談明軒 朱筱敏 耿名揚 劉常妮
(1.中國石油大學(北京)地球科學學院 北京 102249;2.中國石油大學(北京)油氣資源與探測國家重點實驗室 北京 102249;3.中海油研究總院 北京 100028)
?
沉積物重力流流體轉(zhuǎn)化沉積—混合事件層
談明軒1,2朱筱敏1,2耿名揚3劉常妮1,2
(1.中國石油大學(北京)地球科學學院 北京 102249;2.中國石油大學(北京)油氣資源與探測國家重點實驗室 北京 102249;3.中海油研究總院 北京 100028)
隨著濁流和碎屑流理論體系日臻成熟,重力流的流體轉(zhuǎn)化過程逐漸受到重視,而與其相關(guān)聯(lián)的混合事件層概念也應運而生?;旌鲜录邮菃未嗡樾剂骰驖崃髁黧w轉(zhuǎn)化中的沉積記錄,是多種流變學特征的垂向沉積組合。典型混合事件層沉積序列具有五段式的特征(即純凈砂巖段H1、條帶狀砂巖段H2、黏性碎積巖段H3、波狀層理段H4、塊狀泥巖段H5),其內(nèi)部通常存在巖性突變界面?;旌鲜录影l(fā)育于粗粒三角洲內(nèi)部、海底扇和水道與舌狀體過渡區(qū)、舌狀體側(cè)緣、遠端及限制性的微型盆地邊緣地區(qū),其垂向疊置厚度可達數(shù)十米?;旌鲜录拥陌l(fā)現(xiàn)對重力流流體轉(zhuǎn)化、重力流沉積物空間流變學性質(zhì)研究具有重要意義,同時也推動了油氣儲層構(gòu)型和非均質(zhì)性研究,為進一步尋找深水有利儲集砂體提供了新思路?;旌蠈拥厍蛭锢碜R別方法的建立及其相關(guān)概念在湖泊重力流研究中的靈活應用將是下一步的研究方向。
混合事件層 流體轉(zhuǎn)化 濁流 碎屑流 流變學
自Kuenen和Migliorini于1950年聯(lián)合發(fā)表“作為遞變層理成因的濁流”一文以來,沉積物重力流始終是沉積學的研究熱點[1]。Bouma[2]所建立的經(jīng)典濁積巖Bouma序列成為目前沿用最廣泛的濁流沉積識別標志。半個世紀以來,濁流理論體系逐漸豐富和完善。Stowetal.[3]對Bouma序列的Tc-Te段的巖相精細描述,提出細粒濁積巖的沉積序列。Lowe[4-5]按照沉積物的粒度、顆粒濃度以及沉積物支撐機制將濁流劃分為3類:低密度濁流、砂質(zhì)高密度濁流和礫質(zhì)高密度濁流。Massari[6],Mutti[7]進一步細化了高密度濁積巖的沉積序列。Postma[8]借助水槽實驗解釋高密度濁流層內(nèi)漂浮碎屑的成因。Sohn[9]提出5種典型的牽引毯沉積類型,Cartignyetal.[10]在水槽實驗的基礎(chǔ)上對牽引毯的類型進行簡化。Postmaetal.[11-13]進一步探尋濁流的流態(tài),嘗試利用超臨界流水躍的現(xiàn)象解釋高密度濁積巖的巖相發(fā)育特征。然而有些沉積學家過分夸大了濁流理論的適用范圍,嘗試利用濁流理論解釋所有重力流的沉積現(xiàn)象,使?jié)崃骼碚撝饾u達到瓶頸期。
與此同時,水下碎屑流理論體系的進展也驅(qū)動著以Shanmugam、Mulder和Talling為代表的沉積學家對一些特殊的沉積現(xiàn)象(如塊狀砂巖、漂浮狀碎屑和反遞變層理等)展開深入研究[14-20]。其中,Shanmugam[21]認為流變學理論無法解釋高密度濁流的成因機理,故而把高密度濁流割裂為砂質(zhì)碎屑流、濁流兩部分。他還對Bouma序列的合理性提出了質(zhì)疑,指出只有Ta段才符合濁流的紊流沉積特征,紊流和層流之間不存在過渡性流體[15,22-23]。近年來,他甚至提出砂質(zhì)碎屑流理論完全可以用來解釋Bouma序列所有層段的成因[24]。但是,這種相對偏執(zhí)的理論認識似乎也過于絕對。
隨著國內(nèi)外學者開始從水動力學角度探究重力流的沉積特征,很多人逐漸意識到不能形而上地將大多數(shù)重力流劃分為濁流和碎屑流兩方面,二者之間實質(zhì)上存在連續(xù)性變化的過程[25-27]。起初,F(xiàn)isher[28],Smithetal.[29]提出“流體轉(zhuǎn)化”(Flow Transformation)的概念用以表述火山泥石流的流體性質(zhì)變化過程,二十世紀末這個概念被引入到水下重力流的研究中。過去幾十年里,許多學者借用水槽實驗、數(shù)值模擬的方法對其流體轉(zhuǎn)化機理不斷探索與求證,取得了豐碩的成果[30-36]。然而,能夠完整反映流體轉(zhuǎn)化的露頭沉積卻是極為少見的[37]。另外,在過去露頭構(gòu)型剖析過程中,研究人員只是在不同觀測點將相對孤立的沉積現(xiàn)象進行對比,以期獲取流體轉(zhuǎn)化的間接證據(jù)[38]。但是,他們卻忽略了單次重力流在同一位置存在多種沉積組合,而這種沉積組合在空間上又富有變化[39]。近年來,隨著大洋鉆探計劃(IODP)的深入實施以及激光掃描技術(shù)(LIDAR)在數(shù)字露頭中廣泛應用,使得深水柱樣精細對比與野外露頭精細刻畫成為可能,也促使了與流體轉(zhuǎn)化相關(guān)的混合事件層的發(fā)現(xiàn)。
混合事件層(Hybrid Event Bed,簡稱HED),又稱混合層(Hybrid Bed),其概念首次由Haughtonetal.[39]提出?;旌鲜录邮怯赏谥亓α魇录练e形成的、成因上存在相互關(guān)聯(lián)的濁積巖和碎積巖(Debrites)組合,本質(zhì)上是在流體轉(zhuǎn)化作用下單次重力流能夠在不同時間內(nèi)在垂向上形成濁積巖、碎積巖的沉積組合。單次重力流在流體轉(zhuǎn)化過程中流變學性質(zhì)發(fā)生改變,因此其沉積物在垂向上表現(xiàn)為巖性、結(jié)構(gòu)及沉積構(gòu)造突變。當然,多期重力流事件通過流體轉(zhuǎn)化形成的沉積產(chǎn)物也可表現(xiàn)為多期疊置的特征,同時在空間上具備相當?shù)囊?guī)模?;旌鲜录釉谏钏练e中廣泛分布[39-41],并對于深水儲層非均質(zhì)性以及有利巖性圈閉分布具有重要的影響[42-44]。
混合事件層概念的提出主要源自于Bouma序列在應用研究中的局限性。Ricci Lucchietal.[45-46]在多個典型深水沉積露頭中發(fā)現(xiàn)了質(zhì)純砂巖、雜砂巖和泥巖的三重結(jié)構(gòu),然而Bouma序列不能完整地涵蓋這種三重結(jié)構(gòu),故將其定名為“三明治層”(Sandwiched beds),從此成為了混合層研究的開端。Sohn[47]在韓國浦項盆地中新世扇三角洲沉積中發(fā)現(xiàn)了濁流與碎屑流沉積的特殊疊置樣式,他認為這種樣式是無滑水作用的碎屑流(Nonhydroplaning debris flow)流體轉(zhuǎn)化沉積所致。McCaffreyetal.[42]在解剖法國西南部Annot深水露頭中也發(fā)現(xiàn)了這種“三明治層”沉積。Haughtonetal.[43]在北海盆地上侏羅統(tǒng)海底扇研究過程中,將扇體中雜砂巖部分解釋為“相關(guān)聯(lián)的碎積巖”(Linked Debrites)。Tallingetal.[48-50]、Amyetal.[51-52]把意大利Marnoso Arenacea前陸盆地Marnoso Arenacea組中類似的沉積物稱之為“聯(lián)生碎積巖”(Co-genetic Debrites)。Tallingetal.[40]首次報道了西北非近海中單次流動距離達1 500 km的混合重力流,這種重力流沉積中發(fā)育“聯(lián)生碎積巖”,并認為這種流體是由濁流轉(zhuǎn)化而來。這項成果在頂級學術(shù)刊物Nature刊出后,即受到沉積學界廣泛關(guān)注。Haughtonetal.[39]、Talling[41]綜合多地深水沉積的相關(guān)研究,提出了混合事件層的“五段式”正韻律沉積序列,進一步豐富了混合重力流的轉(zhuǎn)化過程,對混合事件層的沉積序列和形成環(huán)境進行深入研究。Tallingetal.[53]總結(jié)近幾十年重力流相關(guān)成果,提出濁流所產(chǎn)生的紊流抑制作用(Turbulence Damping)是促進流體轉(zhuǎn)化、形成混合事件層的重要原因。
近年來與混合層相關(guān)的沉積物理模擬研究同樣成果卓著。Amyetal.[54]在不同砂泥含量流體的靜置懸浮實驗中證實了細微泥質(zhì)含量變化對形成混合層的重要影響。Sumneretal.[55]通過不同黏土含量重力流的水槽實驗對多種混合層的成因進行了驗證。Baasetal.[56-57]將不同黏土含量流體定義了多種過渡流類型,重點研究了其垂向流變學結(jié)構(gòu),據(jù)此對濁流減速形成混合層的可能性展開討論。
混合層沉積反映了單次碎屑流或濁流轉(zhuǎn)化所形成的沉積物,因此具有十分獨特的沉積組合。Haughtonetal.[39]、Talling[41]提出了混合層沉積序列,對不同層段進行巖相描述和解釋。整體上混合層表現(xiàn)為典型的正韻律特征,與Bouma層序頗為相似,主體上由五段式組成(圖1)。然而濁流部分以懸浮遞變沉積為主,而碎屑流部分則以塊狀凍結(jié)沉積為主,因此單次流體所形成的混合層其內(nèi)部層段通常存在明顯的巖性突變界面。
2.1 純凈砂巖段(H1)
H1段通常為相對純凈的中細砂巖(雜基含量一般小于5%),分選相對較好,具有塊狀層理或者正遞變層理,偶見漂浮泥礫,有時可見泄水構(gòu)造、碟狀構(gòu)造等同生變形構(gòu)造,單層沉積厚度為0.1~1.0 m[41,43]。純凈砂巖段一般是由流體轉(zhuǎn)化所成的濁流沉積,因此巖相特征類似于Bouma層序Ta段。此外,中等黏度碎屑流或弱黏度碎屑流也能形成質(zhì)純砂巖H1段,但其沉積厚度較薄[41,52,55,58]。
2.2 條帶狀砂巖段(H2)
H2段通常為明暗相間的砂巖或砂泥巖互層?;由澳鄮r中同生剪切變形較為發(fā)育,整體上呈波浪起伏的條帶狀[59-60],其厚度通常為0.01~0.5 m[41]。其中,暗色部分巖性為泥質(zhì)粉砂巖、粉砂質(zhì)泥巖,黏土礦物、云母類礦物以及含量較高的碳質(zhì)碎屑,以雜基支撐為主,成層性較差[61]。而淺色部分則是相對純凈的細砂巖、粉砂巖,泥質(zhì)含量較低,底部呈不規(guī)則接觸,頂部則為突變接觸[39,59,62]。
H2段的確定為濁流與碎屑流轉(zhuǎn)化過程中過渡性流體的存在提供了可能性。Loweetal.[59]、Blackbournetal.[61]最初借用化工術(shù)語“漿狀流”(Slurry Flow)對具有過渡流變學性質(zhì)的重力流進行了闡釋。Loweetal.[59]也嘗試用過渡性流體的周期性沉積過程來解釋這種互層現(xiàn)象,Baasetal.[57,63]則認為是這種流體對下伏砂巖層沖刷混雜沉積所致。其中,條帶狀起伏特征可能與紊流所產(chǎn)生的Kelvin-Helmholtz不穩(wěn)性波效應有關(guān)。
圖1 混合事件層理想沉積序列特征(據(jù)Haughton et al.[39])Fig.1 Ideal sedimentary sequence of a hybrid event bed (after Haughton et al.[39])
2.3 黏性碎積巖段(H3)
黏性碎積巖段(H3)主要為(黏土)雜基支撐細砂巖、細粒雜砂巖,甚至細砂質(zhì)泥巖,雜基含量相對較高(一般大于10%)[41]。不同地區(qū)發(fā)現(xiàn)的混合層中H3段巖相特征是存在差異的,大體可分為三種類型。一種是富含有機質(zhì)的塊狀雜砂巖,一種是富含粒度大小不一的泥礫、泥巖撕裂屑或砂質(zhì)團塊的雜砂巖,另外一種是不含泥質(zhì)碎屑的塊狀雜砂巖、砂質(zhì)泥巖。三種具有不同巖相特征的黏性碎積巖厚度變化范圍較大,平均厚度為0.2 m,實質(zhì)上反映了多種混合層的發(fā)育機制[39,43]。H3段常為黏性碎屑流塊狀凍結(jié)沉積而成,因而其在結(jié)構(gòu)上分選相對較差。
2.4 波紋層理段(H4)和塊狀泥巖段(H5)
H4段主要為粉細砂巖,具有波狀交錯層理、爬升波紋層理及水平層理,沉積厚度相對較薄。H4段主要由低密度濁流向牽引流轉(zhuǎn)化過程中沉積所成。最頂部為塊狀泥巖段(H5),一般由泥質(zhì)顆粒懸浮沉積所成。
總而言之,典型混合層沉積序列純凈砂巖段(H1)對應Bouma序列底部遞變層段(Ta),波狀層理段(H4)對應流水紋層段(Tc)和上平行紋層段(Td),塊狀泥巖段(H5)對應深水泥巖段(Te)。然而條帶狀砂巖段(H2)與黏性碎積巖段(H3)的發(fā)育反映了不同流體轉(zhuǎn)化過程中表現(xiàn)出的過渡性特征,也是混合事件層序列與Bouma序列最為明顯的差異。
通常情況下,混合層沉積序列發(fā)育不完整[64]。其中H1段、H3段和H5段垂向組合較為常見,這三種層段的常規(guī)組合成為了混合事件沉積的主要識別標志。H4段則是間或發(fā)育,而H2段就更為少見。筆者在觀察乍得Bongor盆地北斜坡帶下白堊統(tǒng)Prosopis組巖芯時發(fā)現(xiàn)了具有不完整沉積序列的混合事件層(圖2)。通過沉積相綜合分析表明,該混合層沉積主要發(fā)育于湖底扇中扇前緣微相。
混合事件層的形成與碎屑流和濁流相互轉(zhuǎn)化有關(guān)。最近十年,諸多學者對于混合層成因機制進行了深入研究,取得了豐碩的成果??偟膩碚f,混合層的形成既可以由單次碎屑流轉(zhuǎn)化形成,也可以由單次濁流轉(zhuǎn)化形成[43-44,55]。
3.1 單次碎屑流的流體轉(zhuǎn)化
在深水沉積環(huán)境中,水下碎屑流在流動過程中不斷稀釋,從而在其上部形成濁流[40,65-67]。后形成的濁流往往比碎屑流的流速更快,在流動中超越了初始碎屑流,在其前端率先產(chǎn)生沉積,因此最終在相對遠源的深水盆地中形成混合層。
實際上,碎屑流的流體轉(zhuǎn)化是一個極其復雜的過程。Breienetal.[58]通過水槽實驗證實了中—低黏土含量碎屑流在水下運動中其體部存在流體化(Fluidization)過程,使其具備了長距離運動的能力。這種流體頭部為紊流部分,體部由于剪切混合作用(shear mixing)呈流體化,尾部仍為層流部分(圖3)。在流體化作用的影響下,其體部的泥質(zhì)沉積物不斷經(jīng)歷淘洗轉(zhuǎn)換向高密度濁流轉(zhuǎn)變,從而沉積形成塊狀砂巖(即H1段)[41]。隨著流體的減速,尾部黏性碎屑流雜基支撐的部分在純凈砂巖之上形成黏性碎屑流沉積(即H3段)。
圖2 乍得Bongor盆地北部斜坡帶下白堊統(tǒng)Prosopis組典型混合事件層巖芯照片a. H1.淺灰色塊狀細砂巖,H3.灰色泥質(zhì)粉砂巖,細小的泥礫、泥巖撕裂屑及砂質(zhì)碎屑呈漂浮狀分布,H5.灰黑色塊狀質(zhì)純泥巖,Baobab N8井,Prosopis組,1 388.15 m;b. H1.淺灰色塊狀細砂巖,見碟狀構(gòu)造,H2.砂巖與泥巖互層呈條帶狀分布,H3.灰色泥質(zhì)粉砂巖,毛刺狀泥礫、砂質(zhì)碎屑呈漂浮狀分布,H5.深灰色粉砂質(zhì)泥巖,水平層理發(fā)育, Daniela-3井,Prosopis組,1 279.6 m;c. H1.灰色粗尾正粒序中細砂巖,H3.灰色泥質(zhì)粉砂巖,見砂質(zhì)團塊成層分布,H5.深灰色塊狀泥巖,Baobab NE-3井,Prosopis組,1 458.5 m。Fig.2 Typical core photographs of hybrid event beds in the Lower Cretaceous Prosopis Formation of northern slope belt in Bongor Basin, Chad
此外,某些弱黏性碎屑流突然減速、甚至流體已經(jīng)停止運動依舊可能率先沉積形成薄層純凈砂巖,即晚期沉降現(xiàn)象(Late-stage Settling)。這種弱黏性碎屑流中的顆粒受到了紊流、黏土基質(zhì)、浮力等多種支撐機制綜合作用。當碎屑流突然減速,紊流支撐能力隨即迅速衰減。由于碎屑流中黏土基質(zhì)產(chǎn)生的屈服強度及浮力作用依然提供部分向上支撐力,使砂質(zhì)顆粒不能迅速沉降下來,顆粒沉積存在一定的滯后性,從而產(chǎn)生了晚期沉降的現(xiàn)象。這種晚期沉降現(xiàn)象使碎屑流中不同粒度的顆粒產(chǎn)生沉積分層的現(xiàn)象,也是混合層的重要成因之一[32,55]。
將文字語言、圖形語言與符號語言這三類幾何語言同步呈現(xiàn),很好地完善了教材的語言系統(tǒng).當然,豐富的幾何語言除了給學生知識外,還能讓學生在充分體會到數(shù)學的嚴謹性的同時,感受到數(shù)學的語言美、圖形美和符號美.
圖3 單次碎屑流事件的流體化及其沉積過程(據(jù)Brien et al.[58])H1.純凈砂質(zhì)沉積部分;H3.雜基支撐砂質(zhì)沉積部分Fig.3 The fluidization and depositional process of a single-period debris flow event (after Brien et al.[58])
3.2 單次經(jīng)典濁流(涌浪型濁流)的流體轉(zhuǎn)化
前人在研究中發(fā)現(xiàn)與單次濁流相關(guān)的流體轉(zhuǎn)化是混合事件層形成最為普遍的成因[39,48]。不同的濁流轉(zhuǎn)化現(xiàn)象均與紊流抑制作用相關(guān):①濁流沖刷下伏泥巖,其對于紊流抑制作用增強,泥質(zhì)顆粒在局部聚集形成次級碎屑流。流速較快的濁流率先沉積,而后碎屑流沉積形成混合層(圖4a)[42-44,68-70];②濁流減速,其紊流支撐能力減弱。在低速狀態(tài)下,泥質(zhì)顆粒對于紊流抑制作用變得更為明顯,致使?jié)崃餍再|(zhì)開始發(fā)生變化,從而在濁流尾部形成黏性碎屑流[63]。濁流在前,碎屑流在后,故而濁流先沉積、碎屑流后沉積形成了混合層沉積(圖4b)[41,57,71]。
Baasetal.[56]在水槽實驗中記錄了具有不同高嶺石含量的重力流水下流動過程,定義了5種類型的重力流:紊流(TF);紊流加強的過渡流(TETF);下過渡塞流(LTPF);上過渡塞流(UTPF);準層狀塞流(QLPF)(圖5)。Sumneretal.[55]在此基礎(chǔ)上發(fā)現(xiàn)了4種不同類型的沉積,其中類型Ⅱ和類型Ⅲ為混合層沉積。因此他們認定在濁流形成碎屑流之前,首先經(jīng)歷了過渡性流體階段。然而,筆者認為這種解釋忽略了兩相混合流體在同一位置沉積具有先后性的特征。這4種不同類型的沉積實質(zhì)上反映了同一位置不同混合層部分形成時的流體性質(zhì),因此該研究實質(zhì)上是為混合層的成因解釋提供了有利的依據(jù)。
初始濁流侵蝕下伏泥巖,濁流中泥質(zhì)含量不斷增加,從而使得濁流不斷向?qū)恿鬓D(zhuǎn)化,形成混合事件層(Ⅱ、Ⅲ型沉積)(圖5箭頭②)。初始濁流不侵蝕發(fā)育泥巖,即濁流中泥質(zhì)含量不變的情況下,隨著濁流緩慢減速,濁流紊流支撐能力逐漸減弱,形成混合層(Ⅲ型沉積)(圖5箭頭①)。
圖4 初始濁流轉(zhuǎn)化形成碎屑流的主要成因模式(據(jù)Talling et al.;李云等[26,48])a.初始濁流侵蝕下伏泥巖生成碎屑流;b.初始濁流減速生成碎屑流Fig.4 The predominate formation models of initial turbidity current transforming into debris flow (after Talling et al., 2004; Li Yun et al.[26, 48])
圖5 不同高嶺石含量的流體性質(zhì)變化及沉積類型模式圖(據(jù)Baas et al.;Sumner et al.[55-56])Fig.5 The ideal fluid properties and depositional categories diagram with different content of kaolinite (after Baas et al.; Sumner et al.[55-56])
混合層形成也可能與深水濁流的改道有關(guān)。斜坡濁流水道改道或濁流流經(jīng)水道—舌狀體過渡區(qū),限制性濁流向非限制性濁流轉(zhuǎn)變,線性流動形式向平面噴流形式轉(zhuǎn)變,進而產(chǎn)生水躍、侵蝕下伏海底泥巖,由超臨界濁流向亞臨界濁流轉(zhuǎn)變,從而形成混合層沉積[13,72]。
3.3 單次異重流(持續(xù)型濁流)的流體轉(zhuǎn)化
異重流是一種與河口相連、密度大于周圍水體(湖泊或海洋)沿水底流動的負浮力流體[73-75]。異重流本質(zhì)上是一種持續(xù)型濁流,在流動過程中也具有向碎屑流轉(zhuǎn)化的可能性。盡管其流體規(guī)模、長距離流動的能力及流體轉(zhuǎn)化機理目前仍然存在較大的爭議[18,44,76],然而在應用研究中還是不能忽略這種可能性。
Girard等(2012)在研究利比亞Murzuq盆地奧陶系異重巖露頭時發(fā)現(xiàn)了混合事件層沉積,同時認為這種沉積與異重流增強階段侵蝕下伏泥巖相關(guān)[77]。這也進一步說明異重流的流體轉(zhuǎn)化與涌浪型濁流具有相似性。海洋異重流中顆粒間充滿淡水,密度的差異會使異重流在遠端產(chǎn)生上浮現(xiàn)象(Loft)。這種上浮現(xiàn)象使得異重流產(chǎn)生分層效應[73,78-79]。其下部為紊流性質(zhì)、顆粒較粗的砂質(zhì)濁流,上部為層流性質(zhì)、泥質(zhì)含量更高、粒度較細的黏性碎屑流,因此能夠形成由同期異重流所形成的混合層[80-81]。
圖6 委內(nèi)瑞拉盆地下漸新統(tǒng)陸棚異重巖以混合事件層概念的新解釋(原露頭照片據(jù)Zavala et al.[79]) H1.灰色塊狀細砂巖,表面被氧化;H2.淺灰色粉砂巖與深灰色粉砂質(zhì)泥巖互層;H3.灰色塊狀泥質(zhì)粉砂巖,富含植物碎屑;H4.灰色泥質(zhì)粉砂巖,見小型交錯層理。Fig.6 The alternative hybrid event bed interpretation for hyper-pycnites in the Upper Oligocene shelfal deposits, Venezuela Basin (The original outcrop image after Zavala et al.[79])
當然,濁流在深水斜坡水道中流動,其負載作用會促使斜坡邊緣與上斜坡沉積物失穩(wěn)滑塌,進一步形成次級碎屑流,因而能在近源環(huán)境中形成具有類似于混合層的多層段沉積[42,82]。筆者認為這種沉積現(xiàn)象與沉積物重力流自身的流體轉(zhuǎn)化無關(guān),故在此不作過多探討。
3.4 不同成因形成混合層的差異
不同成因所形成的混合層其巖相特征、垂向組合均存在差異。H1~H5段也不是同時發(fā)育,進一步對比發(fā)現(xiàn)不同層段發(fā)育特征也有所不同,因此呈現(xiàn)多樣化的混合層沉積序列。結(jié)合前人研究,筆者將不同流體轉(zhuǎn)化所形成的混合層各層段與巖相發(fā)育差異具體總結(jié)為下表(表1)。
4.1 混合層的垂向發(fā)育特征
通過前人對于多個盆地發(fā)育的混合層事件層統(tǒng)計,單次流體事件所形成的混合層厚度最薄為0.05 m,最厚可達10 m,其中絕大多數(shù)混合層厚度為1~2 m,反映了單次流體轉(zhuǎn)化的沉積過程。而在混合層極為發(fā)育的扇體中多期混合層垂向疊置厚度可達數(shù)十米[39,41]。單次流體形成的混合層在不同位置各層段厚度不同,但主體上沉積厚度向盆地方向減小,碎積巖部分向盆地方向尖滅,從而由混合層過渡為濁積巖(圖7)。
4.2 混合層發(fā)育的沉積環(huán)境
與碎屑流轉(zhuǎn)化相關(guān)的混合層沉積通常發(fā)育于近源粗粒三角洲(即扇三角洲、近岸水下扇)沉積中,與陸源碎屑流直接入水后不斷稀釋和轉(zhuǎn)化相關(guān)[47]。在深水沉積環(huán)境中,斜坡失穩(wěn)或者三角洲前緣滑塌形成的碎屑流也會發(fā)生流體轉(zhuǎn)化,一般在海底扇遠端形成混合層沉積。這可能與流體較強的流動能力及過路不沉積有關(guān)[44]。
與濁流和異重流轉(zhuǎn)化相關(guān)的混合層沉積通常發(fā)育于海底扇、舌狀體的側(cè)緣或者遠端非水道等非限制性環(huán)境中(圖7a,b)[39,48,83]。而海底水道側(cè)緣、水道—舌狀體的過渡區(qū)域也存在混合層發(fā)育的可能性[72]。與此同時,限制性內(nèi)斜坡和海底負向地貌致使?jié)崃髑治g、減速、拐彎或者折回,均會促使紊流性質(zhì)減弱,繼而產(chǎn)生次級碎屑流,最終形成混合重力流沉積(圖7c,d)[69,84-87]。
表1 不同類型重力流流體轉(zhuǎn)化形成混合事件層的層段與巖相特征差異
圖7 混合事件層的縱向相變及其綜合沉積模式(據(jù)Terlaky et al.[72])a.非限制性環(huán)境中單期混合層的縱向巖相變化;b.非限制性環(huán)境中多期混合層疊置沉積模式;c.限制性環(huán)境中單期混合層的縱向巖相變化;d.限制性環(huán)境中多期疊置混合層沉積模式Fig.7 Longitudinal facies variation and integrated depositional models of hybrid event beds (after Terlaky et al.[72])
5.1 混合層的沉積學意義
混合事件層的發(fā)現(xiàn)為具有碎屑流和濁流雙重沉積特征的流體轉(zhuǎn)化沉積提供了更為合理的成因解釋,同時也極大推動了重力流的流變學、流體轉(zhuǎn)化及沉積過程等研究的發(fā)展。為更好解釋混合事件沉積的成因機理,多種濁流與碎屑流的轉(zhuǎn)化模式不斷提出和完善,大量水槽模擬實驗針對流體轉(zhuǎn)化過程進行了可行性論證。與混合層相關(guān)的混合重力流或過渡性重力流也逐漸被人們所熟知,通過現(xiàn)代海底監(jiān)測發(fā)現(xiàn)其在深水盆地具有較強的流動能力,其流動距離長達成百甚至上千公里[40-41]。
混合層的形成常與海底扇體的形成、陸坡不均衡狀態(tài)以及海底復雜的地貌特征相關(guān)[39]。因此對于混合層沉積特征、平面展布以及垂向疊置樣式研究對于研究海底扇沉積演化、陸坡均衡狀態(tài)的轉(zhuǎn)變以及深水限制性重力流的沉積過程均有重要的意義。
5.2 混合層的油氣意義
混合事件層H1段純凈砂巖雜基含量低,物性相對較好,可作為良好的油氣儲層[88]。而H3段雜砂巖因其黏土質(zhì)雜基含量高、物性相對較差,因此通常形成儲層間的隔層[89-90]?;旌蠈訌V泛分布于海底扇遠端的沉積環(huán)境中,因此混合事件層的發(fā)現(xiàn)有利于進一步擴大深水油氣勘探范圍。例如,北海油田中部古近系海底扇、墨西哥灣油田古近系Wilcox組海底扇所發(fā)育的混合層均是目前主力產(chǎn)層[62,83]。通過混合事件層的發(fā)育位置、幾何形態(tài)特征的研究,結(jié)合多井精細對比,能夠表征和刻畫深水儲層的非均質(zhì)性,從而達到預測有利砂體的目的。
墨西哥灣盆地許多深水油氣儲層也發(fā)育于其北斜坡的一系列鹽底辟作用形成的微型盆地中[69,91]。當濁流進入這種限制性盆地中,在盆地邊緣通常能夠形成混合事件層沉積。因此對于限制性盆地中混合層形態(tài)與規(guī)模的精細研究,為其邊緣尋找有利油氣儲層提供有利的依據(jù)。此外,混合事件層發(fā)育樣式、巖石學、物性特征以及空間發(fā)育形態(tài)對于油氣藏采收率、波及系數(shù)也有著重要影響,因此近年來也逐漸受到了油藏工程師的重視[88]。
5.3 未來研究方向
混合事件層的發(fā)現(xiàn)對于流體轉(zhuǎn)化機制的研究具有深遠的影響,同時開創(chuàng)了深水重力流的空間流變學差異性研究先河。但是,目前仍需要大量深水柱樣和野外露頭證據(jù)實例證明其存在的普遍性,并結(jié)合水槽實驗、數(shù)值模擬對不同成因解釋進一步驗證。此外,應當建立地球物理資料識別混合事件層的技術(shù)方法。
目前我國在混合層研究方面仍然是一片空白,流體轉(zhuǎn)化機制相關(guān)研究也較為匱乏。根據(jù)混合層沉積特征和發(fā)育位置,筆者認為其在陸相湖盆重力流沉積體系中也具備有利的形成條件。在以往的研究過程中,我們通?;\統(tǒng)地把巖性突變界面上下的沉積物分開研究,認為它們屬于不同的重力流事件。然而,它們完全可能是同期流體事件在流體轉(zhuǎn)化作用下形成的不同性質(zhì)的沉積物。這需要我們通過精細巖芯觀察、多井小層對比,對重力流巖相特征進行重新認識?;旌蠈涌臻g展布對于湖泊濁積砂體、扇三角洲與近岸水下扇遠端儲層構(gòu)型特征、重力流砂體連通性具有重要的影響,同時也為湖泊重力流的流體轉(zhuǎn)化、沉積過程及重力流成因的新解釋提供了新思路。
(1) 混合事件層是與單次重力流的流體轉(zhuǎn)化相關(guān)的沉積產(chǎn)物。其沉積序列類似于濁積巖的Bouma序列,具有正韻律的特征,主要由“五段式”組成,即純凈砂巖段(H1)、條帶狀砂巖段(H2)、黏性碎積巖段(H3)、波紋層理段(H4)以及塊狀泥巖段(H5),但一般發(fā)育不完整?;旌蠈觾?nèi)部通常存在明顯的巖性界面,反映了同期流體在流體轉(zhuǎn)化過程中流變學性質(zhì)發(fā)生改變,其中塊狀(或遞變層理)砂巖(H1)、(黏土)雜基支撐的塊狀雜砂巖(H3)以及塊狀泥巖(H5)的垂向巖相組合是混合事件層的重要識別標志。
(2) 與碎屑流相關(guān)的流體轉(zhuǎn)化中,一次碎屑流事件可在流動過程中稀釋(或流體化)或突然減速形成混合層沉積。與濁流相關(guān)的流體轉(zhuǎn)化中,一次濁流事件在流動過程中可通過侵蝕下伏泥巖、流體逐漸減速或者流體改道作用等多種因素形成混合層沉積。不同成因形成的混合事件層其沉積特征存在差異。
(3) 混合事件層發(fā)育于重力流為主的扇三角洲內(nèi)部、海底扇和水道與舌狀體過渡區(qū)、舌狀體側(cè)緣、遠端及限制性微型盆地的邊緣地區(qū)。單期混合層的厚度一般為1~2 m,而多期混合層垂向疊置厚度可則達數(shù)十米。
(4) 混合事件層研究能夠豐富和完善重力流流體轉(zhuǎn)化過程、重力流沉積物空間流變學性質(zhì),為沉積物重力流流體轉(zhuǎn)化沉積提供更為準確的成因解釋。同時其相關(guān)研究也進一步推動了儲層表征和非均質(zhì)性研究,為深水油氣勘探開發(fā)提供了新思路。
致謝 筆者在撰寫此文之前,曾向利茲大學地球與環(huán)境學院的William McCaffrey教授請教混合事件層成因的相關(guān)問題,受益良多。在此對他的慷慨幫助和悉心指導特表感謝!
References)
1 Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
2 Bouma A H. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation[M]. Amsterdam: Elsevier, 1962: 168.
3 Stow D A V, Shanmugam G. Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42.
4 Lowe D R. Sediment gravity flows: their classification and some problems of application to natural flows and deposits[C]//Doyle L J, Pilkey O H. Geology of Continental Slopes. Tulsa: Society of Economic Paleontologists and Mineralogists Special Publication, 1979, 27: 75-82.
5 Lowe D R. Sediment gravity flows; II, depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
6 Massari F. Resedimented conglomerates of a Miocene fan-delta complex, Southern Alps[M]//Koster E H, Steel R J. Sedimentology of Gravels and Conglomerates. Italy: CSPG Special Publications, 1984, 10: 259-278.
7 Mutti E, Tinterri R, Benevelli G, et al. Deltaic, mixed and turbidite sedimentation of ancient foreland basins[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 733-755.
8 Postma G, Nemec W, Kleinspehn K L. Large floating clasts in turbidites: a mechanism for their emplacement[J]. Sedimentary Geology, 1988, 58(1): 47-61.
9 Sohn Y K. On traction-carpet sedimentation[J]. Journal of Sedimentary Research, 1997, 67(3): 502-509.
10 Cartigny M J B, Eggenhuisen J T, Hansen E W M, et al. Concentration-dependent flow stratification in experimental high-density turbidity currents and their relevance to turbidite facies models[J]. Journal of Sedimentary Research, 2013, 83(12): 1046-1064.
11 Postma G, Cartigny M , Kleverlaan K. Structureless, coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current?[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 1-6.
12 Postma G, Kleverlaan K, Cartigny M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences and consequences for the Bouma facies model[J]. Sedimentology, 2014, 61(7): 2268-2290.
13 Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits: a synthesis[J]. Geology, 2014, 42(11): 987-990.
14 Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
15 Shanmugam G. Deep-water processes and facies models: implications for sandstone petroleum reservoirs[M]. Amsterdam: Elsevier, 2006: 476.
16 李林,曲永強,孟慶任,等. 重力流沉積:理論研究與野外識別[J]. 沉積學報,2011,29(4):677-688. [Li Lin, Qu Yongqiang, Meng Qingren, et al. Gravity flow sedimentation: theoretical studies and field identification[J]. Acta Sedimentologica Sinica, 2011, 29(4): 677-688.]
17 Shanmugam G. New Perspectives on Deep-Water Sandstones[M]. Amsterdam: Elsevier, 2012: 1-488.
18 Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
19 Talling P J, Malgesini G, Felletti F. Can liquefied debris flows deposit clean sand over large areas of sea floor? Field evidence from the Marnoso-arenaccea Formation, Italian Apennines[J]. Sedimentology, 2013, 60(3): 720-762.
20 鮮本忠,安思奇,施文華. 水下碎屑流沉積:深水沉積研究熱點與進展[J]. 地質(zhì)論評,2014,60(1):39-51. [Xian Benzhong, An Siqi, Shi Wenhua. Subaqueous debris flow: hotspots and advances of deep-water sedimention[J]. Geological Review, 2014, 60(1): 39-51.]
21 Shanmugam G. High-density turbidity currents; are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10.
22 Shanmugam G. The Bouma Sequence and the turbidite mind set[J]. Earth-Science Reviews, 1997, 42(4): 201-229.
23 Shanmugam G. Ten turbidite myths[J]. Earth-Science Reviews, 2002, 57(3/4): 311-341.
24 Shanmugam G. Transport mechanisms of sand in deep-marine environments: insights based on laboratory experiments-discussion[J]. Journal of Sedimentary Research, 2011, 81(11): 841.
25 Dasgupta P. Sediment gravity flow-the conceptual problems[J]. Earth-Science Reviews, 2003, 62(3/4): 265-281.
26 李云,鄭榮才,朱國金,等. 沉積物重力流研究進展綜述[J]. 地球科學進展,2011,26(2):157-165. [Li Yun, Zheng Rongcai, Zhu Guojin, et al. Reviews on sediment gravity flow[J]. Advances in Earth Science, 2011, 26(2): 157-165.]
27 李存磊,任偉偉,唐明明. 流體性質(zhì)轉(zhuǎn)換機制在重力流沉積體系分析中應用初探[J]. 地質(zhì)論評,2012,58(2):285-296. [Li Cunlei, Ren Weiwei, Tang Mingming. Preliminary study on gravity flow depositional system based on fluid properties conversion theory[J]. Geological Review, 2012, 58(2): 285-296.]
28 Fisher R V. Flow transformations in sediment gravity flows[J]. Geology, 1983, 11(5): 273-274.
29 Smith G A, Lowe D R. Lahars: volcano-hydrologic events and deposition in the debris flow-hyperconcentrated flow Continuum[C]//Fisher R V, Smith G A. Sedimentation in Volcanic Settings. Italy: SEPM Special Publication, 1991: 1-5.
30 Hampton M A. The role of subaqueous debris flow in generating turbidity currents[J]. Journal of Sedimentary Research, 1972, 42(4): 775-793.
31 Al-Siyabi H A. Sedimentology and stratigraphy of the early Pennsylvanian Upper Jackfork interval in the Caddo valley quadrangle, Clark and Hot Spring counties, Arkansas[D]. Golden, Colorado: Colorado School of Mines, 1998: 272.
32 Marr J G, Harff P A, Shanmugam G, et al. Experiments on subaqueous sandy gravity flows: the role of clay and water content in flow dynamics and depositional structures[J]. Geological Society of America Bulletin, 2001, 113(11): 1377-1386.
33 Mohrig D, Marr J G. Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 883-899.
34 Waltham D. Flow transformations in particulate gravity currents[J]. Journal of Sedimentary Research, 2004, 74(1): 129-134.
35 Felix M, Peakall J. Transformation of debris flows into turbidity currents: mechanisms inferred from laboratory experiments[J]. Sedimentology, 2006, 53(1): 107-203.
36 Felix M, Leszczyński S,laczka A, et al. Field expressions of the transformation of debris flows into turbidity currents, with examples from the Polish Carpathians and the French Maritime Alps[J]. Marine Petroleum Geology, 2009, 26(10): 2011-2020.
37 Weimer P, Slatt R M. Introduction to the petroleum geology of deepwater setting[M]. AAPG Studies in Geology No. 57. American Association of Petroleum Geologists, 2007: 111.
38 Remacha E, Fernandez L P. High-resolution correlation patterns in the turbidite systems of the Hecho Group (South-Central Pyrenees, Spain)[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 711-726.
39 Haughton P, Davis C, McCaffrey W, et al. Hybrid sediment gravity flow deposits-Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918.
40 Talling P J, Wynn R B, Masson D G, et al. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 2007, 450(7169): 541-544.
41 Talling P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488.
42 McCaffrey W, Kneller B. Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation[J]. AAPG Bulletin, 2001, 85(6): 971-988.
43 Haughton P D W, Barker S P, McCaffrey W D. “Linked” debrites in sand-rich turbidite systems-origin and significance[J]. Sedimentology, 2003, 50(3): 459-482.
44 Hodgson D M. Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa[J]. Marine and Petroleum Geology, 2009, 26(10): 1940-1956.
45 Ricci Lucchi F. Turbidite dispersal in a Miocene deep-sea plain: the Marnoso Arenacea of the northern Apennines[J]. Geologie en Mijnbouw, 1978, 57: 559-576.
46 Ricci Lucchi F, Valmori E. Basin-wide turbidites in a Miocene, over-supplied deep-sea plain: a geometrical analysis[J]. Sedimentology, 1980, 27(3): 241-270.
47 Sohn Y K. Depositional processes of submarine debris flows in the Miocene fan deltas, Pohang Basin, SE Korea with special reference to flow transformation[J]. Journal of Sedimentary Research, 2000, 70(3): 491-503.
48 Talling P J, Amy L A, Wynn R B, et al. Beds comprising debrite sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional environments[J]. Sedimentology, 2004, 51(1): 163-194.
49 Talling P J, Amy L A, Wynn R B. New insight into the evolution of large-volume turbidity currents: comparison of turbidite shape and previous modelling results[J]. Sedimentology, 2007, 54(4): 737-769.
50 Talling P J, Amy L A, Wynn R B, et al. Evolution of turbidity currents deduced from extensive thin turbidites: marnoso-arenacea Formation (Miocene), Italian Apennines[J]. Journal of Sedimentary Research, 2007, 77(3): 172-196.
51 Amy L A, Talling P J, Peakall J, et al. Bed geometry used to test recognition criteria of turbidites and (sandy) debrites[J]. Sedimentary Geology, 2005, 179(1/2): 163-174.
52 Amy L A, Talling P J. Anatomy of turbidites and linked debrites sandstones based on long distance (120×30km) bed correlation, Marnoso Arenacea Formation, Northern Apennines, Italy[J]. Sedimentology, 2006, 53(1): 161-212.
53 Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169.
54 Amy L A, Talling P J, Edmonds V O, et al. An experimental investigation of sand-mud suspension settling behaviour: implications for bimodal mud contents of submarine flow deposits[J]. Sedimentology, 2006, 53(6): 1411-1434.
55 Sumner E J, Talling P J, Amy L A. Deposits of flows transitional between turbidity current and debris flow[J]. Geology, 2009, 37(11): 991-994.
56 Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183.
57 Baas J H, Best J L, Peakall J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987.
58 Breien H, De Blasio F V, Elverh?i A, et al. Transport mechanisms of sand in deep-marine environments-insights based on laboratory experiments[J]. Journal of Sedimentary Research, 2010, 80(11): 975-990.
59 Lowe D R, Guy M. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem[J]. Sedimentology, 2000, 47(1): 31-70.
60 Lowe D R, Guy M, Palfrey A. Facies of slurry-flow deposits, Britannia Formation (Lower Cretaceous), North Sea: implications for flow evolution and deposit geometry[J]. Sedimentology, 2003, 50(1): 45-80.
61 Blackbourn G A, Thomson M E. Britannia Field, UK North Sea: petrographic constraints on Lower Cretaceous provenance, facies and the origin of slurry flow deposits[J]. Petroleum Geoscience, 2000, 6(4): 329-343.
62 Davis C, Haughton P, McCaffrey W, et al. Character and distribution of hybrid sediment gravity flow deposits from the outer Forties Fan, Palaeocene Central North Sea, UKCS[J]. Marine and Petroleum Geology, 2009, 26(10): 1919-1939.
63 Baas J H, Best J L. Turbulence modulation in clay rich sediment-laden flows and some implications for sediment deposition[J]. Journal of Sedimentary Research, 2002, 72(3): 336-340.
64 Haughton P, Davis C, McCaffrey W, et al. Reply to Comment by R. Higgs on ‘Hybrid sediment gravity flows deposits-classification, origin and significance’[J]. Marine and Petroleum Geology, 2010, 27(9): 2066-2069.
65 Schwab W C, Lee H J, Twichell D C, et al. Sediment mass-flow processes on a depositional lobe, outer Mississippi Fan[J]. Journal of Sedimentary Research, 1996, 66(5): 916-927.
66 Mohrig D, Ellis C, Parker G, Whipple K X, et al. Hydroplaning of subaqueous debris flows[J]. Geological Society of America Bulletin, 1998, 110(3): 387-394.
67 Piper D J W, Cochonat P, Morrison M L. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar[J]. Sedimentology, 1999, 46(1): 79-97.
68 Ito M. Downfan transformation from turbidity currents to debris flows at a channel-to-lobe transitional zone: the lower Pleistocene Otadai Formation, Boso peninsula, Japan[J]. Journal of Sedimentary Research, 2008, 78(10): 668-682.
69 Pyles D R, Jennette D C. Geometry and architectural associations of co-genetic debrite-turbidite beds in basin-margin strata, Carboniferous Ross Sandstone (Ireland): applications to reservoirs located on the margins of structurally confined submarine fans[J]. Marine and Petroleum Geology, 2009, 26(10): 1974-1996.
70 Lee S H, Jung W Y, Bahk J J, et al. Depositional features of co-genetic turbidite-debrite beds and possible mechanisms for their formation in distal lobated bodies beyond the base-of-slope, Ulleung Basin, East Sea (Japan Sea)[J]. Marine Geology, 2013, 346: 124-140.
71 Magalhaes P M, Tinterri R. Stratigraphy and depositional setting of slurry and contained (reflected) beds in the Marnoso-Arenacea Formation (Langhian-Serravallian) Northern Apennines, Italy[J]. Sedimentology, 2010, 57(7): 1685-1720.
72 Terlaky V, Arnott R W C. Matrix-rich and associated matrix-poor sandstones: avulsion splays in slope and basin-floor strata[J]. Sedimentology, 2014, 61(5): 1175-1197.
73 Mulder T, Syvitski J, Migeon S, et al. Marine hyperpycnal flows: initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 861-882.
74 談明軒,朱筱敏,朱世發(fā). 異重流沉積過程和沉積特征研究[J]. 高校地質(zhì)學報,2015,21(1):94-104. [Tan Mingxuan, Zhu Xiaomin, Zhu Shifa. Research on sedimentary process and characteristics of hyperpycnal flows[J]. Geological Journal of China Universities, 2015, 21(1): 94-104.]
75 楊田,操應長,王艷忠,等. 異重流沉積動力學過程及沉積特征[J]. 地質(zhì)論評,2015,61(1):23-33. [Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J]. Geological Review, 2015, 61(1): 23-33.]
76 Talling PJ. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182.
77 Girard F, Ghienne J, Rubino J L. Occurrence of hyperpycnal flows and hybrid event beds related to glacial outburst events in a late Ordovician Proglacial delta (Murzuq Basin, SW Libya)[J]. Journal of Sedimentary Research, 2012, 82(9): 688-708.
78 Hürzeler B E, Imberger J, Ivey G N. Dynamics of turbidity current with reversing buoyancy[J]. Journal of Hydraulic Engineering, 1996, 122(5): 230-236.
79 Zavala C, Arcuri M, Meglio M D, et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits[C]//Slatt R, Zavala C. Sediment transfer from shelf to deep water-Revisiting the delivery system. AAPG Studies in Geology, 2011, 61: 31-51.
80 Pritchard D, Gladstone C. Reversing buoyancy in turbidity currents: developing a hypothesis for flow transformation and for deposit facies and architecture[J]. Marine and Petroleum Geology, 2009, 26(10): 1997-2010.
81 Gladstone C, Pritchard D. Patterns of deposition from experimental turbidity currents with reversing buoyancy[J]. Sedimentology, 2010, 57(1): 53-84.
82 酒井哲彌,立石良,古川絢子. 松江市島根町須々海海岸の中新統(tǒng)牛切層に見られる重力流堆積物(予報)[J]. 島根大學地球資源環(huán)境學研究報告,2007,26:25-33. [Tetsuya S, Ryo T, Ayako F. Gravity flow deposits in the Miocene Ushikiri Formation exposed along the Susumi coast, Matsue, Japan (preliminary note)[J]. Geoscience Report of Shimane University, 2007, 26: 25-33.]
83 Kane I A, Pontén A S M. Submarine transitional flow deposits in the Paleogene Gulf of Mexico[J]. Geology, 2012, 40(12): 1119-1122.
84 Barker S P, Haughton P D W, McCaffrey W D, et al. Development of rheological heterogeneity in clay-rich high-density turbidity currents: Aptian Britannia Sandstone Member, U.K. continental shelf[J]. Journal of Sedimentary Research, 2008, 78(2): 45-68.
85 Patacci M, Haughton P D W, McCaffrey W D. Rheological complexity in sediment gravity flows forced to decelerate against a confining slope, Braux, SE France[J]. Journal of Sedimentary Research, 2014, 84(4): 270-277.
86 Southern S J, Patacci M, Felletti F, et al. Influence of flow containment and substrate entrainment upon sandy hybrid event beds containing a co-genetic mud-clast-rich division[J]. Sedimentary Geology, 2015, 321: 105-122.
87 Tinterri R, Tagliaferri A. The syntectonic evolution of foredeep turbidites related to basin segmentation: facies response to the increase in tectonic confinement (Marnoso-arenacea Formation, Miocene, Northern Apennines, Italy)[J]. Marine and Petroleum Geology, 2015, 67: 81-110.
88 Amy L A, Peachey S A, Gardiner A A, et al. Prediction of hydrocarbon recovery from turbidite sandstones with linked-debrite facies: numerical flow-simulation studies[J]. Marine and Petroleum Geology, 2009, 26(10): 2032-2043.
89 Garland C R, Haughton P D W, King R F, et al. Capturing reservoir heterogeneity in a sand-rich submarine fan, Miller field[C]//Fleet A J, Boldy S A R. Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference. London: Geological Society of London, 1999, 5: 1199-1208.
90 FugelliE M G, Olsen T R. Delineating confined slope turbidite systems offshore mid-Norway: the cretaceous deep-marine lysing Formation[J]. AAPG Bulletin, 2007, 91(11): 1577-1601.
91 Pyles D R, Skvitski J P M, Slatt R M. Defining the concept of stratigraphic grade and applying it to stratal (reservoir) architecture and evolution of the slope to basin profile: an outcrop perspective[J]. Marine and Petroleum Geology, 2011, 28(3): 675-697.
The Flow Transforming Deposits of Sedimentary Gravity Flow-Hybrid Event Bed
TAN MingXuan1,2ZHU XiaoMin1,2GENG MingYang3LIU ChangNi1,2
(1. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China; 2. State Key Laboratory of Petroleum Resource and Prospecting, Beijing 102249, China; 3. CNOOC Research Institute, Beijing 100028, China)
With the maturity of theoretical systems of turbidity current and debris flow, gravity flow transformation has gradually drew more attention, and its related concept- hybrid event bed is also aroused at this time. The hybrid event bed is a depositional record of flow transformation from a single-period debris flow or turbidity current event, which is manifested by vertical depositional combination of various rheological characteristics. The sequence of a typical hybrid event bed contains five divisions: clean sand internal H1, banded internal H2, cohesive debrites internal H3, ripple-laminated internal H4and massive mud internal H5, and obvious lithological interfacies are well identified in this bed. Hybrid event beds are well distributed in the coarse-grained deltas, the distal and lateral area of submarine fans and lobes, the transitional zone of channel-lobe and confined mini-basin margin with the vertical stacking thickness up to several meters. The recognition of hybrid event bed is extremely meaningful for further study on flow transformation of gravity flow and spatial rheological characteristics. Also, it promotes corresponding studies on the heterogeneity of hydrocarbon-bearing reservoirs and provides new thoughts for favorable deep-water reservoir sandbodies. The geophysics identification of hybrid bed and the flexible application of this new concept to the study on lacustrine gravity flow will be the next research direction.
hybrid event bed; flow transformation; turbidity current; debris flow; rheology
1000-0550(2016)06-1108-12
10.14027/j.cnki.cjxb.2016.06.009
2015-12-14; 收修改稿日期: 2016-02-17
國家科技重大專項(2016ZX05001002-006)[Foundation: National Science and Technology Major Project, No. 2016ZX05001002-006]
談明軒 男 1990年生 博士研究生 沉積學與古地理學 E-mail: minttan@sina.com
朱筱敏 男 教授 E-mail: xmzhu@cup.edu.cn
P618.13
A