)進(jìn)行定點(diǎn)扎穴追肥。
當(dāng)植株位置探測(cè)機(jī)構(gòu)未檢測(cè)到玉米植株時(shí),棘輪離合機(jī)構(gòu)處于待機(jī)狀態(tài),棘爪與棘爪隔離開關(guān)接觸,與棘輪斷開,離合鏈輪沒(méi)有旋轉(zhuǎn)速度;當(dāng)植株位置探測(cè)機(jī)構(gòu)探測(cè)到玉米植株時(shí),在玉米植株作用下擺桿轉(zhuǎn)動(dòng)一定角度,棘爪隔離開關(guān)和棘爪斷開連接,棘爪壓緊彈簧使棘爪與棘輪嚙合,棘輪離合機(jī)構(gòu)處于工作狀態(tài),帶動(dòng)離合鏈輪同步旋轉(zhuǎn),驅(qū)動(dòng)后續(xù)工作部件運(yùn)動(dòng)。圖4a為棘輪離合裝置處于待機(jī)狀態(tài)時(shí)的示意圖,圖4b為棘輪離合機(jī)構(gòu)處于工作狀態(tài)時(shí)的示意圖。
1.探測(cè)桿 2.扭轉(zhuǎn)彈簧 3.擺桿回位彈簧 4.擺桿 5.軸承座 6.離合軸 7.棘爪隔離開關(guān) 8.棘爪 9.棘爪壓緊彈簧 10.棘輪 11.離合套軸承 12.離合鏈輪 13.離合套 14.卡簧
1.Proof stick 2.Torsion spring 3.Return spring of oscillating bar 4.Oscillating bar 5.Bearing pedestal 6.Clutch shaft 7.Disconnect switch of pawl 8.Pawl 9.Retainer spring of pawl 10.Ratchet wheel 11. Bearing of clutch cover 12.Clutch sprocket 13.Clutch cover 14.Circlip
注:為離合軸角速度,rad·s-1。
Note:is angular velocity of clutch shaft, rad·s-1.
圖4 探測(cè)裝置和棘輪離合機(jī)構(gòu)不同作業(yè)狀態(tài)結(jié)構(gòu)示意圖
Fig.4 Structure diagram of different working states of detection mechanism and ratchet clutch mechanism
2.2.1 結(jié)構(gòu)參數(shù)設(shè)計(jì)
根據(jù)玉米種植行距和植株位置探測(cè)機(jī)構(gòu)的結(jié)構(gòu),繪制植株位置探測(cè)機(jī)構(gòu)作業(yè)時(shí)的位置參數(shù)圖,如圖5所示。
擺桿轉(zhuǎn)動(dòng)需要克服的力主要有棘爪和棘爪隔離開關(guān)的摩擦力、控制桿回位彈簧彈力和扭轉(zhuǎn)彈簧力,根據(jù)各桿件的運(yùn)動(dòng)順序和彈簧彈性剛度計(jì)算公式可給出以下約束條件[31]
(5)
(6)
式中為探測(cè)桿長(zhǎng)度,mm;為擺桿轉(zhuǎn)動(dòng)角度,=15°;為探測(cè)桿相對(duì)擺桿轉(zhuǎn)動(dòng)角度,(°);為追肥機(jī)路徑偏移量,為保證擺桿適用范圍,取=50 mm;為棘爪離合開關(guān)和棘爪的摩擦系數(shù),=0.15;為彈簧材料的切變模量,彈簧材料為碳素鋼絲,查表得到=8×104MPa;1為棘爪壓緊彈簧直徑,mm;1為棘爪壓緊彈簧內(nèi)徑,mm;1為棘爪壓緊彈簧有效圈數(shù);1為棘爪壓緊彈簧拉伸長(zhǎng)度,mm;2為擺桿回位彈簧直徑,mm;2為擺桿回位彈簧內(nèi)徑,mm;2為擺桿回位彈簧有效圈數(shù);2為擺桿回位彈簧拉伸長(zhǎng)度,mm;為彈簧材料的彈性模量,=2×105MPa;3為扭轉(zhuǎn)彈簧直徑,mm;3為扭轉(zhuǎn)彈簧內(nèi)徑,mm;3為扭轉(zhuǎn)彈簧有效圈數(shù);[]為距離地面200 mm高度處玉米莖稈最大折斷力,取[]=295 N[32];[]為安全系數(shù),[]=1.5。
根據(jù)式(4)~式(6)計(jì)算得到75 mm<<127.6 mm,綜合考慮探測(cè)桿探測(cè)距離和回位時(shí)間,取=100 mm,則可算得<59°,然后可根據(jù)已有數(shù)據(jù)計(jì)算選取合適的彈簧參數(shù)。
2.2.2理論扎穴點(diǎn)位置
追肥機(jī)在玉米行間進(jìn)行扎穴時(shí),扎穴點(diǎn)位置與機(jī)具路徑偏移量和行距變化有很大關(guān)系,很難確定出一個(gè)確定的扎穴點(diǎn),但可以計(jì)算處追肥機(jī)在理想工作條件下的扎穴點(diǎn)位置。首先提出兩點(diǎn)假設(shè):一是玉米行距始終為600 mm;二是追肥機(jī)前進(jìn)方向與玉米行距中心線重合,無(wú)路徑偏移。根據(jù)以上假設(shè),可以計(jì)算得到扎穴點(diǎn)的理論位置和理論追肥距離
(9)
(10)
式中d為扎穴點(diǎn)與玉米植株的縱向距離,mm;M為理論追肥距離,mm;為擺桿與離合軸的水平方向距離,mm。計(jì)算得到45 mm<<157 mm,取=100 mm,則可算出d=45 mm,M=114 mm。
2.3 扎穴施肥機(jī)構(gòu)的設(shè)計(jì)
2.3.1 基本結(jié)構(gòu)與工作原理
為了滿足扎穴施肥的要求,對(duì)扎穴施肥機(jī)構(gòu)的運(yùn)動(dòng)規(guī)律進(jìn)行探究后,設(shè)計(jì)了符合機(jī)構(gòu)運(yùn)動(dòng)規(guī)律的扎穴施肥機(jī)構(gòu),主要由扎穴嘴1、排肥軸2、水平導(dǎo)軌4、豎直導(dǎo)軌7、連桿8、曲柄9、扎穴器10和蹄型滑軌14等組成,如圖6所示。
在植株位置探測(cè)機(jī)構(gòu)探測(cè)到玉米植株時(shí),棘輪離合機(jī)構(gòu)接通動(dòng)力,驅(qū)動(dòng)曲柄連桿機(jī)構(gòu)和水平位移補(bǔ)償裝置運(yùn)動(dòng),從而驅(qū)動(dòng)扎穴施肥機(jī)構(gòu)在水平導(dǎo)軌和豎直導(dǎo)軌上作直線運(yùn)動(dòng),機(jī)構(gòu)進(jìn)行工作。由機(jī)構(gòu)運(yùn)動(dòng)規(guī)律可知,扎穴和施肥工序與扎穴器豎直方向的運(yùn)動(dòng)相關(guān):扎穴器向下入土?xí)r,扎穴嘴閉合,定量的肥料儲(chǔ)存在扎穴嘴和扎穴器尖部形成的尖嘴中,排肥軸進(jìn)行充肥;扎穴器向上運(yùn)動(dòng)時(shí),扎穴嘴張開,肥料進(jìn)入穴孔,在扎穴器最下端離開地面后,扎穴嘴閉合,保證肥料排盡且不夾泥,排肥軸進(jìn)行排肥,肥料流入扎穴嘴和扎穴器尖部形成的腔中,待下一次追肥。
2.3.2 扎穴器運(yùn)動(dòng)分析
扎穴器的運(yùn)動(dòng)是復(fù)合運(yùn)動(dòng):一是曲柄連桿機(jī)構(gòu)驅(qū)動(dòng)的豎直方向運(yùn)動(dòng),二是水平位移補(bǔ)償裝置驅(qū)動(dòng)的水平方向運(yùn)動(dòng),三是隨機(jī)具的牽連運(yùn)動(dòng)。將曲柄、連桿、扎穴器和推桿等效成桿件,以離合軸旋轉(zhuǎn)中心為坐標(biāo)原點(diǎn),以追肥機(jī)前進(jìn)方向?yàn)檩S正向,豎直向下方向?yàn)檩S正向建立坐標(biāo)系,如圖7所示。由于扎穴器為剛性,且始終垂直于地面,因此其上各點(diǎn)具有相同的速度和相同的值。因此,扎穴器尖端點(diǎn)的運(yùn)動(dòng)可由點(diǎn)得到,分別建立(x,y)、(x,y)、(x,y)各點(diǎn)坐標(biāo)與運(yùn)動(dòng)時(shí)間的相對(duì)運(yùn)動(dòng)方程。
1.凸輪 2.推桿 3.水平導(dǎo)軌 4.曲柄 5.連桿 6.豎直導(dǎo)軌 7.扎穴器
1.Cam 2.Push rod 3.Horizontal guide rail 4.Crank 5.Connecting rod 6.Vertical guide rail 7.Hole-pricker
注:1為曲柄長(zhǎng)度,mm;2為連桿長(zhǎng)度,mm;3為扎穴器長(zhǎng)度,mm。
Note:1is the length of crank, mm;2is the length of connecting rod, mm;3is the length of hole-pricker, mm.
圖7 扎穴施肥機(jī)構(gòu)運(yùn)動(dòng)原理圖
Fig.7 Schematic diagram of movement of hole-pricking and deep-fertilization mechanism
式中x為曲柄與連桿的連接點(diǎn)在坐標(biāo)系中的橫坐標(biāo)值,mm;y為曲柄與連桿的連接點(diǎn)在坐標(biāo)系中的縱坐標(biāo)值,mm;1為曲柄長(zhǎng)度,1的取值決定了扎穴器在豎直方向上的運(yùn)動(dòng)范圍,由施肥深度(100 mm)和離地安全高度(40 mm)組成,則1=70 mm;為離合軸旋轉(zhuǎn)角速度,rad/s;為運(yùn)動(dòng)時(shí)間,s。
(12)
式中x為連桿與扎穴器的連接點(diǎn)在坐標(biāo)系中的橫坐標(biāo)值,mm;y為連桿與扎穴器的連接點(diǎn)在坐標(biāo)系中的縱坐標(biāo)值,mm;2為連桿長(zhǎng)度,取2=150 mm。
(14)
式中x為扎穴器下端在坐標(biāo)系中的橫坐標(biāo)值,mm;y為扎穴器下端在坐標(biāo)系中的縱坐標(biāo)值,mm;3為扎穴器長(zhǎng)度,根據(jù)離合軸旋轉(zhuǎn)中心離地高度可得到3=566 mm。
(x,y)點(diǎn)隨追肥機(jī)的牽連運(yùn)動(dòng)方程
(16)
采用MATLAB軟件編寫代碼,則可繪制出扎穴器尖部一個(gè)周期的絕對(duì)運(yùn)動(dòng)軌跡,如圖8所示。
由圖8可以看出,在一個(gè)周期內(nèi),扎穴器尖部在水平方向上的位移為176 mm,在豎直方向上的位移為140 mm,扎穴最深點(diǎn)距離地面100 mm,開始進(jìn)行補(bǔ)償?shù)狞c(diǎn)距離地面30 mm,與理論設(shè)計(jì)值一致。同時(shí)可以從軌跡線看出,在水平位移補(bǔ)償階段,其入土軌跡與出土軌跡不重合,這是因?yàn)樵谕馆喸O(shè)計(jì)時(shí),為計(jì)算方便,其半徑最大增量與追肥機(jī)前進(jìn)距離具有1.7 mm的差值。
2.3.3 扎穴嘴參數(shù)設(shè)計(jì)
根據(jù)扎穴嘴內(nèi)肥料運(yùn)動(dòng)規(guī)律及施肥時(shí)間要求,扎穴嘴閉合與打開的時(shí)間具有嚴(yán)格的要求。通過(guò)變軌法實(shí)現(xiàn)扎穴嘴在不同運(yùn)動(dòng)行程的不同狀態(tài),當(dāng)扎穴器向下運(yùn)動(dòng)時(shí),滑軌軸承通過(guò)蹄型滑軌內(nèi)側(cè)軌道,扎穴嘴閉合;當(dāng)扎穴器向上運(yùn)動(dòng)時(shí),滑軌軸承經(jīng)過(guò)蹄型滑軌外側(cè)軌道,扎穴嘴張開。圖9為滑軌軸承處于蹄型滑軌不同軌道時(shí)扎穴嘴的位置圖。
根據(jù)扎穴器運(yùn)動(dòng)軌跡及變軌要求,可得到實(shí)現(xiàn)扎穴嘴狀態(tài)切換的約束條件
式中為滑軌軸承的半徑=10 mm;為蹄型滑軌內(nèi)側(cè)面與扎穴器的距離,mm;1為蹄型滑軌曲線段半徑,mm;為扎穴嘴開閉連桿的長(zhǎng)度,=120 mm;為蹄型滑軌曲面頂點(diǎn)與蹄型滑軌內(nèi)側(cè)面的水平距離,mm;為蹄型滑軌的寬度,mm;為蹄型滑軌直線段的長(zhǎng)度,mm;為扎穴嘴閉合時(shí)扎穴嘴開閉連桿與水平面的夾角,=75°;為扎穴嘴張開時(shí)扎穴嘴開閉連桿與水平面的夾角,扎穴嘴轉(zhuǎn)動(dòng)到豎直位置時(shí),能夠保證順利排肥,因此可計(jì)算得到=45°。
1.扎穴嘴 2.扎穴嘴開閉連桿 3.拉緊彈簧 4.扎穴器 5.蹄型滑軌 6.滑軌軸承
1.Pricker mouth 2. Lockage connecting rod of pricking mouth 3.Stretched spring 4.Hole-ppricker 5. Hoof type slideway 6.Slideway bearing
注:為扎穴嘴高度,此處值為120 mm;為滑軌軸承半徑,=10 mm;為蹄型滑軌厚度,mm;為蹄型滑軌直線段長(zhǎng)度,mm;1為蹄型滑軌曲線段半徑,mm;為蹄型滑軌曲面頂點(diǎn)與蹄型滑軌內(nèi)側(cè)面的水平距離,mm;為蹄型滑軌內(nèi)側(cè)面與扎穴器的距離,mm;為扎穴嘴閉合時(shí)扎穴嘴開閉連桿與水平面的夾角,=75°;為扎穴嘴張開時(shí)扎穴嘴開閉連桿與水平面的夾角,此處取=45°;為扎穴嘴開閉連桿長(zhǎng)度,=120 mm;為扎穴器運(yùn)動(dòng)方向。
Note:is height of hole pricker, and it’s 120 mm;is the radius of slideway bearing,=10 mm;is the thickness of hoof type slideway, mm;is the straight line length of hoof type slideway, mm;1is curve segment radius of hoof type slideway, mm;is the horizontal distance of the peak of curve segment and inner side of hoof type slideway, mm;is the distance of inner side of hoof type slideway and hole pricker, mm;is the angle of connecting rod and horizontal plane when it was closed state,=75°;is the angle of connecting rod and horizontal plane when it was opening state,=45°;is the length of connecting rod,=120 mm;is the direction of the hole pricker.
圖9 扎穴嘴不同工作狀態(tài)位置圖
Fig.9 Position of hole-pricker at different working state
根據(jù)式(17)計(jì)算得到:>12,37.2<<77.2,1=30,>20,<19,在考慮安全余量和安裝空間的情況下,最終取得=15 mm,=40 mm,1=30 mm,=22 mm,=15 mm。
3.1 試驗(yàn)條件與方法
3.1.1 試驗(yàn)條件
2016年7月,玉米行間定點(diǎn)扎穴深施追肥機(jī)田間追肥性能試驗(yàn)在遼寧省撫順市清原縣孤山子村試驗(yàn)地進(jìn)行。試驗(yàn)地長(zhǎng)50 m,寬20 m,玉米于5月份播種,試驗(yàn)用玉米種子為吉農(nóng)玉409,發(fā)芽率≥95%,行距為600 mm,平均株距為235 mm。試驗(yàn)前測(cè)得玉米平均株高為148.6 cm,每公頃株數(shù)為67 500株,5、10 cm土層深度的土壤緊實(shí)度分別為386 、942 kPa。試驗(yàn)用顆粒肥為復(fù)合肥,含水率為2.91%,N:P2O5:K2O的比例為15:16:12,平均顆粒直徑為4.3 mm。試驗(yàn)時(shí),追肥機(jī)的前進(jìn)速度為0.8 m/s,圖10為追肥機(jī)田間追肥試驗(yàn)及追肥作業(yè)后穴孔分布效果圖。
a. 田間追肥試驗(yàn)a. Field experiment of topdressingb. 扎穴效果圖b. Effect picture of hole-pricking
根據(jù)設(shè)計(jì)方案,測(cè)試內(nèi)容主要包括漏追率、追肥深度、追肥深度合格率、追肥距離、追肥距離合格率和豎直方向最大振幅。試驗(yàn)前,準(zhǔn)備好各項(xiàng)用到的試驗(yàn)器材:美國(guó)Spectrum Technologies, Inc生產(chǎn)的SC-900土壤緊實(shí)度儀、北京航天智控監(jiān)測(cè)技術(shù)研究院研發(fā)生產(chǎn)的AIC3600手持式振動(dòng)分析儀、十分度游標(biāo)卡尺、小鐵鏟、秒表和鋼卷尺。
3.1.2 試驗(yàn)指標(biāo)與方法
1)漏追率
隨機(jī)選取3個(gè)作業(yè)行程的玉米行作為取樣區(qū),避開田邊,在選取的玉米行中間段選取20 m作為計(jì)數(shù)取樣段,然后在每個(gè)樣段內(nèi)隨機(jī)選取50株玉米,共取得150株玉米,利用小鐵鏟挖取玉米植株扎穴點(diǎn)的土壤剖面,觀察相應(yīng)玉米植株是否進(jìn)行扎穴追肥,統(tǒng)計(jì)3個(gè)取樣段進(jìn)行了扎穴追肥的株數(shù)L,則漏追率可由式(18)得到。
式中為漏追率,%;L為取樣段內(nèi)完成追肥的玉米株數(shù);L為取樣玉米株數(shù),L=150。
2)穴追肥量和總排肥量穩(wěn)定性
參照國(guó)家標(biāo)準(zhǔn)GB/T 20346.2-2006《施肥機(jī)械試驗(yàn)方法第2部分行間施肥機(jī)》的試驗(yàn)方法,反向安裝驅(qū)動(dòng)輪(驅(qū)動(dòng)輪上安裝有單向離合器),追肥機(jī)驅(qū)動(dòng)軸旋轉(zhuǎn)時(shí)追肥機(jī)不會(huì)前進(jìn)。試驗(yàn)前,將肥料裝入肥箱中,保證肥箱內(nèi)的肥料不少于肥箱容積的1/4,且肥料頂面低于肥箱口;肥料收集器置于施肥器正下方,其外形輪廓為150 mm×150 mm,深度為150 mm,排肥軸的含肥腔長(zhǎng)度設(shè)置為20 mm。啟動(dòng)發(fā)動(dòng)機(jī),人工操作探測(cè)桿,使施肥器運(yùn)動(dòng)排肥,兩側(cè)施肥器同時(shí)試驗(yàn),試驗(yàn)20次后稱量肥料收集器總質(zhì)量,每側(cè)排肥器試驗(yàn)重復(fù)3次,取平均值。平均穴追肥量和總排肥量穩(wěn)定性變異系數(shù)可表示為
(20)
式中M為平均排肥量,g;m為測(cè)得的肥料收集器和收集到的肥料總質(zhì)量,g;為肥料收集器的質(zhì)量,g;肥料收集器序號(hào);V為總排肥量穩(wěn)定性變異系數(shù),%。
3)追肥深度與追肥深度合格率
隨機(jī)選取3行作業(yè)后的玉米行,在每行中間部位選取20 m作為取樣區(qū),然后在取樣區(qū)內(nèi)隨機(jī)選取20株完成追肥的玉米植株,共取得60個(gè)取樣點(diǎn)。用小鐵鏟剖開所選玉米植株追肥點(diǎn)穴孔截面,然后用鋼卷尺測(cè)量肥料最低點(diǎn)距離地面的高度即追肥深度,計(jì)算所有取樣點(diǎn)測(cè)量值的平均值,然后計(jì)數(shù)追肥深度合格的穴孔(追肥深度值處于80~100 mm的穴孔),則追肥深度合格率為合格穴孔數(shù)與總測(cè)試穴孔數(shù)的比值,計(jì)算公式為
式中為追肥深度合格率,%;t為追肥深度合格的點(diǎn)數(shù);t為總的取樣點(diǎn)數(shù),t=60。
4)追肥距離及追肥距離合格率
在測(cè)量追肥深度時(shí),同時(shí)能夠測(cè)量追肥距離,因此采用測(cè)量追肥深度的取樣點(diǎn),不用重新取樣。用鋼卷尺測(cè)量取樣玉米植株對(duì)應(yīng)的追肥點(diǎn)中心與玉米莖稈中心的距離,計(jì)算所有取樣點(diǎn)追肥距離的平均值,即為追肥機(jī)的追肥距離;然后計(jì)數(shù)追肥距離合格的點(diǎn)數(shù),即追肥距離值處于100~150 mm的點(diǎn),追肥距離合格率為合格追肥點(diǎn)數(shù)與總?cè)狱c(diǎn)數(shù)的比值,計(jì)算公式參照式(21)。
5)豎直方向最大振幅
連接好振動(dòng)分析儀與振動(dòng)傳感器,將振動(dòng)傳感器吸附在機(jī)架上,開機(jī)后隨追肥機(jī)前進(jìn)測(cè)量追肥機(jī)在豎直方向的最大振幅,通過(guò)傳感器信號(hào)電纜線將測(cè)得的結(jié)果在液晶屏上顯示。分別選取3行不同的玉米行作為測(cè)試區(qū),每行內(nèi)選取5個(gè)長(zhǎng)為5 m的測(cè)試段,共測(cè)得15個(gè)數(shù)據(jù),計(jì)算平均值,作為追肥機(jī)豎直方向上的最大振幅。
3.2 試驗(yàn)結(jié)果與分析
按照所述試驗(yàn)方法,在150株漏追率測(cè)試取樣玉米中,共有4株玉米未完成扎穴追肥,146株玉米完成扎穴追肥;在60株取樣玉米中,追肥深度值處于80~100 mm的有53個(gè),追肥距離值處于100~150 mm的有58個(gè)。玉米行間定點(diǎn)扎穴深施追肥機(jī)田間追肥性能試驗(yàn)結(jié)果如表2所示,技術(shù)要求主要參考標(biāo)準(zhǔn)《中耕施肥機(jī)質(zhì)量評(píng)價(jià)技術(shù)規(guī)范》、農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)及設(shè)計(jì)方案要求。
表2 田間追肥性能試驗(yàn)結(jié)果
由表2可知,玉米行間定點(diǎn)扎穴深施追肥機(jī)追肥作業(yè)后的漏追率為2.7%,排肥軸含肥腔長(zhǎng)度為20 mm時(shí)的穴追肥量為2.3 g,總排肥量穩(wěn)定性變異系數(shù)為3.2%,平均追肥深度和平均追肥距離分別為91.3和127.5 mm,追肥深度合格率和追肥距離合格率分別為88.3%和96.7%,相關(guān)指標(biāo)均達(dá)到技術(shù)要求。
平均穴追肥量為2.3 g,按每公頃種植67 500株玉米、玉米發(fā)芽率為95%計(jì)算,則追肥量為147.5 kg/hm2。設(shè)計(jì)追肥深度值為100 mm,比試驗(yàn)值大8.7 mm,則追肥深度誤差率為9.5%;計(jì)算得到的理論追肥距離為114 mm,比試驗(yàn)值小13.5 mm,則追肥距離誤差率為10.6%。經(jīng)分析,追肥深度誤差產(chǎn)生的主要原因是地面不能保持完全水平,因此扎穴器尖部距離地面的高度不能保持始終為40 mm,因此扎穴深度始終在變,所以與設(shè)計(jì)值產(chǎn)生偏差;追肥距離誤差產(chǎn)生的主要原因是玉米行距的變化和追肥機(jī)前進(jìn)路徑的偏移,扎穴點(diǎn)的實(shí)際位置與理論位置存在差異,所以實(shí)際追肥距離試驗(yàn)值與理論追肥距離存在偏差。
追肥過(guò)程中,樣機(jī)在玉米行間行走穩(wěn)定,通過(guò)性能良好,豎直方向振動(dòng)較小,測(cè)得的最大值為16.4 mm,對(duì)追肥機(jī)的穩(wěn)定性影響不大,無(wú)側(cè)偏現(xiàn)象發(fā)生;扎穴器在探測(cè)桿探測(cè)到玉米植株的時(shí)候才進(jìn)行扎穴追肥,且扎穴器垂直入土,土壤擾動(dòng)小,肥料分布集中。由于追肥機(jī)長(zhǎng)度達(dá)到2 160 mm,地頭掉頭較為困難,且追肥機(jī)采用機(jī)械式探測(cè)機(jī)構(gòu),探測(cè)距離限制較大,導(dǎo)致追肥機(jī)只能在行距為600 mm的玉米行間作業(yè),行距適應(yīng)性較差,因此進(jìn)一步研究的方向是縮短機(jī)具長(zhǎng)度,增加掉頭靈活性;改變追肥機(jī)的植株位置探測(cè)機(jī)構(gòu),采用智能化的探測(cè)裝置,使探測(cè)更靈敏準(zhǔn)確,增大探測(cè)范圍,滿足不同玉米行距的定點(diǎn)扎穴追肥。
本文針對(duì)玉米中后期追肥技術(shù)難點(diǎn),結(jié)合追肥農(nóng)藝要求,設(shè)計(jì)了一種玉米行間定點(diǎn)扎穴深施追肥機(jī),能夠在行距為600 mm的玉米行間進(jìn)行定點(diǎn)扎穴深施追肥,1次追肥2行。
1)對(duì)追肥機(jī)的主要零部件進(jìn)行了結(jié)構(gòu)參數(shù)設(shè)計(jì)和運(yùn)動(dòng)分析,結(jié)果得到水平位移補(bǔ)償裝置的凸輪為對(duì)稱結(jié)構(gòu),與驅(qū)動(dòng)輪具有固定的傳動(dòng)比8,最小半徑為30 mm,最大半徑為120 mm;探測(cè)桿長(zhǎng)度為100 mm,與離合軸的水平距離為100 mm,計(jì)算得出理論扎穴點(diǎn)位于植株側(cè)后方,距離玉米植株114 mm。
2)采用MATLAB軟件繪制了扎穴器尖部一個(gè)周期的運(yùn)動(dòng)軌跡,對(duì)軌跡各關(guān)鍵點(diǎn)進(jìn)行分析可得到扎穴器在豎直方向上的位移為140 mm,最低點(diǎn)距離地面為100 mm,扎穴器入土扎穴過(guò)程中水平位移僅為1.7 mm,滿足水平位移補(bǔ)償要求。
3)田間性能試驗(yàn)結(jié)果表明,玉米行間定點(diǎn)扎穴深施追肥機(jī)追肥作業(yè)后的漏追率為2.7%,排肥軸含肥腔長(zhǎng)度為20 mm時(shí)的穴追肥量為2.3 g,總排肥量穩(wěn)定性變異系數(shù)為3.2%,平均追肥深度和平均追肥距離分別為91.3和127.5 mm,追肥深度合格率和追肥距離合格率分別為88.3%和96.7%,相關(guān)指標(biāo)均達(dá)到技術(shù)要求。
[1] 曾勰婷,彭正萍,彭云峰. 基于結(jié)構(gòu)方程模型的玉米施氮量-光合產(chǎn)物-產(chǎn)量關(guān)系研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):98-104.
Zeng Xieting, Peng Zhengping, Peng Yunfeng. Structural equation model analyzing relationship among N application-carbonhydrate product-grain yield of maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 98-104. (in Chinese with English abstract)
[2] 戰(zhàn)領(lǐng),楊漢波,雷慧閩. 基于通量觀測(cè)數(shù)據(jù)的玉米水碳交換量及水分利用效率分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊1):88-93.
Zhan Ling, Yang Hanbo, Lei Huimin. Analysis of corn water consumption, carbon assimilation and ecosystem water use efficiency based on flux observations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32(Supp.1): 88-93. (in Chinese with English abstract)
[3] 矯江,項(xiàng)洪濤,王立志,等. 黑龍江省糧食單產(chǎn)大幅度提高的原因分析 [J]. 中國(guó)農(nóng)學(xué)通報(bào),2015,31(36):113-118.
Jiao Jiang, Xiang Hongtao, Wang Lizhi, et al. Reasons of grain yield increase per unit area in Heilongjiang province[J]. Chinese Agricultural Science Bulletin, 2015, 31(36): 113-118. (in Chinese with English abstract)
[4] 張君,趙沛義,潘志華,等. 基于產(chǎn)量及環(huán)境友好的玉米氮肥投入閾值確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):136-143.
Zhang Jun, Zhao Peiyi, Pan Zhihua, et al. Determination of input threshold of nitrogen fertilizer based on environment- friendly agriculture and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 136-143. (in Chinese with English abstract)
[5] Okumura R, Filho P, Scapim C, et al. Effects of nitrogen rates and timing of nitrogen topdressing applications on the nutritional and agronomic traits of sweet corn[J]. Journal of Food, Agricultural & Environment, 2014, 12(2): 391-398.
[6] 張亦濤,王洪媛,劉申,等. 氮肥農(nóng)學(xué)效應(yīng)與環(huán)境效應(yīng)國(guó)際研究發(fā)展態(tài)勢(shì)[J]. 生態(tài)學(xué)報(bào),2016,36(15):1-15.
Zhang Yitao, Wang Hongyuan, Liu Shen, et al. A bibliometrical analysis of status and trends of international researches on the agronomic and environmental effects of nitrogen application to farmland[J]. Acta Ecologica Sinica, 2016, 36(15): 1-15. (in Chinese with English abstract)
[7] Paponov I, Engels C. Effect of nitrogen supply on leaf traits related to photosynthesis during grain filling in two maize genotypes with different N efficiency[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(6): 756-763.
[8] 鄧春巖,陳芳,張麗坤,等. 小型施肥器的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2011(6):87-90.
Deng Chunyan, Chen Fang, Zhang Likun, et al. The design of a mini-type of fertilization equipment[J]. Journal of Agricultural Mechanization Research, 2011(6): 87-90. (in Chinese with English abstract)
[9] 莫盛秋,李洪達(dá). 一種農(nóng)作物根部施肥機(jī)的設(shè)計(jì)[J]. 中國(guó)農(nóng)機(jī)化,2011(2):94-97.
Mo Shengqiu, Li Hongda. Design of plant root fertilizers machine[J]. Chinese Agricultural Mechanization, 2011(2): 94-97. (in Chinese with English abstract)
[10] 吳波,李問(wèn)盈,李洪文,等. 壟臺(tái)修復(fù)中耕施肥機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(9):99-102.
Wu Bo, Li Wenying, Li Hongwen, et al. Design of ridge reshaping and intertillage fertilizer applicator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(9): 99-102. (in Chinese with English abstract)
[11] 李明金,張成亮,吳家安,等. 玉米大壟雙行動(dòng)力式中耕施肥機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)科技與裝備,2015(11):26-28,31.
Li Mingjin, Zhang Chengliang, Wu Jiaan, et al. Design and experiment of power type intertillage fertilizer applicator for corn big double ridge[J]. Agricultural Science & Technology and Equipment, 2015(11): 26-28,31. (in Chinese with English abstract)
[12] 車剛,張偉,梁遠(yuǎn),等. 3ZFC-7型全方位復(fù)式中耕機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):130-135.
Che Gang, Zhang Wei, Liang Yuan, et al. Design and experiment of the 3ZFC-7 omni-bearing duplex type cultivator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 130-135. (in Chinese with English abstract)
[13] 陳志剛,王玉光,孟婷,等. 噴霧施藥植株紅外對(duì)靶試驗(yàn)[J]. 排灌機(jī)械,2009,27(4):237-241,246.
Chen Zhigang, Wang Yuguang, Meng Ting, et al. Experiment of infrared target detection for plants pesticide spraying[J]. Drainage and Irrigation Machinery, 2009, 27(4): 237-241, 246. (in Chinese with English abstract)
[14] 鄧巍,趙春江,何雄奎,等. 綠色植物靶標(biāo)的光譜探測(cè)研究[J]. 光譜學(xué)與光譜分析,2010,30(8):2179-2183.
Deng Wei, Zhao Chunjiang, He Xiongkui, et al. Study on spectral detection of green plant target[J]. Spectroscope and Spectral Analysis, 2010, 30(8): 2179-2183. (in Chinese with English abstract)
[15] 宋淑然,陳建澤,洪添勝,等. 果園柔性對(duì)靶噴霧裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):57-63.
Song Shuran, Chen Jianze, Hong Tiansheng, et al. Design and experiment of orchard flexible targeted spray device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 57-63. (in Chinese with English abstract)
[16] 劉雪美,李揚(yáng),李明,等. 噴桿噴霧機(jī)精確對(duì)靶施藥系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):37-44.
Liu Xuemei, Li Yang, Li Ming, et al. Design and test of smart-targeting spraying system on boom sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 37-44. (in Chinese with English abstract)
[17] Brown D, Giles D, Oliver M, et al. Targeted spray technology to reduce pesticide in runoff from dormant orchards[J]. Crop Protection, 2008, 27(3/5): 545-552.
[18] 尹東富,陳樹人,裴文超,等. 基于處方圖的室內(nèi)變量噴藥除草系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):131-135.
Yin Dongfu, Chen Shuren, Pei Wenchao, et al. Design of map-based indoor variable weed spraying system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 131-135. (in Chinese with English abstract)
[19] 馮青青,趙春江,王曉楠,等. 基于視覺(jué)伺服的櫻桃番茄果串對(duì)靶測(cè)量方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):206-212.
Feng Qingqing, Zhao Chunjiang, Wang Xiaonan, et al. Fruit bunch measurement method for cherry tomato based on visual servo[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 206-212. (in Chinese with English abstract)
[20] Malnersic A, Dular M, Sirok B, et al. Close-range air-assisted precision spot-spraying for robotic applications: Aerodynamics and spray coverage analysis[J]. Biosystems Engineering, 2016, 146(Supp.1): 216-226.
[21] Oberti R, Marchi M, Tirelli P, et al. Selective spraying of grapevines for disease control using a modular agricultural robot[J]. Biosystems Engineering, 2016, 146(Supp.1): 203-215.
[22] 傅澤田,祁力鈞,王俊紅,等. 精準(zhǔn)施藥技術(shù)研究進(jìn)展與對(duì)策[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(1):189-192.
Fu Zetian, Qi Lijun, Wang Junhong, et al. Development tendency and strategies of precision pesticide application techniques[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 189-192. (in Chinese with English abstract)
[23] 程旭鋒,肖愛(ài)平,李婷,等. 葡萄樹干局部環(huán)形對(duì)靶裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊1):20-26.
Cheng Xufeng, Xiao Aiping, Li Ting, et al. Design and experiment of local grapevine trunk targeted precision sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2016, 32(Supp.1): 20-26. (in Chinese with English abstract)
[24] 曹崢勇,張俊雄,耿長(zhǎng)興,等. 溫室對(duì)靶噴霧機(jī)器人控制系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(14):228-233.
Cao Zhengyong, Zhang Junxiong, Geng Changxing, et al. Control system of target spraying robot in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2010, 26(14): 228-233. (in Chinese with English abstract)
[25] 王金武,潘振偉,周文琪,等. SYJ-2型液肥變量施肥機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(7):53-58.
Wang Jinwu, Pan Zhenwei, Zhou Wenqi, et al. Design and test of SYJ-2 type liquid variable fertilizer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 53-58. (in Chinese with English abstract)
[26] 劉春香,王金武,周文琪,等. 液肥深施雙斜孔式噴肥針動(dòng)力學(xué)分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):53-58.
Liu Chunxiang, Wang Jinwu, Zhou Wenqi, et al. Dynamics analysis and experiment of double oblique hole spray fertilizer needle of liquid fertilizer deep-fertilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 53-58. (in Chinese with English abstract)
[27] 王金武,周文琪,張春鳳,等. 非規(guī)則齒輪行星系扎穴機(jī)構(gòu)反求設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(11):70-75.
Wang Jinwu, Zhou Wenqi, Zhang Chunfeng, et al. Reverse design and experiment of non-circular gear planetary system picking hole mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 70-75. (in Chinese with English abstract)
[28] 李洪,王斌,李愛(ài)軍,等. 玉米株行距配置的密植增產(chǎn)效果研究[J]. 中國(guó)農(nóng)學(xué)通報(bào),2011,27(9):309-313.
Li Hong, Wang Bin, Li Aijun, et al. Effects of allocations of row-spacing on maize yield under different planting densities[J]. Chinese Agricultural Science Bulletin, 2011, 27(9): 309-313. (in Chinese with English abstract)
[29] 鄭媛媛. 電動(dòng)玉米中期追肥機(jī)的設(shè)計(jì)與試驗(yàn)研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2013.
Zheng Yuanyuan. Design and Experiment of the Electric Fertilizer Applicator[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese with English abstract)
[30] 高筱鈞,周金華,賴慶輝. 中草藥三七氣吸滾筒式精密排種器的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):20-28.
Gao Xiaojun, Zhou Jinhua, Lai Qinghui. Design and experiment of pneumatic cylinder precision seed-metering device for panax notoginseng[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2016, 32(2): 20-28. (in Chinese with English abstract)
[31] 成大先. 機(jī)械設(shè)計(jì)手冊(cè)[M]. 北京:化學(xué)工業(yè)出版社,2008.
[32] 李仕途,羅燕,宋成良,等. 玉米莖稈節(jié)間抗折強(qiáng)度分析[C]//北京力學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集. 北京,2011.
[33] 高明波,金益,劉紅軍,等. 密度和追肥量對(duì)玉米產(chǎn)量的影響[J]. 黑龍江農(nóng)業(yè)科學(xué),2008(6):38-41.
Gao Mingbo, Jin Yi, Liu Hongjun, et al. Effect of density and additional fertilizer amount on maize yield[J]. Heilongjiang Agricultural Sciences, 2008(6): 38-41. (in Chinese with English abstract)
Design and experiment of targeted hole-pricking and deep-application fertilizer applicator between corn rows
Hu Hong, Li Hongwen※, Wang Qingjie, He Jin, Zhang Yifu, Chen Wanzhi, Wang Xianliang
(100083,)
Corn is a kind of important food crop and feed source, which is of great significance for solving the grain problem of human. Practices have proved that reasonable topdressing especially nitrogen (N) fertilizers in corn growth period can promote the corn growth effectively and improve the corn yield. Huge bellbottom period for corn is the most important period for applying topdressing, during which vegetative growth and reproductive growth occur at the same time. Meanwhile, it is the fertilization habit to apply topdressing in corn’s huge bellbottom period in China. However, with the trend of rural labor transferring to the town in recent years, as well as the main fertilization machinery in the domestic market being handheld, the operation has low working efficiency and great labor intensity. For these reasons, it is more difficult to apply topdressing in the middle and later stage of corn growth, which can’t meet the requirement of high yield and high efficiency for corn cultivation. A targeted hole-pricking and deep-application fertilizer applicator, which worked between corn rows with 500-600 mm row spacing, was designed to deal with the difficulties in applying topdressing during the middle and later growth stage of corn, and the fertilizer applicator could fertilize 2 rows in a single pass. The corn plant position detection mechanism and ratchet clutch mechanism were used to determine the position of pricked holes, and the motion locus of hole-pricking and fertilization mechanism was synergistically controlled by a horizontal displacement compensator and a crank-link mechanism, which was aimed to realize the vertical movement in the processes of targeted hole pricking and the fertilizing with zero speed. Key parameters of corn plant position detection mechanism and hole-pricking and fertilization mechanism were determined based on the theoretical calculation and empirical design, the theoretic position of pricking point was calculated at the ideal conditions, and the motion locus of drill point of hole-pricker was simulated using MATLAB. Meanwhile, the structure and working principle of the main working parts of the fertilizer applicator were introduced. The field experiment verifying the working performance of the fertilizer applicator was conducted in July, 2016 in Qingyuan County, Fushen City, Liaoning Province. As indicated in the field experiment results, the fertilizing amount of per hole was 2.3 g when the fertilizer cavity was 20 mm long; the coefficient of variation for total fertilizing amount was 3.2%; the average fertilizing depth was 91.3 mm; the average fertilizing distance was 127.5 mm; the unfinished topdressing rate was 2.7%; and the qualified rates of fertilizing depth and fertilizing distance were 88.3% and 96.7%, respectively. All the related indicators met the technological requirements. The maximum amplitude at vertical direction was 16.2 mm, and side-slip phenomenon was not observed during the field experiment. The fertilizing amount was less than 52.5 kg·hm2when using the targeted hole-pricking and deep-application fertilizer applicator. In the forward process of fertilizer applicator, the hole-pricking and fertilization mechanism pricked holes vertically, the position of the pricked holes was one-to-one corresponding to the corn plant, and there was small soil disturbance. This study provides reference for the design of precise inter-row fertilizer applicator for corn.
agricultural machinery; design; crops; corn rows; targeted hole-pricking; deep-application fertilizer applicator
10.11975/j.issn.1002-6819.2016.24.004
S224.21
A
1002-6819(2016)-24-0026-10
2016-10-02
2016-10-29
國(guó)家重點(diǎn)研發(fā)計(jì)劃課題—北方作物精量播種和精密化肥深施關(guān)鍵技術(shù)與裝備(2016YFD0200607);教育部創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃資助項(xiàng)目(IRT13039)
胡 紅,男,四川巴中人,博士生,主要從事保護(hù)性耕作研究。北京 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,100083。Email:huhong@cau.edu.cn。
李洪文,男,江蘇泗陽(yáng)人,教授,博士生導(dǎo)師,主要從事保護(hù)性耕作與農(nóng)業(yè)裝備研究。北京 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,100083。Email:lhwen@cau.edu.cn。
農(nóng)業(yè)工程學(xué)報(bào)2016年24期