孫成金, 張建軍, 汪松玉
(河南農(nóng)業(yè)大學(xué) 信息與管理科學(xué)學(xué)院 河南 鄭州 450002)
?
非齊次非線性擴(kuò)散方程的三階條件
Lie-B?cklund對(duì)稱和微分約束
孫成金, 張建軍, 汪松玉
(河南農(nóng)業(yè)大學(xué) 信息與管理科學(xué)學(xué)院 河南 鄭州 450002)
運(yùn)用線性決定方程方法研究了非齊次非線性擴(kuò)散方程.給出了允許三階條件Lie-B?cklund對(duì)稱和微分約束的非齊次非線性擴(kuò)散方程,通過(guò)基于不變曲面條件和方程相容性的對(duì)稱約化,得到所得方程的精確解.
非齊次非線性擴(kuò)散方程; 條件Lie-B?cklund對(duì)稱; 微分約束; 線性決定方程
研究非齊次非線性擴(kuò)散方程[1-3]
xput=(xqukux)x,
(1)
η=[f(u)]xt,
(2)
以及η=[f(u)]xxx+a1(x)[f(u)]xx+a2(x)[f(u)]x+a3(x)f(u),事實(shí)上,在方程(1)的解流形上條件Lie-B?cklund對(duì)稱(2),等價(jià)于具特征
的三階條件Lie-B?cklund對(duì)稱.本文研究方程(1)具一般型特征的三階條件Lie-B?cklund對(duì)稱.事實(shí)上,驗(yàn)證某一Lie-B?cklund向量場(chǎng)作用在方程(1)上是否是條件不變的,只需直接計(jì)算不變條件是否成立即可.但要找出方程(1)的所有三階條件Lie-B?cklund對(duì)稱特征式(3)是困難的.
η=uxxx+g(t,x,u,ux,uxx)
.
(3)
特征(3)是方程(1)的條件Lie-B?cklund對(duì)稱的充分條件是
(4)
其中:M是方程(1)的微分序列集;Lx是η=0關(guān)于x的微分序列集.關(guān)于g的非線性微分方程組可由式(4)推出.關(guān)于g的決定方程通解是不可能得到的.
Kunzinger和Popovych指出方程(1)允許條件Lie-B?cklund對(duì)稱等價(jià)于不變曲面條件[6]
η=uxxx+g(t,x,u,ux,uxx)=0,
(5)
是方程(1)的微分約束.Kaptsov提出線性決定方程[8-9]
(6)
可作為判定式(5)是否為演化方程
ut=F(t,x,u,ux,uxx,…,unx)
(7)
微分約束的充分條件.
將式(3)代入充分條件(7),可知左右兩邊分別是關(guān)于uxx、ux的多項(xiàng)式.令對(duì)應(yīng)項(xiàng)系數(shù)相等可得關(guān)于g的線性決定方程組.解該線性偏微分方程可確定方程(1)允許的條件Lie-B?cklund對(duì)稱特征(3)和微分約束(5)[10].將結(jié)果列在表1中.
表1 方程(1)允許的條件Lie-B?cklund對(duì)稱特征(3)
Tab.1 The conditional Lie-B?cklund symmetry(3) of equation(1)
No方程(1)條件Lie?B?cklund對(duì)稱特征(3)1x-4ut=(x-3uux)xη=uxxx2x3q-74ut=(xquux)xη=uxxx+3(q+3)4xuxx+(q+1)(q+3)8x2ux3x-qut=(xquux)xη=uxxx+3qxuxx+(2q-1)qx2ux4x5q-72ut=(xquux)xη=uxxx-3(q-3)2xuxx-q2+4q-94x2ux-3(q-1)38x3u5xput=(xqu13ux)xη=uxxx+2q-pxuxx-59u2u3x-p+q3xuu2x+q(q-p-1)x2ux
求解不變曲面條件(微分約束)(5)可得,u是含有依賴于t的積分常數(shù)的關(guān)于x的函數(shù).將u代入方程(1)可確定u中那些依賴于t的函數(shù).這里給出3個(gè)例子展現(xiàn)該約化過(guò)程.
例1 允許條件Lie-B?cklund對(duì)稱η=uxxx+3(q+3)·(4x)-1uxx+(q+1)(q+3)·(8x2)-1ux,方程x3q-7·4ut=(xquux)x的解如下給出:
例2 方程
x-qut=(xquux)x
(8)
允許條件Lie-B?cklund對(duì)稱η=uxxx+3q·x-1uxx+(2q-1)qx-2ux.式(6)中的Mx表示方程(8)關(guān)于x的微分序列集.
2) 當(dāng)q=1時(shí),方程的解已在例1中給出.
例3 方程
(9)
允許條件Lie-B?cklund對(duì)稱,
本文用線性決定方程方法研究了非齊次非線性擴(kuò)散方程(1)的三階條件Lie-B?cklund對(duì)稱特征(3).方程(1)的三階條件Lie-B?cklund對(duì)稱特征(3)由線性決定方程(6)確定.繼而方程(1)的解可由基于不變曲面條件(5)和方程相容性的對(duì)稱約化給出.
[1] 馬明書,馬小霞,任禎琴,等.二維變系數(shù)反應(yīng)擴(kuò)散方程的緊交替方向差分格式[J].信陽(yáng)師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2009,22(1):21-24.
[2] 李偉,張金良.Klein-Gordon-Schr?dinger 方程組的精確解[J].河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,35(6):84-87.
[3] 楊曉佳,葛永斌.求解一維擴(kuò)散方程的一種高精度緊致差分方法[J].鄭州大學(xué)學(xué)報(bào)(理學(xué)版),2016,48(1):10-16.
[4] ZHDANOV R Z, Conditional Lie-B?cklund symmetry and reduction of evolution equation[ J].Journal of physics a general physics, 1998,28(13):1-4.
[5] FOKAS A S, LIU Q M. Nonlinear interaction of traveling waves of nonintegrable equations[J]. Phsical review letters,1994,72(21):3293-3296.[6] LI J. Conditional Lie-B?cklund symmetries and solution of inhomogeneous nonlinear diffusion equations[J]. Physica a statistical mechanics and its applications,2010,389(24):5655-5661.
[7] WANG F,LI J. Conditional Lie-B?cklund symmetries and functionally separable solution of the generalized inhomogeneous nonlinear diffusion equation[J]. Physica a statistical mechanics and its applications,2013,392(4):618-627.
[8] QU C Z, JI L N. Invariant subspaces and conditional Lie-B?cklund symmetries of inhomogeneous nonlinear diffusion equations[J]. Science China mathematics, 2013,56(11):2187-2203.
[9] KUNZINGER M, POPOVYCH R O, Generalized conditional symmetries of evolution equations[J]. Journal of mathematical analysis and applications, 2011,379(1):444-460.
[10] 任金蓮,蔣濤,朱瑩.一種改進(jìn)的有限點(diǎn)集發(fā)模擬高階非線性動(dòng)力學(xué)問(wèn)題[J].揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,18(3):20-23.
(責(zé)任編輯:方惠敏)
Third-order Conditional Lie-B?cklund Symmetries and Differential Constraits of Inhomogeneous Nonlinear Diffusion Equations
SUN Chengjin, ZHANG Jianjun, WANG Songyu
(CollegeofInformationandManagement,HenanAgriculturalUniversity,Zhengzhou450002,China)
The inhomogeneous nonlinear diffusion equations were studied by using the method of linear determining equations. The inhomogeneous nonlinear diffusion equations, which admit of third-order conditional-Lie-B?cklund symmetries and differential constraints were identified. As a consequence, the exact solutions of the resulting equations were constructed through symmetry reductions due to the compatibilities of the invariant surface condition and the governing equation.
inhomogeneous nonlinear diffusion equation; conditional Lie-B?cklund symmetry; differential constraint; linear determining equation
2016-06-02
國(guó)家自然科學(xué)基金聯(lián)合基金資助項(xiàng)目(U1204104);河南省高等學(xué)校重點(diǎn)科研基金資助項(xiàng)目(15A110028); 河南省教育廳重點(diǎn)基金資助項(xiàng)目(13A210485).
孫成金(1978—),男,山東臨沂人,講師,主要從事微分方程及應(yīng)用研究,E-mail:chjsun@henau.edu.cn.
孫成金,張建軍,汪松玉.非齊次非線性擴(kuò)散方程的三階條件Lie-B?cklund對(duì)稱和微分約束[J].鄭州大學(xué)學(xué)報(bào)(理學(xué)版),2016,48(4):20-22.
O175.29
A
1671-6841(2016)04-0020-03
10.13705/j.issn.1671-6841.2016634