黎虹瑋 李 飛 胡 廣 譚秀成,3 李 凌,3
(1.油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室 西南石油大學(xué) 成都 610500;2.四川省天然氣地質(zhì)重點(diǎn)實(shí)驗(yàn)室 成都 610500;3.中國(guó)石油碳酸鹽巖儲(chǔ)層重點(diǎn)實(shí)驗(yàn)室—沉積與成藏分室 西南石油大學(xué) 成都 610500)
?
二疊紀(jì)—三疊紀(jì)之交全球海平面變化研究
黎虹瑋1,2李 飛1,2胡 廣1,2譚秀成1,2,3李 凌1,2,3
(1.油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室 西南石油大學(xué) 成都 610500;2.四川省天然氣地質(zhì)重點(diǎn)實(shí)驗(yàn)室 成都 610500;3.中國(guó)石油碳酸鹽巖儲(chǔ)層重點(diǎn)實(shí)驗(yàn)室—沉積與成藏分室 西南石油大學(xué) 成都 610500)
二疊紀(jì)—三疊紀(jì)界線附近的全球海平面變化是當(dāng)前沉積學(xué)研究的熱點(diǎn)和難點(diǎn)問(wèn)題,其與當(dāng)時(shí)的顯生宙最大規(guī)模生物滅絕事件存在一定關(guān)聯(lián),具有重要的研究意義。然而二疊紀(jì)—三疊紀(jì)界線附近的全球海平面變化存在較多爭(zhēng)議,受單剖面或區(qū)域范圍內(nèi)相對(duì)海平面變化研究程度的制約,在缺乏從沉積學(xué)角度的綜合對(duì)比研究的情況下,可能會(huì)影響對(duì)全球海平面變化過(guò)程與持續(xù)時(shí)間的判識(shí)。綜述了二疊紀(jì)—三疊紀(jì)界線附近的海平面變化研究進(jìn)展,整合了多位學(xué)者的研究剖面、主要觀點(diǎn)及認(rèn)識(shí),梳理了全球海平面變化的主要觀點(diǎn)(“上升論”和“下降—上升論”),包括其各自的發(fā)展歷程、代表剖面及海平面變化識(shí)別特征、海平面上升/下降的原因以及海平面變化與生物滅絕的關(guān)系等,并在此基礎(chǔ)上,探討了二疊紀(jì)—三疊紀(jì)全球海平面變化研究過(guò)程中產(chǎn)生爭(zhēng)議的原因。本文旨在為二疊紀(jì)—三疊紀(jì)界線(PTB)附近海平面變化研究提供線索,同時(shí)為研究全球PTB地質(zhì)事件發(fā)生的背景及差異性原因提供基礎(chǔ)證據(jù)。
二疊紀(jì)—三疊紀(jì)界線 全球海平面變化 暴露標(biāo)志 生物滅絕事件
二疊紀(jì)—三疊紀(jì)之交的生物大滅絕(約2.52億年前)是地質(zhì)歷史上最為矚目的地質(zhì)事件,造成超過(guò)90%的海洋無(wú)脊椎動(dòng)物滅絕[1]。關(guān)于這次事件的起因眾說(shuō)紛紜,目前認(rèn)為可能與西伯利亞溢流玄武巖的噴發(fā)有密切關(guān)系[2]。對(duì)這段時(shí)期內(nèi)包括高溫[3-4]、缺氧[5-6]、海洋酸化[7-9]、強(qiáng)烈陸緣風(fēng)化[10]等重大環(huán)境異常事件的研究已較為深入;二疊紀(jì)—三疊紀(jì)界線(PTB)附近的全球海平面變化可能與生物滅絕事件存在直接或間接關(guān)聯(lián),同樣具有重要的研究意義。然而界線附近的全球海平面變化研究存在較多爭(zhēng)議,受單剖面或小區(qū)域范圍內(nèi)海平面變化研究程度的制約可能是重要原因之一,因?yàn)閰^(qū)域性的海進(jìn)和海退可能屬于相對(duì)海平面變化,可能受盆地基底升降、沉積物供給速率、可容空間、氣候等影響,不等同于全球(絕對(duì))海平面變化,要提出全球海平面變化的觀點(diǎn),需要有全球范圍內(nèi)多個(gè)剖面的對(duì)比。在PTB海平面變化事件研究中,由于研究剖面位置分散,受海平面變化標(biāo)志性證據(jù)多解性和古地貌差異影響,小區(qū)域范圍的相對(duì)海平面變化存在差異,在缺乏從沉積學(xué)角度的綜合對(duì)比研究的情況下,難以對(duì)全球海平面變化的過(guò)程與時(shí)限進(jìn)行判識(shí)。因此,本文綜述了全球二疊紀(jì)—三疊附近海平面變化的研究進(jìn)展,整合了多位學(xué)者的研究位置、研究觀點(diǎn)或認(rèn)識(shí),梳理了全球海平面變化的主要觀點(diǎn)(“上升論”和“下降—上升論”),包括其發(fā)展歷程、代表剖面及海平面變化識(shí)別特征、海平面上升/海平面下降原因以及海平面變化與生物滅絕的關(guān)系等,在此基礎(chǔ)上,分析了全球海平面變化研究過(guò)程中產(chǎn)生爭(zhēng)議的原因,以期為PTB附近全球海平面變化研究提供線索,同時(shí)為研究全球PTB地質(zhì)事件發(fā)生的背景及差異性提供基礎(chǔ)證據(jù)。
上世紀(jì)60—80年代,Newell[11]首先提出海洋生物大滅絕與海平面下降存在關(guān)聯(lián),從定性的角度上認(rèn)為海洋生物的銳減與陸緣海的減少有密切關(guān)系,Schopf[12]和Simberloff[13]則從定量的角度研究了二疊紀(jì)末大滅絕時(shí)生物種類與生存區(qū)域的關(guān)系,指出海平面下降導(dǎo)致的棲息地喪失增加了滅絕的可能性,他們的研究表明早二疊世淺海區(qū)生物棲息地約占43%,而到晚二疊世僅占13%,到三疊紀(jì)早期,全球淺海區(qū)生物棲息地又增加至34%。Holser[14]也認(rèn)為大滅絕與大規(guī)模海平面下降有關(guān),并指出當(dāng)時(shí)海平面下降達(dá)280 m,速率為60 m/Ma。但通過(guò)仔細(xì)核對(duì)早期文獻(xiàn)的生物地層工作,發(fā)現(xiàn)其二疊紀(jì)末最后一個(gè)地層年代為Djufian[12](對(duì)應(yīng)華南板塊吳家坪階[15]),地層系統(tǒng)缺乏華南板塊的長(zhǎng)興階沉積,即90年代以前的學(xué)者所提出的海平面下降實(shí)際上指的是晚二疊世早期的吳家坪期海平面下降,而不是長(zhǎng)興階末期的海平面下降(下文1.2.1將詳述)。
真正關(guān)于二疊紀(jì)—三疊紀(jì)界線附近全球海平面變化的研究始于上世紀(jì)90年代,先后經(jīng)歷了“上升論”的盛行以及之后的“下降—上升論”觀點(diǎn)的逐步確立。下文主要對(duì)這兩個(gè)觀點(diǎn)進(jìn)行了總結(jié)梳理。
1.1 上升論
1.1.1 觀點(diǎn)的發(fā)展歷程及代表剖面
上世紀(jì)90年代,海平面下降導(dǎo)致物種棲息地喪失的觀點(diǎn)受到以Wignall和Hallam等為代表的學(xué)者的質(zhì)疑[16-19]。Twiitchett[19]指出物種—地域關(guān)系中,特定地點(diǎn)棲息環(huán)境的多樣性比棲息地面積更重要,其次,全球變冷和冰川期造成的海平面下降(如奧陶紀(jì)末滅絕事件),水溫的下降比陸棚面積的喪失更可能是滅絕機(jī)制。Hallam[16]首次提出二疊紀(jì)末海平面上升過(guò)程中底層缺氧海水的上涌可能是造成生物滅絕的重要機(jī)制,之后,Wignall等發(fā)表了多篇文章[17-18,20-22],主要涉及意大利、巴基斯坦鹽嶺地區(qū)、藏南、華南板塊重慶地區(qū)的淺水相PTB剖面(圖1、表1),認(rèn)為全球二疊紀(jì)末—早三疊世為連續(xù)的海平面上升,滅絕線和PTB都位于海侵層序中,滅絕事件與最大海泛面(MFS)緊密相關(guān)而不是與和層序界面(SB)相關(guān),PTB在滅絕線之上或在滅絕段內(nèi)。連續(xù)海平面上升觀點(diǎn)得到了一些學(xué)者的支持[23-29](圖1、表1),該觀點(diǎn)的提出主要基于如下兩點(diǎn):①識(shí)別出以暴露面或侵蝕面為特征的層序界面,但早期生物地層工作認(rèn)為生物滅絕事件發(fā)生在層序界面之上的海侵沉積中,即層序界面所代表的海平面下降不能歸屬于PTB附近發(fā)生的事件,故未對(duì)該期海平面下降事件予以關(guān)注,并得出PTB附近為海平面上升的結(jié)論[17-18,21,30];②未能在界線地層附近識(shí)別出近地表暴露證據(jù)或?qū)乇肀┞兜淖C據(jù)有其他解釋,PTB附近多為海平面上升導(dǎo)致的巖性巖相突變區(qū)間[7,16,20,23-24,26,28-29,31-36]。總的來(lái)說(shuō),早期PTB附近海平面上升論觀點(diǎn)的盛行主要是對(duì)層序界面附近地層的研究尚不深入,導(dǎo)致海平面下降事件未能引起重視。
1.1.2 海平面上升的原因
對(duì)于二疊紀(jì)末海平面上升的原因尚無(wú)定論,僅有少數(shù)學(xué)者提出了一些假說(shuō),假說(shuō)主要包括: ①Hallametal.[30]認(rèn)為二疊紀(jì)末泛大洋海底巖石圈超級(jí)地幔柱隆起會(huì)產(chǎn)生相對(duì)陸架邊緣的海平面上升,但是二疊紀(jì)末的洋殼多由于俯沖下沉或大陸增生而消亡[38],因此構(gòu)造方面的假說(shuō)難以得到驗(yàn)證;②Kidder等[27]基于全球溫度上升觀點(diǎn)(西伯利亞火山噴發(fā)釋放大量二氧化碳、界線地層附近碳同位素負(fù)偏可能意味著海底天然氣水合物中甲烷的釋放、以及高緯度地區(qū)寒帶煤系森林的快速滅亡等),提出表層水與底層水升溫導(dǎo)致了海洋熱擴(kuò)張,伴隨陸地風(fēng)化作用加強(qiáng),森林蓄水層被破壞,冰川融化等,在聯(lián)合大陸中緯度地區(qū)可能形成良好的海平面上升記錄。
圖1 晚二疊世—早三疊世全球古地理圖(據(jù)Scotese[37],有改動(dòng))及報(bào)道海平面上升觀點(diǎn)的PTB地層剖面位置Fig.1 Late Permian to early Triassic global paleogeographic map (revised from Scotese[37])and PTB stratigraphic sections which have been reported sea level rise
序號(hào)剖面位置沉積相海平面上升證據(jù)資料出處1意大利,Dolomites地區(qū)淺水臺(tái)地PTB附近為連續(xù)鮞粒灰?guī)r沉積,內(nèi)部未識(shí)別出沉積間斷,鮞?;?guī)r底部侵蝕面遠(yuǎn)低于PTB,不屬于PTB事件Noé,1987;Baudetal.,1989;Hallam,1989;Wignall和Hal-lam,1992;Sholgeretal.,20002匈牙利,BükkMountains和theTransdanubianRange.斜坡界線黏土底部未見(jiàn)明顯侵蝕,界線黏土富含黃鐵礦Haasetal.,20073土耳其,Ta?kent開(kāi)闊臺(tái)地①截?cái)嗝嬷聻槌毕颅h(huán)境而不是潮間帶環(huán)境,沒(méi)有向上變淺旋回;②等厚環(huán)邊膠結(jié)物指示了海洋潛流帶環(huán)境,未見(jiàn)指示大氣淡水滲流帶環(huán)境的新月形或重力懸垂膠結(jié)物;③截?cái)嗝嬷碌纳蓟規(guī)r里的狹鹽性動(dòng)物的存在指示沉積環(huán)境為正常鹽度的海洋環(huán)境;④碳同位素負(fù)偏都在截?cái)嗝嬷?而截?cái)嗝嬷聸](méi)有顯示反映大氣淡水型負(fù)偏;故將截?cái)嗝娼忉尀楹5浊治g面。也有學(xué)者解釋為縫合線Payneetal.,2007;Kershawetal.,2007;4伊朗南部SouthPars氣田(現(xiàn)今波斯灣)淺水等斜緩坡PTB附近為連續(xù)向上變深旋回,未見(jiàn)明顯層序界面Insalacoetal.,20065重慶:老龍洞,涼風(fēng)埡,文興場(chǎng),斑竹園,澗水溝,東灣開(kāi)闊臺(tái)地,生物礁,礁間長(zhǎng)興階頂部缺乏巖溶現(xiàn)象或古土壤,或者淡水組構(gòu),可能只是代表相的突變生屑灰?guī)r或生物礁與上覆微生物巖為向上深序列,微生物巖內(nèi)部見(jiàn)縫合線而非侵蝕面Wignalletal.,1996;Kershawetal.,1999;2002;20076貴州南盤江地區(qū),躴排,大文,和平開(kāi)闊淺潮下具體證據(jù)同土耳其,截?cái)嗝鏋楹5浊治g面;或生屑灰?guī)r與微生物巖以縫合線接觸Payneetal.,2007;Kershawetal.,20077巴基斯坦鹽嶺地區(qū)斜坡PTB附近為連續(xù)沉積的、向上變深的Kathwai白云巖,沒(méi)有證據(jù)顯示海退。這段白云巖之下的Chhidru組頂部有干裂縫,但該海退事件不屬于PTB附近事件Wignalletal.,20038印控克什米爾地區(qū),Pahlgam和GuryulRavine開(kāi)闊臺(tái)地PTB之下由淺水碳酸鹽巖砂沉積快速轉(zhuǎn)變?yōu)樯钏懪锏哪嗷規(guī)r沉積,未見(jiàn)明顯侵蝕Brookfieldetal.,2003;Algeoetal.,20079西藏Selong,Tulong,Qubu開(kāi)闊臺(tái)地Coralbed向上變深為較低能環(huán)境的疊層石層Wignalletal.,200310日本Takachiho淺海具體證據(jù)同土耳其,截?cái)嗝鏋楹5浊治g面Payneetal.,2007
1.1.3 海平面上升與生物滅絕事件
“持續(xù)上升論”觀點(diǎn)認(rèn)為生物滅絕事件與海平面上升過(guò)程中的缺氧事件有關(guān),缺氧事件開(kāi)始于中二疊統(tǒng)末期的泛大洋和局部盆地,P-T之交時(shí)缺氧已經(jīng)廣泛分布,除巴基斯坦鹽嶺、西藏南部和馬達(dá)加斯加島以外的多個(gè)盆地、內(nèi)斜坡和陸棚剖面都有顯示[6]。缺氧事件得到了較多學(xué)者的支持[5,39-40],但也有學(xué)者指出PTB附近的缺氧并不是主要滅絕機(jī)制[19,41-42],雖然有的剖面觀察到局部的動(dòng)物群滅絕于缺氧事件,而物種多樣性的快速下降總是在缺氧事件剛開(kāi)始時(shí)期[2],因此,缺氧事件可能主要與早三疊世初期第二幕生物滅絕有關(guān)(對(duì)應(yīng)Isarcicellaisarcica牙形石帶底)[2],其可能在延緩三疊世生物復(fù)蘇過(guò)程中扮演了更重要的角色[19, 41-42]。
1.2 下降—上升論
1.2.1 觀點(diǎn)的發(fā)展歷程與代表剖面
上世紀(jì)80年代后期至本世紀(jì)初,部分國(guó)外學(xué)者對(duì)PTB剖面進(jìn)行了詳細(xì)的巖石學(xué)與沉積學(xué)研究,報(bào)道了PTB附近海平面下降的證據(jù)[43-51],但是這些報(bào)道都是基于單個(gè)剖面或者區(qū)域范圍內(nèi)幾個(gè)剖面的研究,沒(méi)有上升到全球海平面變化的討論。早在1991年,楊遵儀[52]等便提出過(guò)華南地區(qū)存在海退,長(zhǎng)興末期經(jīng)歷了海平面下降—上升旋回,但沒(méi)有給出海平面下降的明確證據(jù),2003年,國(guó)內(nèi)學(xué)者吳亞生等報(bào)道了貴州紫云地區(qū)長(zhǎng)興末期多個(gè)剖面生物礁的近地表暴露證據(jù),并將貴州地區(qū)的海平面下降事件與意大利的PTB剖面和上揚(yáng)子盆地的深水PTB沉積進(jìn)行了類比論證,明確提出了晚二疊世末即長(zhǎng)興期末存在全球(絕對(duì))海平面下降,并指出這可能是引發(fā)二疊紀(jì)末生物集群滅絕的因素之一[53];同年,Wu和Fan根據(jù)潮坪白云巖和溶蝕證據(jù),對(duì)彼此相隔較遠(yuǎn)的生物礁(貴州紫云和湖北利川)進(jìn)行了海平面下降幅度的定量計(jì)算,結(jié)果表明不同地區(qū)海平面下降幅度相似,指出海平面變化是海平面絕對(duì)下降而不是相對(duì)下降,二疊紀(jì)末特提斯海域的海平面至少下降了89.3 m[54]。此后,世界范圍內(nèi)尤其是特提斯海域關(guān)于二疊紀(jì)—三疊紀(jì)界線附近的海平面下降的證據(jù)得到了廣泛報(bào)道[35,55-88](圖2、表2),一些學(xué)者已對(duì)全球多條PTB剖面的海平面變化對(duì)比進(jìn)行了精細(xì)研究[63,89-91],二疊紀(jì)—三疊紀(jì)之交存在全球海平面下降已逐步成為主流觀點(diǎn)。
二疊紀(jì)末期海平面下降事件形成了一個(gè)三級(jí)層序的Ⅱ型層序界面(SB2)[89],即在淺水區(qū)以暴露剝蝕為特征,向深水方向過(guò)渡為假整合或整合接觸,具體表現(xiàn)為:①淺水環(huán)境(開(kāi)闊臺(tái)地相、蒸發(fā)臺(tái)地相、生物礁相、緩坡相)中識(shí)別出的PTB海平面下降證據(jù),以向上變淺沉積序列、不整合界面及產(chǎn)物(侵蝕面、沖刷面、古土壤、風(fēng)化殼、鈣結(jié)殼)、滲流組構(gòu)(重力懸垂膠結(jié)物、示頂?shù)讟?gòu)造、滲流粉砂)、古巖溶現(xiàn)象(巖溶垮塌角礫巖、溶溝、溶蝕孔洞和洞穴堆積物、去白云石化作用)、潮坪白云巖及其伴隨的藻紋層、鳥(niǎo)眼構(gòu)造、帳篷構(gòu)造、干裂縫、石膏假晶等潮上帶構(gòu)造為識(shí)別特征;②深水環(huán)境(深水臺(tái)緣相、斜坡相和盆地相)則主要以沉積相的突然向上變淺為識(shí)別標(biāo)志,具體包括深水動(dòng)物群向淺水動(dòng)物群的轉(zhuǎn)變,富硅質(zhì)沉積轉(zhuǎn)變?yōu)樘妓猁}巖沉積,或者富泥質(zhì)沉積以及陸源碎屑在垂向上增加等。早期,Yinetal.[89]認(rèn)為該Ⅱ型層序界面(SB2)代表的沉積間斷位于Clarkinayini—C.meishanensis牙形石帶之間,最新的資料來(lái)自Yinetal.[91]對(duì)華南板塊20余條PTB剖面的高分辨率牙形石生物地層研究,其研究結(jié)果表明華南地區(qū)廣泛存在海平面下降,揚(yáng)子臺(tái)地和湖南—貴州—廣西盆地中的小型孤立臺(tái)地經(jīng)歷了5~10萬(wàn)年的沉積間斷,間斷時(shí)間對(duì)應(yīng)C.meishanensis至Hindeoduschangxingensis牙形石帶(對(duì)應(yīng)煤山剖面24e—26層頂),并將全球海平面下降持續(xù)時(shí)間修訂為與華南板塊等時(shí)。由此,本文依據(jù)Yinetal.[91]的最新的牙形石分帶及海平面下降導(dǎo)致的沉積間斷時(shí)間,對(duì)表2中重要的PTB剖面校正后進(jìn)行了對(duì)比(圖3)。
實(shí)際上二疊紀(jì)末期海平面下降主要發(fā)育于特提斯地區(qū)[92],特提斯海域存在一個(gè)獨(dú)特的海水進(jìn)退歷史,該區(qū)域在長(zhǎng)興期總體為一個(gè)海平面上升過(guò)程,在長(zhǎng)興晚期經(jīng)歷了一個(gè)快速的海平面下降,層序界面之上是一很薄的(0.3~5.0 m)、以初始海泛面(TS)為頂界的陸棚邊緣體系域(SMST)沉積,在個(gè)別地貌高地可能缺失SMST沉積,海侵體系域沉積(TST)直接覆蓋在SB2之上,SMST和初始TST沉積以泥晶灰?guī)r、粒泥灰?guī)r、泥粒灰?guī)r、鮞?;?guī)r、微生物巖等低能或較低能環(huán)境沉積產(chǎn)物為特征,與SB2之下的高水位體系域(HST)的生屑云巖、鮞粒云巖、泥晶云巖等高能淺水環(huán)境沉積物形成明顯的巖性轉(zhuǎn)變(圖3),反映了層序界面之上的新一期海平面上升事件,SMST和初始TST沉積中常包含二疊型牙形石(H.changxingensis、C.taylorae)以及少量腕足類、蜓和有孔蟲(chóng)等[93],而以牙形石H.parvus的首現(xiàn)確定的二疊紀(jì)—三疊紀(jì)年代地層界線(PTB)一般位于初始海泛面(TS)之上幾厘米至幾米處,因此,長(zhǎng)興末期即已發(fā)生海平面上升事件,特提斯海域在長(zhǎng)興期內(nèi)部經(jīng)歷了海平面上升—下降—上升的旋回[52, 89, 94]。而現(xiàn)已查明西歐、北美、俄羅斯、岡瓦納大陸及北部高緯度地區(qū)(Boreal 海域,加拿大北極區(qū)、格陵蘭島、西伯利亞等)(圖2 A)在晚二疊世經(jīng)歷的海平面變化旋回為吳家坪期海平面下降—長(zhǎng)興末期海平面上升,不存在長(zhǎng)興期內(nèi)部的海平面變化,海平面低潮期形成Ⅰ型層序界面(SB1),直到晚長(zhǎng)興期才發(fā)生海平面上升,即SB1之下的HST沉積為吳家坪階硅質(zhì)巖和灰?guī)r(含吳家坪階古生物),而SB1之上的低水位體系域(LST)沉積為晚長(zhǎng)興期頁(yè)巖與粉砂巖,其上發(fā)育代表TST的黏土巖和粉砂巖,三疊紀(jì)標(biāo)志牙形石H.parvus首現(xiàn)于TS之上數(shù)厘米,因此,只有SB1之上的地層可與特提斯海域進(jìn)行對(duì)比[89],在歐美等非海相沉積區(qū),主要表現(xiàn)為對(duì)先期沉積間斷面的疊加或改造[95]。
1.2.2 海平面下降—上升的原因
目前二疊紀(jì)末海平面下降的原因主要有兩種觀點(diǎn):
(1) 泛大陸聚合導(dǎo)致的海平面下降
彭元橋等[97]和殷鴻福等[94]提出晚二疊世是泛大陸與泛大洋的全盛時(shí)期,這樣一個(gè)高山深盆時(shí)期導(dǎo)致海水從大陸架回歸盆內(nèi),形成了二疊紀(jì)末全球性海平面下降并影響氣候[94]。在全球各大陸聚合的總背景下,特提斯海域內(nèi)一系列的小板塊從岡瓦納古陸裂解,并向歐亞大陸靠攏,形成特提斯海多島洋體系,這里可能不斷有小型洋中脊產(chǎn)生,海水涌向大陸架,導(dǎo)致特提斯海域在晚二疊世發(fā)生海平面上升,直到長(zhǎng)興期晚期才發(fā)生海平面下降,由此構(gòu)成了特提斯海域獨(dú)特的海平面上升—下降旋回[97]。
(2)全球變冷,海水熱收縮導(dǎo)致的海平面下降
Shenetal.[63]指出新特提斯海域發(fā)生滅絕事件之前的氣候是寒冷的(冷水環(huán)境牙形石Vjalovognathussp. 和Merrillinasp.,冷水腕足),F(xiàn)arabegoli和Perri[81]等在Shenetal.[63]觀點(diǎn)的基礎(chǔ)上提出全球變冷,熱收縮導(dǎo)致了海平面下降。吳亞生等[76, 98]對(duì)華南板塊多條淺水PTB剖面生物滅絕方式的研究表明,主滅絕事件中溫暖環(huán)境的生物礁、蜓類、鈣藻等突然滅絕,可能與全球變冷有關(guān),并導(dǎo)致海洋總體積縮小,從而引發(fā)了海平面下降。田力[99]指出二疊紀(jì)末強(qiáng)烈的火山噴發(fā)產(chǎn)生的氣候效應(yīng),即快速降溫(“火山冬天”)與長(zhǎng)期緩慢升溫的過(guò)程,可以與海平面的快速下降(千年級(jí)別)與緩慢上升(百萬(wàn)年級(jí)別)對(duì)應(yīng)。但由于降溫時(shí)間太短很難留下地層記錄,或者采樣分辨率太低,亦或其他原因,目前該降溫事件并沒(méi)有得到牙形石氧同位素的數(shù)據(jù)支持。
圖2 A.晚二疊世—早三疊世全球古地理圖(據(jù)Scotese[37],有改動(dòng))及報(bào)道海平面下降的PTB地層剖面位置;B.晚二疊世—早三疊世華南板塊古地理圖(據(jù)馮增昭等[96],有改動(dòng))及重要的PTB地層剖面位置Fig.2 A. Late Permian to early Triassic global paleogeographic map (revised from Scotese[37]) and PTB stratigraphic sections which have been reported sea level fall; B. Late Permian to Early Triassic South China paleogeographic map (revised from Feng, et al.[96]) and important PTB stratigraphic sections
序號(hào)剖面位置沉積相海平面下降證據(jù)海平面下降次數(shù)資料出處1重慶土地埡生物礁生物礁頂部是潟湖相的藻屑沉積,其上為潮坪沉積,最頂部為一個(gè)喀斯特面(覆蓋著復(fù)合多種礦物碎屑黏土層)1Reinhardt,1988;Flügel和Re-inhardt,19892重慶老龍洞生物礁之上的微生物巖侵蝕面,干裂縫,PTB上下0.4m2吳亞生等,2006b;姜紅霞等,2007;劉麗靜等,20143重慶澗水溝生物礁三個(gè)古暴露面(古巖溶面),一次位于PTB之下(主滅絕時(shí)期),兩次在PTB之上(最后一次暴露面對(duì)應(yīng)第二幕滅絕期)3周剛等,20124重慶盤龍洞生物礁暴露淺灘白云巖,并發(fā)生大氣淡水溶蝕作用,見(jiàn)喀斯特角礫巖1馬永生等,20055重慶二龍口開(kāi)闊臺(tái)地長(zhǎng)興組頂部風(fēng)化殼,古巖溶(垂直溶溝、大型溶洞、順層巖溶)1黎虹瑋等,20156重慶偏巖子生物礁長(zhǎng)興組頂部礁蓋發(fā)育順層巖溶、垂直溶溝、巖溶角礫1黎虹瑋等,20157重慶川東井區(qū)生物礁、礁間長(zhǎng)興組上部溶洞、溶溝、巖溶角礫、花斑狀巖溶系統(tǒng)、鋁土質(zhì)泥巖1黎虹瑋等,20158重慶蜀南井區(qū)開(kāi)闊臺(tái)地大量鉆具放空現(xiàn)象,巖芯上見(jiàn)大量的溶溝、溶縫、溶洞及巖溶角礫,長(zhǎng)興組頂部古巖溶不整合1羅冰等,20109貴州羅甸沫陽(yáng)生物礁、開(kāi)闊臺(tái)地非礁相發(fā)育不連續(xù)面(侵蝕面、縫合線)、生物礁見(jiàn)巖溶垮塌角礫巖、溶蝕孔洞、洞穴堆積物1李飛等,201210貴州羅甸大文開(kāi)闊潮下沖刷面或剝蝕面1劉建波等,200711貴州紫云生物礁長(zhǎng)興階末為HST的海平面快速下降期,有大量的次生孔隙1陸永潮等,199912貴州紫云:亙旦、談陸寨、石頭寨生物礁生物礁頂部發(fā)育蒸發(fā)潮坪白云巖,藻紋層、鳥(niǎo)眼構(gòu)造、干裂縫、溶蝕崩塌角礫巖、石膏假晶等1吳亞生等,2003;Wuetal.,2003;Wuetal.,201013貴州躴排開(kāi)闊淺潮下侵蝕面(或?yàn)樗氯芪g)1Kershawetal.,2007;Ezakietal.,2008;Collinetal.,200914貴州改貌開(kāi)闊淺潮下長(zhǎng)興組生屑灰?guī)r與大隆組硅質(zhì)巖之間的風(fēng)化殼1Yangetal.,201215貴州打講開(kāi)闊淺潮下喀斯特風(fēng)化面1Jiangetal.,201416江西修水開(kāi)闊臺(tái)地碳酸鹽顆粒表面形成褐鐵礦,樹(shù)枝狀微生物巖頂部去白云石化灰?guī)r,一次位于PTB之下(第一幕滅絕時(shí)期),一次在PTB之上2吳亞生等,2006a;Wuetal.,201417江西沿溝開(kāi)闊臺(tái)地不整合面1Sunetal.,201218湖北利川生物礁生物礁白云巖化1Wuetal.,200319湖北赤壁深水臺(tái)緣早長(zhǎng)興期以黑色含放射蟲(chóng)的海綿骨針硅質(zhì)巖沉積為主,晚期則相變?yōu)楦缓讞锌紫x(chóng)化石的硅質(zhì)團(tuán)塊或硅質(zhì)條帶灰?guī)r1鄧寶柱等,201520浙江黃芝山開(kāi)闊臺(tái)地古剝蝕面(風(fēng)化殼)1陳軍等,2008;杜永燈等,200921浙江煤山斜坡層序界面波狀起伏,低凹處充填薄的褐鐵鈣質(zhì)泥巖和較多被磨蝕的生物屑,界面上下微相不連續(xù),界面之下巖層具反粒序?qū)永?張克信等,1996;Yinetal.,2007;曹長(zhǎng)群等,200722湖南慈利深水盆地沉積環(huán)境由深水盆地突然轉(zhuǎn)變?yōu)闇\水臺(tái)地,生物類群也由大隆組頂部的深水類群放射蟲(chóng)—海綿骨針組合變?yōu)榇笠苯M底部的淺水類群棘皮類—雙殼類—藻類組合1鄭全峰等,201323廣西東攀深水盆地陸源碎屑向上增加,硅質(zhì)巖向上變?yōu)槟鄮r,深水盆地放射蟲(chóng)向上消失,大量腕足出現(xiàn)1張凡等,2006,2007;Fengetal.,2007;Yinetal.,200724克羅地亞Velebit地區(qū)開(kāi)闊臺(tái)地—蒸發(fā)臺(tái)地侵蝕面,主量、微量、稀土元素在界面處高度富集,反映了陸源硅質(zhì)碎屑的大量注入1Fioetal.,201025斯諾文尼亞Brsnina蒸發(fā)臺(tái)地界線黏土,主、微量元素在界線之上的地層高度富集,反映了陸源硅質(zhì)碎屑的大量注入,沉積環(huán)境由界線之下的缺氧(深灰色云巖)轉(zhuǎn)換為界線之上的富氧(紅色碎屑巖與云巖,Th/U值小于2)1Dolenecetal.,200526意大利Dolomites地區(qū)開(kāi)闊臺(tái)地不整合面,示頂?shù)讟?gòu)造(一次對(duì)應(yīng)煤山剖面24頂,一次對(duì)應(yīng)煤山剖面26層)2Farabegoli和Perri,1998;Farabegolietal.,2007;FarabegoliandPerri,201227土耳其西Taurus山脈地區(qū),CürükDagh開(kāi)闊臺(tái)地二疊系頂部發(fā)育鮞?;?guī)r的變淺序列,頂部發(fā)育滲流成巖作用,鮞粒強(qiáng)烈重結(jié)晶1Baud和Cirrili,1997;Baudetal.,200528土耳其Taurides中部,開(kāi)闊淺潮下二疊系頂部發(fā)育鮞粒灰?guī)r的變淺旋回,最頂部鮞?;?guī)r發(fā)生重結(jié)晶,P—T界線為不整合面1ünaletal.,200329伊朗中部Abadeh深水盆地由二疊紀(jì)頂部的富氧深水沉積(紅色結(jié)核狀泥巖)變?yōu)槿B紀(jì)底部同沉積碳酸鹽扇狀膠結(jié)物層,其上為重結(jié)晶的鮞?;?guī)r1Heydarietal.,2003
(續(xù)表)
序號(hào)剖面位置沉積相海平面下降證據(jù)海平面下降次數(shù)資料出處30伊朗南部SouthPars氣田(現(xiàn)今波斯灣)淺水等斜緩坡不整合面,超鹽環(huán)境、大氣淡水環(huán)境膠結(jié)物、白云巖化、鑄??住S山缑嬷碌某鄙蠋г茙r轉(zhuǎn)變?yōu)榻缑嬷系某毕聨ьw粒巖多次Rahimpour-Bonabetal.,200931沙特阿拉伯中部緩坡界線黏土(古土壤),被侵蝕的植物碎片(陸源搬運(yùn))1Eltonetal.,201632阿曼WadiSahtan開(kāi)闊臺(tái)地紅色界線頁(yè)巖(發(fā)育帳篷構(gòu)造、潮上帶角礫)1Richozetal.,201033巴基斯坦鹽嶺地區(qū)開(kāi)闊臺(tái)地干裂縫、侵蝕面,沉積相向上變淺:淺潮下砂巖變?yōu)楦_(kāi)放的潮間砂屑碳酸鹽巖,砂屑總量向上增加,化石含量向上減少,最頂部有淡水影響和潮坪沉積,陸源碎屑增加1Baud,1996;Mertmann,200434西藏Selong,Tulong,Qubu開(kāi)闊臺(tái)地鈣結(jié)殼1Shenetal.,200635日本南部Takachiho淺海二疊系頂部顆?;?guī)r和泥粒灰?guī)r白云巖化,白云巖化程度向上增強(qiáng)1Sanoetal.,1997
圖3 重要PTB剖面簡(jiǎn)化地層對(duì)比圖Fig.3 Simplified correlation of important PTB stratigraphic sections
二疊紀(jì)末海平面上升的原因可能與1.2.2中所述類似,即可能是由于全球變暖導(dǎo)致的海洋熱擴(kuò)張所致。
1.2.3 海平面下降—上升旋回與生物滅絕事件
目前對(duì)特提斯海域的大部分剖面的研究表明,第一幕滅絕事件與二疊紀(jì)末全球海平面下降一致[45,50,81,84,89,98,100],致使四射珊瑚、蜓、三葉蟲(chóng)、長(zhǎng)身貝、石燕貝等滅絕[52,89,101],海平面下降導(dǎo)致大量陸表海消失,導(dǎo)致許多底棲生物的棲息地消失,或使陸棚海地區(qū)被分割且面積縮小,造成生物群過(guò)分擁擠,生存競(jìng)爭(zhēng)加劇首先導(dǎo)致了某些窄生境型生物的絕滅,生物鏈遭受重創(chuàng),最終必然影響其他生物的生存與發(fā)展[97]。由于第一幕滅絕事件與二疊紀(jì)末全球海平面下降一致,因此可以認(rèn)為二疊紀(jì)末海平面下降事件應(yīng)歸屬PTB事件。但也有剖面顯示滅絕事件發(fā)生在海平面下降界線之上的海侵體系域內(nèi),如Hallametal.[30]指出意大利Dolomite地區(qū)Siusi剖面的滅絕線位于不整合面之上的鮞粒層內(nèi),他還指出巴基斯坦鹽嶺地區(qū)的滅絕段在Baudetal.[45]所報(bào)道的侵蝕面之上的Kathwai白云巖段內(nèi);Shenetal.[63]指出西藏色龍、巴基斯坦鹽嶺、克什米爾滅絕段位于SB之上的TST段內(nèi)。Yinetal.[89,102]的研究對(duì)上述兩種滅絕情況作出了解釋(圖4),指出第一幕滅絕事件與海平面低潮期(SB)一致(對(duì)應(yīng)煤山剖面24e層底),第二幕滅絕事件(主要是二疊紀(jì)孑遺生物的滅絕)發(fā)生于海平面上升期(TST)(對(duì)應(yīng)煤山剖面28層頂)(圖4)。
圖4 兩幕滅絕事件與SB及隨后的TS的關(guān)系(修改自Yin,et al., 2007)PTB.二疊紀(jì)—三疊紀(jì)界線;SMST.陸棚邊緣位體系域;LST.低水位體系域;TST.海平面上升體系域;HST—高水位體系域;TS.初始海泛面;MFS.最大海泛面; SB.層序界面;Time.時(shí)間進(jìn)程Fig.4 Two extinctions in relation to the SB and the succeeding TS (revised from Yin, et al., 2007)
關(guān)于全球海平面變化出現(xiàn)較多爭(zhēng)議的原因,相對(duì)海平面變化研究程度可能是一個(gè)重要因素,具體包括兩個(gè)方面:①針對(duì)同一地區(qū)甚至同一剖面(如意大利、巴基斯坦、華南板塊淺水碳酸鹽巖臺(tái)地、藏南、土耳其等,圖2)的相對(duì)海平面變化研究常常得出相反的結(jié)論,這主要是不同學(xué)者對(duì)海平面變化標(biāo)志性證據(jù)的解釋有差異導(dǎo)致的,而多條剖面標(biāo)志性證據(jù)的理解差異可能會(huì)影響對(duì)全球海平面變化的判識(shí);②各個(gè)研究區(qū)位置分散,由于區(qū)域性古地貌(古海拔)差異,造成等時(shí)的全球海平面下降事件在不同剖面上的沉積記錄不同,即不同剖面相對(duì)海平面變化存在差異,在缺乏從沉積學(xué)角度的綜合對(duì)比研究的情況下,可能會(huì)影響對(duì)全球海平面變化過(guò)程持續(xù)時(shí)間的判識(shí)。
2.1 對(duì)海平面變化標(biāo)志性證據(jù)的解釋存在差異
對(duì)海平面變化標(biāo)志性證據(jù)的理解存在差異是造成淺水相PTB剖面相對(duì)海平面變化存在爭(zhēng)議的主要原因,即表現(xiàn)為對(duì)海平面下降論觀點(diǎn)中的海平面下降標(biāo)志的有其他解釋,主要包括如下幾點(diǎn):
2.1.1 縫合線
在華南板塊四川—重慶地區(qū),PTB地層長(zhǎng)興組灰?guī)r與微生物巖之間以及與微生物巖內(nèi)部的地層接觸關(guān)系形成了兩類觀點(diǎn),有的學(xué)者認(rèn)為其為侵蝕面[61,103],另一些學(xué)者則認(rèn)為這些都是縫合線[73],Kershawetal.[104]指出多條PTB剖面(重慶華鎣、重慶東灣剖面、四川盆地西北魚(yú)洞子剖面、貴州躴排剖面、土耳其Cürük Dag剖面等)發(fā)育多條縫合線,強(qiáng)調(diào)壓溶的普遍存在,縫合線的發(fā)育影響了判斷侵蝕面是海底溶蝕還是近地表侵蝕,使古環(huán)境研究受到阻礙,因此,在野外識(shí)別PTB附近侵蝕面時(shí),應(yīng)慎重恢復(fù)縫合線之前的接觸情況或者尋找縫合線發(fā)育較弱的界線剖面。
2.1.2 海洋酸化導(dǎo)致的海底侵蝕
Payneetal.[7]對(duì)華南板塊貴州、土耳其、日本三個(gè)地區(qū)的PTB剖面的沉積相、微觀組構(gòu)、C同位素、膠結(jié)物等綜合分析認(rèn)為,二疊紀(jì)頂部生屑灰?guī)r侵蝕面為與海洋酸化有關(guān)的海底侵蝕面。這一觀點(diǎn)提出后受到了諸多質(zhì)疑[73,79,104-105],這些學(xué)者認(rèn)為從二疊紀(jì)末的超飽和到滅絕事件層的不飽和再到微生物巖的超飽和,如此短時(shí)間內(nèi)碳酸鹽飽和度的快速轉(zhuǎn)換在巖石學(xué)和碳同位素曲線上尚未有明確的證據(jù)[73,79,106];最新的研究基于地球化學(xué)分析從鈣同位素[8]、硼同位素[9]等方面對(duì)二疊紀(jì)—三疊紀(jì)之交的海洋酸化進(jìn)行了論證,很多學(xué)者在報(bào)道近地表侵蝕面時(shí),也指出不排除水下溶蝕的可能[71,91],如Farabegolietal.[81]認(rèn)為意大利兩處深潮下環(huán)境的PTB剖面中平行不整合面的形成可能與酸性大氣淡水注入和酸雨直接入海有關(guān)。但Payneetal.[7]和Lehrmann[36]關(guān)于酸化海洋水下溶蝕的證據(jù)都是基于缺乏近地表暴露證據(jù)的反證,缺乏水下溶蝕的直接巖石學(xué)證據(jù),目前這一理論還存在爭(zhēng)議。
2.1.3 微生物巖
Reinhardtetal.[43]和吳亞生等[53]認(rèn)為華南板塊重慶地區(qū)生物礁頂部是潟湖相的藻屑沉積,其上為潮坪沉積,最后為喀斯特面(覆蓋著復(fù)合多種礦物碎屑的黏土層),代表晚二疊紀(jì)末期的海平面下降。但Wignalletal.[20]以及Kershawetal.[23-24]認(rèn)為礁之上的潮坪白云巖可能是微生物巖,代表較深水、貧氧的環(huán)境,此層之上的薄層泥晶灰?guī)r,含草莓狀黃鐵礦和貧氧動(dòng)物群Claraia和Planolites,代表更加缺氧的環(huán)境,界線地層內(nèi)不存在出露和喀斯特化的證據(jù),并認(rèn)為是海水加深和缺氧環(huán)境導(dǎo)致了生物集群絕滅。
此外,Wignalletal.[22]在西藏南部色龍PTB剖面中也描述了一層“疊層石”層,但Shenetal.[63]認(rèn)為該層為紋層狀鈣結(jié)殼,其發(fā)育滲流特征,鈣結(jié)殼從頂向下形成了鐘乳石或微型鐘乳石結(jié)構(gòu),鈣結(jié)殼內(nèi)的角礫為綠灰色粉砂質(zhì)頁(yè)巖碎屑,不是來(lái)自附近的層位,可能指示了LST時(shí)期階段性小型海平面下降導(dǎo)致的暴露和再改造,因此鈣結(jié)殼底部標(biāo)志著層序界面,其上的Waagenites Bed至Otoceras Bed記錄了巖相的快速向上變深,由Waagenites Bed的海百合莖顆粒巖向上變?yōu)镺toceras Bed的薄層、含壓溶縫的泥粒巖,生物擾動(dòng)向上變?nèi)?,黃鐵礦向上變多,反映了PTB之下的初始海泛。
2.2 區(qū)域性古地貌(古海拔)差異
在全球海平面下降等時(shí)的背景下[81],不同地區(qū)的沉積間斷時(shí)間、海平面下降次數(shù)實(shí)際各不相同,這可能主要受區(qū)域性古地貌(古海拔)的影響[61,80](圖5),古地貌高的開(kāi)闊臺(tái)地礁、灘相區(qū)和臺(tái)地邊緣相區(qū)最先受到海平面下降影響[61],地層暴露、地表被剝蝕,水體越淺沉積間斷時(shí)間越長(zhǎng),或出現(xiàn)多次高頻低幅海平面下降事件;而古地貌低的深水相的開(kāi)闊臺(tái)地潮下、斜坡和盆地等連續(xù)沉積區(qū),可能表現(xiàn)為整合接觸或假整合接觸、沉積相的變淺或無(wú)變化、深水動(dòng)物群轉(zhuǎn)變?yōu)闇\水動(dòng)物群等,未見(jiàn)暴露證據(jù)或牙形石帶間斷[80-81,91,99]。
2.2.1 深水PTB剖面對(duì)海平面下降事件的響應(yīng)
東特提斯海域華南板塊深水相與淺水相PTB剖面同時(shí)存在(圖2B),為PTB海平面變化對(duì)比研究提供了良好的基礎(chǔ),海平面下降事件在淺水相表現(xiàn)為近地表暴露和沉積間斷,而多數(shù)深水相剖面表現(xiàn)為PTB連續(xù)沉積(圖2B,引自Yinetal.[91])。世界范圍其他地區(qū)深水相PTB剖面的“海平面上升”現(xiàn)象,可能是受區(qū)域性構(gòu)造沉降、沉積物供給、氣候等影響導(dǎo)致的相對(duì)海平面上升,也可能是缺乏對(duì)二疊紀(jì)末海平面下降事件進(jìn)行系統(tǒng)研究的結(jié)果。來(lái)自華南板塊的深水相剖面(湖北赤壁剖面[87]、浙江煤山剖面[55,67,89]、湖南慈江埡剖面[84]、廣西東攀剖面[62,64,68,89])報(bào)道了海平面下降的證據(jù),因此,深水剖面對(duì)全球海平面下降可能也是有所響應(yīng)的,其主要應(yīng)通過(guò)沉積相、巖相的垂向變化及不同環(huán)境古生物組合的垂向變化綜合分析識(shí)別。
2.2.2 淺水PTB剖面對(duì)海平面下降事件的響應(yīng)
在全球海平面下降等時(shí)的背景下,受區(qū)域性古地貌(古海拔差異),不同剖面沉積記錄中的沉積間斷時(shí)間存在差異。有的剖面在晚二疊世可能處于地貌高地,其沉積間斷時(shí)間可以跨越1到3個(gè)牙形石帶,如貴州羅甸大文剖面[65]和貴州打講剖面[99]的沉積間斷缺失多達(dá)三個(gè)牙形石帶(C.meishanensis—C.taylorae帶)。而有些淺水剖面可能由于不具有明顯正地貌凸起,海平面下降造成的沉積—成巖響應(yīng)較弱,沉積間斷可能小于1個(gè)牙形石帶[63,72],由于研究精度較低或采用間距較寬導(dǎo)致的海平面下降事件未被識(shí)別常常是引起爭(zhēng)議的又一重要原因之一,如意大利Dolomite山脈地區(qū)的PTB淺水臺(tái)地剖面的兩個(gè)不整合面的沉積間斷時(shí)間均小于一個(gè)牙形石帶[69,81],早期研究在較低的研究精度下多未能識(shí)別[16-17,31-33,107];此外,意大利附近的斯諾文尼亞PTB剖面也出現(xiàn)了類似現(xiàn)象[59],其P-T巖石地層界線主要表現(xiàn)為1 cm厚的界線黏土,未見(jiàn)明顯的侵蝕,Dolenecetal.[59]主要通過(guò)主、微量元素在界線之上的地層高度富集(反映了陸源硅質(zhì)碎屑的大量注入)以及沉積環(huán)境由界線之下的缺氧環(huán)境(深灰色云巖)轉(zhuǎn)換為界線之上的富氧環(huán)境(紅色碎屑巖與云巖,Th/U值大于2)得出海平面發(fā)生下降的結(jié)論。
圖5 打講—沿溝—煤山—上寺PTB剖面簡(jiǎn)化地層對(duì)比圖(修改自田力,2015)Fig.5 Simplified correlation of Dajiang-Yangou-Meishan-Shangsi PTB stratigraphic sections (revised from Tian, 2015)
(1) Hallam在1989年首次提出二疊紀(jì)末海平面上升過(guò)程中底層缺氧海水的上涌可能是造成生物滅絕的重要機(jī)制后,以Wignall等學(xué)者為代表“上升論”得到了較多支持,該觀點(diǎn)的提出主要是由于認(rèn)為層序界面與圍繞生物滅絕事件的相關(guān)PTB事件無(wú)關(guān)或在PTB附近未識(shí)別出層序界面,對(duì)層序界線附近地層缺乏深入研究導(dǎo)致海平面下降事件未能引起重視。
(2) 自吳亞生等在2003年提出二疊紀(jì)—三疊紀(jì)之交存在全球海平面下降后,多條剖面(主要在特提斯海域)PTB界線之下的海平面下降證據(jù)被廣泛報(bào)道,二疊紀(jì)末存在海平面下降已成為主流觀點(diǎn)。二疊紀(jì)末海平面下降形成了一個(gè)三級(jí)層序的Ⅱ型層序界面(SB2),其常與第一幕生物滅絕界線一致,因此該海平面下降事件應(yīng)歸屬于PTB事件。層序界面之上的陸棚邊緣體系域(SMST)和初始海侵體系域(TST)沉積物中常包含二疊級(jí)孑遺生物,三疊紀(jì)標(biāo)志牙形石一般出現(xiàn)在TST底界之上幾厘米或數(shù)十厘米處,說(shuō)明二疊紀(jì)末即已發(fā)生了海平面上升,由此構(gòu)成了PTB附近的“下降—上升”旋回。
(3) 目前關(guān)于PTB附近海平面變化的原因尚無(wú)定論,海平面下降可能與泛大陸聚合有關(guān),海平面上升則可能與全球變暖導(dǎo)致的海洋擴(kuò)張有關(guān)。
(4) 全球PTB海平面變化研究過(guò)程中產(chǎn)生爭(zhēng)議的原因,主要受單剖面或小區(qū)域范圍內(nèi)相對(duì)海平面變化研究進(jìn)展制約,具體包括兩個(gè)方面:①對(duì)海平面變化標(biāo)志性證據(jù)的解釋存在差異,導(dǎo)致同一地區(qū)甚至同一剖面的相對(duì)海平面變化得出相反的結(jié)論,多條剖面的標(biāo)志性證據(jù)解釋差異可能會(huì)影響對(duì)全球海平面變化的判識(shí);②在全球海平面下降等時(shí)的背景下,由于研究區(qū)位置分散,區(qū)域性古地貌(古海拔)存在差異,造成海平面下降事件在不同剖面上的沉積記錄不同,淺水相區(qū)以暴露剝蝕和表生巖溶作用廣泛發(fā)育為主,形成的沉積間斷時(shí)間較長(zhǎng),而深水相區(qū)為整合接觸或假整合接觸,未見(jiàn)暴露證據(jù)或牙形石帶間斷。
致謝 中國(guó)科學(xué)院地質(zhì)與地球物理研究所吳亞生老師以及三位評(píng)審專家對(duì)本文提出了寶貴的修改意見(jiàn)與建議,在此深表感謝。
References)
1 Erwin D H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago[M]. Princeton, NJ: Princeton University Press, 2006.
2 Bond D P G, Wignall P B. Large igneous provinces and mass extinctions: an update[J]. Geological Society of America Special Papers, 2014, 505: 29-55.
3 Joachimski M M, Lai Xulong, Shen Shuzhong, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction[J]. Geology, 2012, 40(3): 195-198.
4 Cui Ying, Kump L R. Global warming and the end-Permian extinction event: proxy and modeling perspectives[J]. Earth-Science Reviews, 2015, 149: 5-22.
5 Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea[J]. Science, 1997, 276(5310): 235-238.
6 Wignall P B, Twitchett R J. Extent, duration, and nature of the Permian-Triassic superanoxic event[J]. Geological Society of Amercica Special Papers, 2002, 356: 395-413.
7 Payne J L, Lehrmann D J, Follett D, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events[J]. Geological Society of America Bulletin, 2007, 119(7/8): 771-784.
8 Payne J L, Turchyn A V,Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8543-8548.
9 Clarkson M O, Kasemann S A, Wood R A, et al. Ocean acidification and the Permo-Triassic mass extinction[J]. Science, 2015, 348(6231): 229-232.
10 Algeo T J, Chen Z Q, Fraiser M L, et al. Terrestrial-marine teleconnections in the collapse and rebuilding of early Triassic marine ecosystems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 1-11.
11 Newell N D. Revolutions in the history of life[J]. Geological Society of America Special Papers, 1967, 89: 63-92.
12 Schopf T J M. Permo-Triassic extinctions: relation to sea-floor spreading[J]. The Journal of Geology, 1974, 82(2): 129-143.
13 Simberloff D S. Permo-Triassic extinctions: effects of area on biotic equilibrium[J]. The Journal of Geology, 1974, 82(2): 267-274.
14 Holser W, Magaritz M. Events near the Permian-Triassic boundary[J]. Modern Geology, 1987, 11(2): 155-180.
15 金玉玕,尚慶華,曹長(zhǎng)群. 二疊紀(jì)地層研究述評(píng)[J]. 地層學(xué)雜志,2000,24(2):99-108. [Jin Yugan, Shang Qinghua, Cao Changqun. A review of Permian stratigraphy[J]. Journal of Stratigraphy, 2000, 24(2): 99-108.]
16 Hallam A. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1989, 325(1228): 437-455.
17 Wignall P B, Hallam A. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 93(1/2): 21-46.
18 Wignall P B, Hallam A. Griesbachian (Earliest Triassic) palaeoenvironmental changes in the Salt Range, Pakistan and southeast China and their bearing on the Permo-Triassic mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 102(3/4): 215-237.
19 Twitchett R J. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 190-213.
20 Wignall P B, Hallam A. Facies change and the end-Permian mass extinction in S.E. Sichuan, China[J]. Palaios, 1996, 11(6): 587-596.
21 Wignall P B, Kozur H, Hallam A. On the timing of palaeoenvironmental changes at the Permo-Triassic (P/TR) boundary using conodont biostratigraphy[J]. Historical Biology, 1996, 12(1): 39-62.
22 Wignall P B, Newton R. Contrasting deep-water records from the upper Permian and lower Triassic of south Tibet and British Columbia: evidence for a diachronous mass extinction[J]. Palaios, 2003, 18(2): 153-167.
23 Kershaw S, Zhang Tingshan, Lan Guangzhi. A microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 146(1/2/3/4): 1-18.
24 Kershaw S, Guo Li, Swift A, et al. Microbialites in the Permian-Triassic boundary interval in central China: structure, age and distribution[J]. Facies, 2002, 47(1): 83-89.
25 Erwin D H, Bowring S A, Jin Yugan. End-Permian mass extinctions: a review[J]. Geological Society of America Special papers, 2002, 356: 363-383.
26 Brookfield M E, Twitchett R J, Goodings C. Palaeoenvironments of the Permian-Triassic transition sections in Kashmir, India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198(3/4): 353-371.
27 Kidder D L, Worsley T R. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203(3/4): 207-237.
28 Algeo T J, Hannigan R, Rowe H, et al. Sequencing events across the Permian-Triassic boundary, Guryul Ravine (Kashmir, India)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 328-346.
29 Haas J, Demény A, Hips K, et al. Biotic and environmental changes in the Permian-Triassic boundary interval recorded on a western Tethyan ramp in the Bükk Mountains, Hungary[J]. Global and Planetary Change, 2007, 55(1/2/3): 136-154.
30 Hallam A, Wignall P B. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 1999, 48(4): 217-250.
31 Noé S U. Facies and paleogeography of the marine Upper Permian and of the Permian-Triassic boundary in the Southern Alps (Bellerophon formation, Tesero Horizon)[J]. Facies, 1987, 16(1): 89-141.
32 Baud A, Magaritz M, Holser W T. Permian-Triassic of the Tethys: carbon isotope studies[J]. Geologische Rundschau, 1989, 78(2): 649-677.
33 Scholger R, Mauritsch H J, Brandner R. Permian-Triassic boundary magnetostratigraphy from the Southern Alps (Italy)[J]. Earth and Planetary Science Letters, 2000, 176(3/4): 495-508.
34 Insalaco E, Virgone A, Courme B, et al. Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture[J]. GeoArabia, 2006, 11(2): 75-176.
35 Kershaw S, Li Yue, Crasquin-Soleau S, et al. Earliest Triassic microbialites in the South China block and other areas: controls on their growth and distribution[J]. Facies, 2007, 53(3): 409-425.
36 Lehrmann D J, Bentz J M, Wood T, et al. Environmental controls on the genesis of marine microbialites and dissolution surface associated with the end-Permian mass extinction: new sections and observations from the Nanpanjiang Basin, South China[J]. PALAIOS, 2015, 30(7): 529-552.
37 Scotese C R. Atlas of middle & late Permian and Triassic paleogeographic maps[J]. Paleomap Projection, 2014, 3-4: 49.
38 Hallam A. Discussion on oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary[J]. Journal of the Geological Society, 1999, 156(1): 208.
39 Hotinski R M, Kump L R, Najjar R G. Opening Pandora's Box: the impact of open system modeling on interpretations of anoxia[J]. Paleoceanography, 2000, 15(3): 267-279.
40 Song Haijun, Wignall P B, Tong Jinnan, et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery[J]. Earth and Planetary Science Letters, 2012, 353-354: 12-21.
41 Erwin D H. The Permo-Triassic extinction[J]. Nature, 1994, 367(6460): 231-236.
42 Kozur H W. Some aspects of the Permian-Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 143(4): 227-272.
43 Reinhardt J W. Uppermost Permian reefs and Permo-Triassic sedimentary facies from the southeastern margin of Sichuan Basin, China[J]. Facies, 1988, 18(1): 231-287.
44 Flügel E, Reinhardt J. Uppermost Permian reefs in Skyros (Greece) and Sichuan (China): implications for the late Permian extinction event[J]. PALAIOS, 1989, 4(6): 502-518.
45 Baud A, Atudorei V, Sharp Z. Late Permian and early Triassic evolution of the northern Indian margin: carbon isotope and sequence stratigraphy[J]. Geodinamica Acta, 1996, 9(2/3): 57-77.
46 Sano H, Nakashima K. Lowermost Triassic (Griesbachian) microbial bindstone-cementstone facies, southwest Japan[J]. Facies, 1997, 36(1): 1-24.
47 Baud A, Cirillis S, Marcoux J. Biotic response to mass extinction: the lowermost Triassic microbialites[J]. Facies, 1997, 36(1): 238-242.
48 Farabegoli E, Perri M C. Permian/Triassic boundary and early Triassic of the Bulla section (southern Alps, Italy): lithostratigraphy, facies and conodont biostratigraphy[J]. Giornale di Geologia, 1998, 60(Spec Issue): 292-311.
49 Heydari E, Hassanzadeh J, Wade W J, et al. Permian-Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: Part 1-Sedimentology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193(3/4): 405-423.
50 ünal E, Altiner D, Yilmaz I ?, et al. Cyclic sedimentation across the Permian-Triassic boundary (central Taurides, Turkey)[J]. Rivista Italiana di Paleontologia e Stratigrafia, 2003, 109(2): 359-376.
51 Mertmann D. Evolution of the marine Permian carbonate platform in the Salt Range (Pakistan)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 191(3/4): 373-384.
52 楊遵儀,吳順寶,殷紅,等. 華南二疊: 三疊紀(jì)過(guò)渡期地質(zhì)事件[M]. 北京: 地質(zhì)出版社,1991. [Yang Zunyi, Wu Shunbao, Yin Hong, et al. Permo-Triassic Events of South China[M]. Beijing: Geological Publishing House, 1991.]
53 吳亞生,范嘉松,金玉玕. 晚二疊世末的生物礁出露及其意義[J]. 地質(zhì)學(xué)報(bào),2003,77(3):289-296. [Wu Yasheng, Fan Jiasong, Jin Yugan. Emergence of the Late Permian Changhsingian reefs at the end of the Permian[J]. Acta Geologica Sinica, 2003, 77(3): 289-296.]
54 Wu Yasheng, Fan Jiasong. Quantitative evaluation of the sea-level drop at the end-Permian: based on reefs[J]. Acta Geologica Sinica, 2003, 77(1): 95-102.
55 張克信,童金南,殷鴻福,等. 浙江長(zhǎng)興二疊系—三疊系界線剖面層序地層研究[J]. 地質(zhì)學(xué)報(bào),1996,70(3):270-281. [Zhang Kexin, Tong Jinnan, Yin Hongfu, et al. Sequence stratigraphy of the Permian-Triassic boundary section of Changxing, Zhengjiang[J]. Acta Geologica Sinica, 1996, 70(3): 270-281.]
56 陸永潮,李思田,葉洪波,等. 海平面升降變化對(duì)貴州紫云礁體生長(zhǎng)的控制[J]. 地球科學(xué),1999,24(6):585-589. [Lu Yongchao, Li Sitian, Ye Hongbo, et al. Effect of sea level changes on Ziyun Reef accretion in Guizhou province, China[J]. Earth Science, 1999, 24(6): 585-589.]
57 馬永生,牟傳龍,郭彤樓,等. 四川盆地東北部飛仙關(guān)組層序地層與儲(chǔ)層分布[J]. 礦物巖石,2005,25(4):73-79. [Ma Yongsheng, Mu Chuanlong, Guo Tonglou, et al. Sequence stratigraphy and reservoir distribution of Feixianguan Formation in northeastern Sichuan[J]. Journal of Mineralogy and Petrology, 2005, 25(4): 73-79.]
58 Baud A, Richoz S, Marcoux J. Calcimicrobial cap rocks from the basal Triassic units: western Taurus occurrences (SW Turkey)[J]. Comptes Rendus Palevol, 2005, 4(6/7): 569-582.
59 Dolenec M. The Permian Triassic boundary in the Karavanke Mountains (Brsnina section, Slovenia): the ratio of Th/U as a possible indicator of Changing redox conditions at the P/T transition[J]. Materials and Geoenvironment, 2005, 52(2): 437-445.
60 吳亞生,Yang Wan,姜紅霞,等. 江西修水二疊紀(jì)—三疊紀(jì)界線地層海平面下降的巖石學(xué)證據(jù)[J]. 巖石學(xué)報(bào),2006,22(12):3039-3046. [Wu Yasheng, Yang Wan, Jiang Hongxia, et al. Petrologic evidence for sea-level drop in latest Permian in Jiangxi province, China and its meanings for the mass extinction[J]. Acta Petrologica Sinica, 2006, 22(12): 3039-3046.]
61 吳亞生,姜紅霞,廖太平. 重慶老龍洞二疊系—三疊系界線地層的海平面下降事件[J]. 巖石學(xué)報(bào),2006,22(9):2405-2412. [Wu Yasheng, Jiang Hongxia, Liao Taiping. Sea-level drops in the Permian-Triassic boundary section at Laolongdong, Chongqing, Sichuan province[J]. Acta Petrologica Sinica, 2006, 22(9): 2405-2412.]
62 張凡,馮慶來(lái),蒙有言,等. 廣西柳橋深水相二疊系/三疊系界線剖面有機(jī)碳同位素地層學(xué)對(duì)比研究及事件響應(yīng)[J]. 現(xiàn)代地質(zhì),2006,20(1):42-48. [Zhang Fan, Feng Qinglai, Meng Youyan, et al. Stratigraphy of organic carbon isotope and associated events across the Permian/Triassic boundary in the Dongpan deep-water section in Liuqiao area, Guangxi, South China[J]. Geoscience, 2006, 20(1): 42-48.]
63 Shen Shuzhong, Cao Changqun, Henderson C M, et al. End-Permian mass extinction pattern in the northern peri-Gondwanan region[J]. Palaeoworld, 2006, 15(1): 3-30.
64 張凡,馮慶來(lái),何衛(wèi)紅,等. 廣西東攀P—T界線深水相剖面與煤山剖面地層學(xué)對(duì)比[J]. 地質(zhì)科技情報(bào),2007,26(1):41-45. [Zhang Fan, Feng Qinglai, He Weihong, et al. Multidisciplinary stratigraphy correlation of the Permian-Triassic boundary between Dongpan deep-water environment section, Guangxi and Meishan section[J]. Geological Science and Technology Information, 2007, 26(1): 41-45.]
65 劉建波,江崎洋一,楊守仁,等. 貴州羅甸二疊紀(jì)末生物大滅絕事件后沉積的微生物巖的時(shí)代和沉積學(xué)特征[J]. 古地理學(xué)報(bào),2007,9(5):473-486. [Liu Jianbo, Yoichi E, Yang Shouren, et al. Age and sedimentology of microbialites after the end-permian mass extinction in Luodian, Guizhou province[J]. Journal of Palaeogeography, 2007, 9(5): 473-486.]
66 姜紅霞,吳亞生,袁生虎. 重慶二疊—三疊系界線地層的干裂縫和侵蝕面及其意義[J]. 高校地質(zhì)學(xué)報(bào),2007,13(1):53-59. [Jiang Hongxia, Wu Yasheng, Yuan Shenghu. Dessication cracks and erosional surface in the Permian-Triassic boundary section in Chongqing[J]. Geological Journal of China Universities, 2007, 13(1): 53-59.]
67 曹長(zhǎng)群,鄭全鋒. 浙江煤山D剖面二疊系長(zhǎng)興組高精度巖石地層[J]. 地層學(xué)雜志,2007,31(1):14-22. [Cao Changqun, Zheng Quanfeng. High-resolution lithostratigraphy of the Changhsingian stage in Meishan section D, Zhejiang[J]. Journal of Stratigraphy, 2007, 31(1): 14-22.]
68 Feng Qinglai, He Weihong, Gu Songzhu, et al. Radiolarian evolution during the latest Permian in South China[J]. Global and Planetary Change, 2007, 55(1/2/3): 177-192.
69 Farabegoli E, Perri M C, Posenato R. Environmental and biotic changes across the Permian-Triassic boundary in western Tethys: the Bulla parastratotype, Italy[J]. Global and Planetary Change, 2007, 55(1/2/3): 109-135.
70 陳軍,Henderson C M,沈樹(shù)忠. 浙江黃芝山剖面二疊—三疊系界線附近的牙形類序列及其地層對(duì)比[J]. 古生物學(xué)報(bào),2008,47(1):91-114. [Chen Jun, Henderson C M, Shen Shuzhong. Conodont succession around the Permian-Triassic boundary at the Huangzhishan section, Zhejiang and its stratigraphic correlation[J]. Acta Palaeontologica Sinica, 2008, 47(1): 91-114.]
71 Ezaki Y, Liu Jianbo, Nagano T, et al. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform: initiation and cessation of a microbial regime[J]. PALAIOS, 2008, 23(6): 356-369.
72 杜永燈,張磊,王偉潔,等. 浙江湖州黃芝山剖面長(zhǎng)興組頂部古剝蝕面的識(shí)別及其地質(zhì)意義[J]. 地質(zhì)論評(píng),2009,55(4):503-508. [Du Yongdeng, Zhang Lei, Wang Weijie, et al. Paleo weathering crust at the top of the Changxing Formation in Huangzhishan section, Huzhou, Zhejiang, and its geological significance[J]. Geological Review, 2009, 55(4): 503-508.]
73 Collin P Y, Kershaw S, Crasquin-Soleau S, et al. Facies changes and diagenetic processes across the Permian-Triassic boundary event horizon, Great Bank of Guizhou, South China: a controversy of erosion and dissolution[J]. Sedimentology, 2009, 56(3): 677-693.
74 Rahimpour-Bonab H, Asadi-Eskandar A, Sonei R. Effects of the Permian-Triassic boundary on reservoir characteristics of the south Pars gas field, Persian Gulf[J]. Geological Journal, 2009, 44(3): 341-364.
75 羅冰,譚秀成,李凌,等. 蜀南地區(qū)長(zhǎng)興組頂部巖溶不整合的發(fā)現(xiàn)及其油氣地質(zhì)意義[J]. 石油學(xué)報(bào),2010,31(3):408-414. [Luo Bing, Tan Xiucheng, Li Ling, et al. Discovery and geologic significance of paleokarst unconformity between Changxing Formation and Feixianguan Formation in Shunan area of Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31(3): 408-414.]
76 Wu Yasheng, Jiang Hongxia, Fan Jiasong. Evidence for sea-level falls in the Permian-Triassic transition in the Ziyun area, South China[J]. Geological Journal, 2010, 45(2/3): 170-185.
77 Richoz S, Krystyn L, Baud A, et al. Permian-Triassic boundary interval in the Middle East (Iran and N. Oman): progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution[J]. Journal of Asian Earth Sciences, 2010, 39(4): 236-253.
78 Fio K, Spangenberg J E, Vlahovi? I, et al. Stable isotope and trace element stratigraphy across the Permian-Triassic transition: a redefinition of the boundary in the Velebit Mountain, Croatia[J]. Chemical Geology, 2010, 278(1/2): 38-57.
79 李飛,吳夏. 貴州沫陽(yáng)剖面二疊紀(jì)末淺水沉積特征及其古環(huán)境意義[J]. 沉積學(xué)報(bào),2012,30(4):679-688. [Li Fei, Wu Xia. Characteristics and palaeoenvironmental significances of shallow-marine sediments in the latest Permian, Moyang Section, Guizhou[J]. Acta Sedimentologica Sinica, 2012, 30(4): 679-688.]
80 周剛,鄭榮才,羅平,等. 川東華鎣二疊系—三疊系界線地層地質(zhì)事件與元素地球化學(xué)響應(yīng)[J]. 地球科學(xué),2012,37(增刊1):101-110. [Zhou Gang, Zheng Rongcai, Luo Ping, et al. Geological events and their geochemical responses of the Permian-Triassic boundary, Huaying, eastern Sichuan[J]. Earth Science, 2012, 37(Suppl.1): 101-110.]
81 Farabegoli E, Perri M C. Millennial physical events and the end-Permian mass mortality in the western Palaeotethys: timing and primary causes[M]//Talent J A. Earth and Life. Netherlands: Springer, 2012: 719-758.
82 Yang Bo, Lai Xulong, Wignall P B, et al. A newly discovered earliest Triassic chert at Gaimao section, Guizhou, southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 344-345: 69-77.
83 Sun Dongying, Tong Jinnan, Xiong Yanlin, et al. Conodont biostratigraphy and evolution across Permian-Triassic boundary at Yangou Section, Leping, Jiangxi Province, South China[J]. Journal of Earth Science, 2012, 23(3): 311-325.
84 鄭全鋒,丁奕,曹長(zhǎng)群. 湖南慈利江埡剖面二疊系—三疊系界線層序的沉積微相類型、沉積環(huán)境和海平面變化[J]. 巖石學(xué)報(bào),2013,29(10):3637-3648. [Zheng Quanfeng, Ding Yi, Cao Changqun. Microfacies, sedimentary environment and sea-level changes of the Permian-Triassic boundary succession in the Jiangya section, Cili County, Hunan province[J]. Acta Petrologica Sinica, 2013, 29(10): 3637-3648.]
85 Jiang Haishui, Lai Xulong, Sun Yadong, et al. Permian-Triassic conodonts from Dajiang (Guizhou, South China) and their implication for the age of microbialite deposition in the aftermath of the End-Permian mass extinction[J]. Journal of Earth Science, 2014, 25(3): 413-430.
86 黎虹瑋,唐浩,蘇成鵬,等. 四川盆地東部涪陵地區(qū)上二疊統(tǒng)長(zhǎng)興組頂部風(fēng)化殼特征及地質(zhì)意義[J]. 古地理學(xué)報(bào),2015,17(4):477-492. [Li Hongwei, Tang Hao, Su Chengpeng, et al. Characteristics of weathering crust at top of the upper Permian Changxing Formation in Fuling area, eastern Sichuan Basin and its geological significance[J]. Journal of Palaeogeography, 2015, 17(4): 477-492.]
87 鄧寶柱,余黎雪,王永標(biāo),等. 湖北赤壁二疊紀(jì)—三疊紀(jì)之交古海洋沉積環(huán)境演化[J]. 地球科學(xué),2015,40(2):317-326. [Deng Baozhu, Yu Lixue, Wang Yongbiao, et al. Evolution of marine conditions and sedimentation during the Permian-Triassic Transition in Chibi of Hubei province[J]. Earth Science, 2015, 40(2): 317-326.]
88 Eltom H A, Abdullatif O M, Babalola L O, et al. Geochemical characterization of the Permian-Triassic transition at outcrop, central Saudi Arabia[J]. Journal of Petroleum Geology, 2016, 39(1): 95-113.
89 Yin Hongfu, Feng Qinglai, Lai Xulong, et al. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary[J]. Global and Planetary Change, 2007, 55(1/2/3): 1-20.
90 王海峰,劉建波,江崎洋一. 貴州羅甸大文二疊—三疊系界線剖面海平面變化及其全球?qū)Ρ萚J]. 北京大學(xué)學(xué)報(bào):自然科學(xué)版,2012,48(4):589-602. [Wang Haifeng, Liu Jianbo, Yoichi E. Sea-level changes at the Dawen Permian-Triassic boundary section of Luodian, Guizhou province, South China: a global correlation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(4): 589-602.]
91 Yin Hongfu, Jiang Haishui, Xia Wenchen, et al. The end-Permian regression in South China and its implication on mass extinction[J]. Earth-Science Reviews, 2014, 137: 19-33.
92 殷鴻福,童金南,丁梅華,等. 揚(yáng)子區(qū)晚二疊世—中三疊世海平面變化[J]. 地球科學(xué)-中國(guó)地質(zhì)大學(xué)學(xué)報(bào),1994,39(5):627-632. [Yin Hongfu, Tong Jinnan, Ding Meihuan, et al. Late Permian-middle Triassic sea level changes of Yangtze platform[J]. Earth Science -Journal of China University of Geosciences, 1994, 19(5): 627-632.].
93 殷鴻福. 二疊系—三疊系研究的進(jìn)展[J]. 地球科學(xué)進(jìn)展,1994,9(2):1-10. [Yin Hongfu. Advancements of Permian and Triassic research[J]. Advance in Earth Science, 1994, 9(2): 1-10.]
94 殷鴻福,宋海軍. 古、中生代之交生物大滅絕與泛大陸聚合[J]. 中國(guó)科學(xué)(D輯):地球科學(xué),2013,43(10):1539-1552. [Yin Hongfu, Song Haijun. Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition[J]. Science China (Seri.D): Earth Sciences, 2013, 43(10): 1539-1552.]
95 覃建雄,曾允孚,陳洪德,等. 西南地區(qū)二疊紀(jì)層序地層及海平面變化[J]. 巖相古地理,1998,18(1):19-35. [Qin Jianxiong, Zeng Yunfu, Chen Hongde, et al. Permian sequence stratigraphy and sea level changes in southwestern China[J]. Sedimentary Facies and Palaeogeography, 1998, 18(1): 19-35.]
96 馮增昭,楊玉卿,金振奎,等. 中國(guó)南方二疊紀(jì)巖相古地理[J]. 沉積學(xué)報(bào),1996,14(2):3-12. [Feng Zengzhao, Yang Yuqing, Jin Zhenkui, et al. Lithofacies Paleogeography of the Permian of South China[J]. Acta Sedimentologica Sinica, 1996, 14(2): 3-12.]
97 彭元橋,殷鴻福. 古—中生代之交的全球變化與生物效應(yīng)[J]. 地學(xué)前緣,2002,9(3):85-93. [Peng Yuanqiao, Yin Hongfu. The global changes and bio-effects across the Paleozoic-Mesozoic transition[J]. Earth Science Frontiers, 2002, 9(3): 85-93.]
98 Wu Yasheng, Yuan Xiaohong, Jiang Hongxia, et al. Coevality of the sea-level fall and main mass extinction in the Permian-Triassic transition in Xiushui, Jiangxi Province, southern China[J]. Journal of Palaeogeography, 2014, 3(3): 309-322.
99 田力. 華南古、中生代之交碳酸鹽巖相區(qū)生物—環(huán)境演變[D]. 北京: 中國(guó)地質(zhì)大學(xué),2015. [Tian Li. Reconstruction of the biotic and environmental changes during Paleozoic-Mesozoic transition of carbonate facies in South China[D]. Beijing: China University of Geosciences, 2015.]
100 劉麗靜,姜紅霞,吳亞生,等. 中國(guó)南方晚二疊世—早三疊世礁區(qū)生物群落演替序列與古環(huán)境變化——以四川盆地東北部盤龍洞剖面為例[J]. 中國(guó)科學(xué)(D輯):地球科學(xué),2014,44(4):617-633. [Liu Lijing, Jiang Hongxia, Wu Yasheng, et al. Community replacement sequences and paleoenvironmental changes in reef areas of South China from Late Permian to Early Triassic exemplified by Panlongdong section in northeastern Sichuan Basin[J]. Science China (Seri.D): Earth Sciences, 2014, 44(4): 617-633.]
101 沈樹(shù)忠,朱茂炎,王向東,等. 新元古代—寒武紀(jì)與二疊—三疊紀(jì)轉(zhuǎn)折時(shí)期生物和地質(zhì)事件及其環(huán)境背景之比較[J]. 中國(guó)科學(xué)(D輯):地球科學(xué),2010,40(9):1228-1240. [Shen Shuzhong, Zhu Maoyan, Wang Xiangdong, et al. A comparison of the biological, geological events and environmental backgrounds between the Neoproterozoic-Cambrian and Permian-Triassic transitions[J]. Science China (Seri.D): Earth Sciences, 2010, 40(9): 1228-1240.]
102 Yin Hongfu, Xie Shucheng, Luo Genming, et al. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan[J]. Earth-Science Reviews, 2012, 115(3): 163-172.
103 Ezaki Y, Liu Jianbo, Adachi N. Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan province, South China: implications for the nature of oceanic conditions after the end-Permian extinction[J]. Palaios, 2003, 18(4/5): 388-402.
104 Kershaw S, Crasquin S, Li Y, et al. Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis[J]. Geobiology, 2012, 10(1): 25-47.
105 Wignall P B, Kershaw S, Collin P Y, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events: comment[J]. Geological Society of America Bulletin, 2009, 121(5/6): 954-956.
106 Kershaw S, Crasquin S, Li Yue, et al. Ocean acidification and the end-Permian mass extinction: to what extent does evidence support hypothesis?[J]. Geosciences, 2012, 2(4): 221-234.
107 Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158.
A Review of Studies on Global Changes of Sea Level Across the Permian Triassic Boundary
LI HongWei1,2LI Fei1,2HU Guang1,2TAN XiuCheng1,2,3LI Ling1,2,3
(1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; 2. Sichuan Key Laboratory of Gas Geology, Chengdu 610500, China) 3. Branch of Deposition and accumulation, Key Laboratory of Carbonate Reservoir, China National Petroleum Corporation, Chengdu 610500, China;
The issue on sea-level changes across the Permian-Triassic boundary (PTB) has been disputed by the sedimentologists for a long time. It may also have relation with the largest mass extinction event during the transition of Permian-Triassic. However, it is not quite clear about the process and mechanism of the change of sea level in light of previous studies from local- and small-scale materials. The lack of reliable evidence from integrated perspectives would go against the identification of the process and duration of global sea-level variation. In this study, we systematically reviewed the literatures on the issue of sea-level changes during the transitions of Permian-Triassic, and summarized the main views including: (1) successive transgression, and (2) regression and following quick transgression. This study also compiled the development processes of these two different views, sedimentary features in diagnostic sections, the possible reasons of sea-level rise/fall, as well as the relationship between mass extinction and sea-level changes. Meanwhile, the causes of dispute on sea-level changes in the PTB were discussed preliminarily from available evidence. The aim of this study is to provide some clues to further recognize the process of sea-level changes during the PTB, and to provide substantial evidence to understand the background of global sea-level changes during the Permian-Triassic transition.
Permian-Triassic boundary; sea-level change; sub-aerial exposure; mass extinction event
1000-0550(2016)06-1077-15
10.14027/j.cnki.cjxb.2016.06.007
2016-06-13; 收修改稿日期: 2016-08-30
國(guó)家科技重大專項(xiàng)項(xiàng)目(2016ZX05004002-001);國(guó)家自然科學(xué)基金(41502115)[Foundation: National Science and Technology Major Projects, No.2016ZX05004002-001; National Natural Science Foundation of China, No.41502115]
黎虹瑋 女 1991年出生 碩士研究生 儲(chǔ)層沉積學(xué) E-mail: lihw1023@163.com
李 飛 男 助理研究員 E-mail: feinan_li@163.com
P736
A