賈連奇 蔡春芳,2 李紅霞 汪天凱 張 文 孔令武
(1.中國科學(xué)院地質(zhì)與地球物理研究所 北京 100029;2.長江大學(xué) 武漢 430100;3.中國石油塔里木油田分公司勘探開發(fā)研究院 新疆庫爾勒 841000;4.中海油研究總院 北京 100028)
?
塔中地區(qū)熱化學(xué)硫酸鹽還原作用對深埋白云巖儲層的改造
賈連奇1蔡春芳1,2李紅霞1汪天凱1張 文3孔令武4
(1.中國科學(xué)院地質(zhì)與地球物理研究所 北京 100029;2.長江大學(xué) 武漢 430100;3.中國石油塔里木油田分公司勘探開發(fā)研究院 新疆庫爾勒 841000;4.中海油研究總院 北京 100028)
塔里木盆地塔中地區(qū)深埋碳酸鹽巖儲層顯示出極強(qiáng)的非均質(zhì)性。如灰?guī)r地層孔隙度極低,而含酸性氣藏的白云巖儲層最大孔隙度高達(dá)27%。然而,造成這些現(xiàn)象的原因仍然不清楚。通過巖芯、薄片、掃描電鏡觀察,結(jié)合流體包裹體均一溫度、鹽度分析,方解石、白云石的碳氧同位素測定,試圖解決這一問題。前人研究認(rèn)為,塔中地區(qū)碳酸鹽巖優(yōu)質(zhì)儲層分布主要受控于原始沉積條件(如高能的礁灘相)和表生溶蝕,熱液活動和斷裂活動也起到重要作用。然而,多期流體活動和成巖作用導(dǎo)致大量同生期和表生期形成的溶蝕孔洞被破壞。在某些井區(qū)(如ZG9井和TZ75井),埋藏溶蝕作用可能對優(yōu)質(zhì)儲層形成起到重要作用。在寒武系和奧陶系巖芯中發(fā)現(xiàn)了大量硬石膏、重晶石、黃鐵礦、瀝青、方解石等,方解石交代硫酸鹽,方解石具有較高的均一溫度及較低的碳同位素值說明其形成與熱化學(xué)硫酸鹽還原作用(TSR)有關(guān)。在發(fā)生TSR的白云巖井段,儲層物性較好,說明TSR可能對深埋儲層的改善具有促進(jìn)作用。這些認(rèn)識有助于指導(dǎo)深層寒武系碳酸鹽巖儲層的進(jìn)一步勘探。
埋藏溶蝕 熱化學(xué)硫酸鹽還原作用 寒武系 奧陶系 塔中地區(qū)
深埋碳酸鹽巖儲層(>4 500 m)是我國陸上油氣勘探發(fā)展的重要接替領(lǐng)域,意義重大[1]。目前,在塔里木盆地埋深4 500~7 000 m的碳酸鹽巖中發(fā)現(xiàn)了大量的油氣,顯示出巨大的資源潛力[1-2]。塔里木盆地最近的勘探資料顯示,深逾6 000 m的井段還存在物性較好的儲層。例如,塔深1井在8 402 m深的地層中仍發(fā)現(xiàn)直徑8 cm左右的洞穴[3-4],中深5井在深達(dá)6 200 m的中寒武統(tǒng)阿瓦塔格組粉晶白云巖地層中見到油氣顯示,中深1井在下寒武統(tǒng)肖爾布拉克組6 597.6~6 785 m井段的儲層中仍然發(fā)現(xiàn)較好的儲層,日產(chǎn)氣30 322 m3。類似地,國外碳酸鹽巖油氣勘探過程中發(fā)現(xiàn)了眾多埋深大、物性好的儲層實(shí)例[5-7]。然而,這些深埋碳酸鹽巖儲層中高孔隙的來源仍然有著較大的爭議。
一般來說,海相碳酸鹽巖的儲層物性主要受控于原始的沉積特征(如沉積相、沉積組構(gòu)、原始礦物、古氣候、海平面波動等)和后期的成巖改造(如表生期和埋藏期流體改造)[8-10]。多數(shù)情況下,深埋碳酸鹽巖儲層經(jīng)歷后期壓實(shí)、膠結(jié)、充填等成巖作用后,原生孔隙大量消失[5,11-12]。Halleyetal.[11]研究了南佛羅里達(dá)地區(qū)灰?guī)r孔隙度隨埋深的變化,發(fā)現(xiàn)由于機(jī)械壓實(shí)和膠結(jié)作用,灰?guī)r埋深>5 000 m,孔隙度<3%,埋深>6 000 m,孔隙基本上消失殆盡。塔里木盆地經(jīng)歷多期改造,多期流體活動和復(fù)雜的成巖作用,形成于同生期和表生暴露期的孔隙可能只有少部分保存下來。如果保存下來的孔隙十分有限,那么在某些巖芯上觀察到的豐富孔隙又是如何形成的?是否存在深埋藏環(huán)境下的強(qiáng)烈的溶蝕作用?
導(dǎo)致埋藏溶蝕的流體包括:有機(jī)酸、H2S、CO2、熱液流體以及熱化學(xué)硫酸鹽還原作用(TSR)形成的流體[3]。熱液流體是指比地層溫度高(>5℃)的外部流體[13],由于化學(xué)性質(zhì)與儲層流體不同,破壞了原有的水—巖平衡,于是既可能導(dǎo)致礦物溶解,也可能導(dǎo)致沉淀作用。在碳酸鹽巖儲層內(nèi)的埋藏溶蝕流體中,熱液流體被認(rèn)為是深埋優(yōu)質(zhì)儲層分布的關(guān)鍵[14-15],北美、西班牙及中東的某些優(yōu)質(zhì)白云巖儲層被認(rèn)為是深層熱液流體改造的結(jié)果[15-19]。塔中地區(qū)存在熱液流體活動已經(jīng)成為了共識[20-22],并認(rèn)為熱液流體活動對深埋碳酸鹽儲層具有明顯的改造作用[23-28]。然而,TSR對深埋碳酸鹽巖儲層的改造研究較少,只有Lietal.[29]討論了TSR對于奧陶系灰?guī)r儲層的影響。前人對于深埋碳酸鹽巖儲層的研究發(fā)現(xiàn),在高H2S含量的深埋白云巖井段經(jīng)常發(fā)現(xiàn)具有異常高的孔隙[3,30-33]。塔中地區(qū)也發(fā)現(xiàn)含有較高H2S含量的白云巖儲層,有必要探討TSR對孔隙的影響。為此本文從流體地球化學(xué)角度入手,通過59口井巖芯樣品的巖芯觀察、薄片觀察、掃描電鏡,包裹體均一溫度、鹽度,碳氧同位素等方法確定TSR發(fā)生及其對儲層的改造作用。本項(xiàng)研究對于指導(dǎo)碳酸鹽巖油氣勘探具有理論和實(shí)際意義。
塔中隆起位于塔里木盆地中部,西與巴楚隆起相接,東鄰東南隆起,南為西南坳陷,北接北部坳陷(圖1)。塔中隆起是一個在寒武紀(jì)—奧陶紀(jì)巨型褶皺背斜基礎(chǔ)上形成并長期發(fā)育的繼承性隆起,始于中晚奧陶世前,石炭紀(jì)前基本定型,海西期以后構(gòu)造以小型改造為主[34]。塔中地區(qū)具有“東西分塊,南北分帶”的構(gòu)造格局。將塔中隆起分為4個構(gòu)造單元:I.北斜坡;II.中央斷壘帶;III.南斜坡;IV.東部潛山區(qū)(圖1)。由于加里東中期強(qiáng)烈隆升,塔中地區(qū)經(jīng)歷了較長時間的剝蝕和沉積缺失,多數(shù)地區(qū)缺少一間房組、土木休克組沉積,鷹山組頂部發(fā)育準(zhǔn)層狀不整合面。奧陶系(O)為一套潮上至潮間帶的局限臺地至臺地邊緣相沉積,根據(jù)巖性、電性特征及區(qū)域?qū)Ρ龋陨隙路譃椋荷辖y(tǒng)桑塔木組、良里塔格組、中下統(tǒng)鷹山組、蓬萊壩組。上奧陶統(tǒng)為一套潮間帶局限臺地至臺地邊緣相沉積。桑塔木組(O3s)為暗色泥巖、泥灰?guī)r。良里塔格組(O3l)為中厚層狀灰色、淺灰色砂屑灰?guī)r、含泥灰?guī)r、泥灰?guī)r、生屑灰?guī)r。鷹山組(O1-2y):中、上部為中厚—巨厚層狀灰?guī)r,夾中厚—厚層狀含泥灰?guī)r,局部見一層泥質(zhì)灰?guī)r;下部為中厚—巨厚層狀含云灰?guī)r,間夾中厚層狀含泥灰?guī)r。屬藻坪—潮間帶下部或潮下邊緣灘的沉積。蓬萊壩組(O1p):上部以中厚—巨厚層狀含云灰?guī)r、云質(zhì)灰?guī)r為主,夾中厚層狀含泥灰?guī)r、灰云巖;中部以中厚—巨厚層狀云質(zhì)灰?guī)r、灰質(zhì)云巖、中厚—厚層狀灰云巖互層為主,夾中厚層狀含泥云巖、含泥云質(zhì)灰?guī)r、泥質(zhì)云巖;下部為厚—巨厚層狀灰云巖、灰質(zhì)云巖,夾一層厚的白云巖。屬于一套潮間帶—局限臺地相沉積。寒武系(∈)為一套淺海碳酸鹽臺地潮坪沉積及局限澙湖的沉積組合。根據(jù)巖性、電性特征,及區(qū)域地層對比情況,自上而下分為上統(tǒng):下丘里塔格群;中統(tǒng):阿瓦塔格組、沙依里克組;下統(tǒng):吾松格爾組、肖爾布拉克組,玉爾吐斯組。其中下丘里塔格群由巨厚層狀白云巖組成,夾中厚—厚層狀含泥云巖、灰質(zhì)云巖、含泥云巖。阿瓦塔格組上部為中厚層狀含膏泥質(zhì)云巖、膏質(zhì)云巖、泥質(zhì)云巖、含泥云巖與中厚—厚層狀含膏云巖、白云巖呈略等厚互層。沙依里克組為中厚—巨厚層狀白云巖、含灰云巖,夾一厚層狀含泥灰質(zhì)云巖。吾松格爾組為中厚—巨厚層狀含泥云巖、中厚—厚層狀泥質(zhì)云巖、泥云巖與中厚—巨厚層狀白云巖呈略等厚互層,頂部含薄層的云質(zhì)石膏巖。肖爾布拉克組上部為中厚—巨厚層狀白云巖、中厚層狀含灰云巖夾含泥云巖;中部為中厚—厚層狀泥云巖夾一厚層狀淺灰色白云巖;底部為巨厚層狀深灰色白云巖。玉爾吐斯組下部為薄層硅質(zhì)巖、黑色頁巖,上部為厚層狀深灰色白云巖。
圖1 塔中地區(qū)構(gòu)造圖Fig.1 The structural map of the Tazhong area in Tarim Basin
Choquetteetal.[35]最早提出碳酸鹽巖埋藏溶蝕成因孔隙的概念,之后得到了世界各地碳酸鹽巖儲層研究者的廣泛支持[3,14,36-39],并建立了識別埋藏成因孔隙的一些標(biāo)志,如分布于晚期裂縫、縫合線附近的孔洞、高溫成巖礦物或含油氣包裹體的礦物被溶解等。這些研究成果為深埋碳酸鹽巖油氣勘探提供依據(jù)。確定溶蝕作用與TSR有關(guān),首先需要確定溶蝕發(fā)生在深埋環(huán)境。結(jié)合前人的研究成果和我們的觀察和測試,總結(jié)出塔中地區(qū)如下深埋溶蝕的標(biāo)志:
(1) 高溫沉淀的礦物(粗晶白云石、方解石等均一溫度高的礦物)被溶蝕(圖2 A)。粗晶白云石通常充填孔洞,或沿孔洞壁向內(nèi)生長。
(2) 孔洞中充填了高溫粗晶白云石和高硫同位素值的黃鐵礦(圖2 B),溶蝕孔洞極有可能是高溫、深埋條件下溶蝕的產(chǎn)物。因?yàn)樵缙谛纬傻目锥赐嘘懺答ね恋V物、淺埋條件生物成因的富32S的黃鐵礦。
(3) 被高溫礦物交代而剩余的孔隙空間,如螢石交代方解石所殘留的孔隙(圖2 C,D)。從方解石和螢石的晶胞參數(shù)計(jì)算表明,1個方解石分子的體積為61.30 ?3,1個螢石分子的體積為40.76 ?3,因此,螢石交代方解石后體積減小33.5%,從而產(chǎn)生大量的晶間孔隙[40]。
(4) 溶蝕縫洞切穿埋藏期流體沉淀礦物,或這些礦物中發(fā)育溶蝕孔洞(圖2 E)。
圖2 深埋溶蝕識別標(biāo)志1.粗晶白云石、方解石被溶蝕,T75井,∈3,4 841.1 m,單偏光;B.黃鐵礦與粗晶白云石共生,粗晶白云石被溶蝕,TZ75井,∈3,4 830.4 m,反射光;C.方解石、螢石充填在孔洞中,發(fā)育溶孔,TZ45井,O3l,6 050.1 m,單偏光;D.灰?guī)r圍巖被熱液溶蝕,洞穴中充填螢石,TZ45井,O3l,6 050.1 m;E.晚期高溫重晶石被溶蝕,ZG51井,O3l,5 003.1 m,正交偏光;F.縫合線被溶蝕,縫合線中充填少量瀝青,ZG203,O1-2y,6 570.6 m,單偏光;G.晚期高溫方解石被溶蝕,TZ243,O1p,4 468.4 m,單偏光;H. G中方解石中包裹體照片,單偏光;I. H對應(yīng)的熒光照片,烴類包裹體發(fā)藍(lán)色熒光。Fig.2 Photomicrographs showing indicators of deep-burial dissolution
(5) 沿成巖晚期的縫合線或晚期裂縫產(chǎn)生溶蝕孔隙,這些縫合線或裂縫及其溶孔中常充填原油或?yàn)r青(圖2 F)。
(6) 含油、氣或?yàn)r青包裹體的礦物被溶解,說明溶解作用發(fā)生在油、氣充注和瀝青形成以后(圖2 G,H,I)。
TSR可能是導(dǎo)致塔中地區(qū)發(fā)生埋藏溶蝕作用的重要的成巖作用。TSR期間碳酸鹽巖發(fā)生溶解,尤其是白云石溶解作用更強(qiáng),可以用水溶硬石膏、白云石與油氣烴類反應(yīng)的機(jī)制解釋?;诖|北飛仙關(guān)組富H2S白云巖和川西貧H2S灰?guī)r的對比研究,Caietal.[3]提出水溶硬石膏、白云石能與油氣烴類反應(yīng),反應(yīng)式如下:
在TSR過程中,溶于水中的烴類與水溶相硫酸鹽在大于120C的條件下反應(yīng)[42-46]。在儲層溫度條件下,硫酸鹽是極為穩(wěn)定的,必須通過活化作用才能反應(yīng)。這種活化作用可能通過硫酸鹽與H2S,元素硫,有機(jī)含硫化合物的反應(yīng)或硫酸鎂離子對的擾動作用實(shí)現(xiàn)[47-50]。TSR能夠?qū)е聼N類部分或完全破壞,并產(chǎn)生還原形式的硫(元素硫和H2S)、氧化形式的碳(碳酸鹽巖礦物和CO2)、水和有機(jī)含硫化合物[42,45,51-57]。
塔中地區(qū)的H2S主要是TSR成因[21,45,55,58-59]。已經(jīng)在塔中地區(qū)寒武系—奧陶系中發(fā)現(xiàn)了大量發(fā)生TSR的巖礦證據(jù),包括TZ54井下奧陶統(tǒng)硬石膏的方解石化[45]及TZ12井上奧陶統(tǒng)方解石交代重晶石[21],TZ408和TZ75等井上寒武統(tǒng)白云巖地層中方解石部分交代硬石膏的現(xiàn)象或硬石膏的方解石假晶[59],與TSR成因方解石共生的柱狀硬石膏和元素硫球狀體[60]。相似的硬石膏和黃鐵礦硫同位素和高溫的富集12C的方解石也證實(shí)發(fā)生TSR[21,45,59]。并在原油中檢測出2-硫代金剛烷、烷基—四氫噻吩、硫醇[55,58,61]等TSR相關(guān)的含硫化合物,奧陶系與石炭系原油中異常高的二苯并噻吩也被認(rèn)為是與TSR有關(guān)[62]。
本次研究也觀察到大量硫磺,TSR成因方解石,黃鐵礦及硫酸鹽共生,并發(fā)現(xiàn)TSR成因方解石交代硫酸鹽的現(xiàn)象(圖3),認(rèn)為奧陶系鷹山組碳酸鹽巖地層內(nèi)可能發(fā)生較強(qiáng)的TSR,例如ZG9井附近。ZG9最初測定的H2S含量甚至超過40%。然而,ZG9為水井,H2S在水中的溶解度明顯高于甲烷、氮?dú)?、二氧化碳等,?dǎo)致H2S含量被高估。經(jīng)過模擬計(jì)算后,H2S含量估值為5%~20%[61]。ZG9附近的多口井H2S含量大于5%,如ZG6(7.8%)、ZG501(6.98%),ZG432(7.45%)[61]。一般認(rèn)為H2S含量大于5%只能由TSR產(chǎn)生[42,47]。Caietal.[61]認(rèn)為ZG9井儲層瀝青為TSR蝕變的產(chǎn)物。白云石和方解石均一溫度(Th)指示礦物形成于高溫環(huán)境(圖4)。白云巖孔洞中充填的這些方解石碳同位素接近-8‰,具有明顯的有機(jī)碳來源(圖5)。同時具有高均一溫度(Th)和低碳同位素值表明這些方解石由TSR形成的[3,52,61,63]。方解石的鹽度較高,均大于16%,說明形成于深埋藏環(huán)境。因此,可以排除土壤有機(jī)碳源造成的碳同位素低值的可能性。
塔中地區(qū)碳酸鹽巖有效儲層的分布主要受控于高能沉積環(huán)境(如礁灘相)、表生溶蝕,熱液活動和斷裂活動也起到非常重要作用[21,28-29,60,64-65]。雖然與TSR相關(guān)的溶蝕作用不可能是塔中地區(qū)大規(guī)模儲層形成的主要機(jī)制,但是在局部地區(qū),TSR可能導(dǎo)致孔隙增加或重新分配。如ZG9井鷹山組白云巖段,其儲層物性比鄰井(如ZG203、ZG7井)同層位的灰?guī)r段好得多。下文將深入剖析ZG9井白云巖溶蝕機(jī)理。
圖3 TSR反應(yīng)中包含的各種成巖礦物(引自Jia et al.[63])A.粗晶TSR方解石與黃鐵礦共生,TZ3井,O1-2y,3 907.7 m,反射光;B.白云巖溶孔中充填元素硫,TZ243井,O1p,5 718.3 m;C.灰?guī)r圍巖孔洞中充填晶形很好的硬石膏,TZ162井,O1-2y,5 252.4 m,單偏光;D.TSR方解石交代硬石膏,TZ3井,O1-2y,3 907.7 m,正交偏光。Fig.3 Photos showing different types of diagenetic minerals involved in TSR reaction
圖4 ZG9井鷹山組白云石圍巖、孔洞充填方解石均一溫度、鹽度Fig.4 Histograms showing homogenization temperatures and salinity measured from two-phase aqueous inclusions of calcite and dolomite from the Ordovician Yingshan Formation in Well ZG9
圖5 ZG9井鷹山組白云巖圍巖、孔洞充填方解石碳氧同位素值對比圖Fig.5 Cross-plot of stable carbon and oxygen isotopic compositions for dolomite and calcite from the Ordovician Yingshan Formation in Well ZG9
ZG9井第一筒次和第三筒次取芯段均為致密灰?guī)r,物性很差(圖6A,C);第二筒次6 260.66~6 268.21 m段白云巖巖芯上發(fā)育白云石被溶蝕而形成的不規(guī)則孔洞,部分孔洞直徑到達(dá)2~4 cm(圖6B),最大孔隙度高達(dá)27%(圖7)。鏡下觀察晶間溶孔發(fā)育,白云石溶解導(dǎo)致晶體邊緣不規(guī)則呈港灣狀(圖8A,B)。從掃描電鏡的背散射圖上能夠清晰看到,固體瀝青孤立分布于孔隙中央,晶形極好的白云石被溶解,說明白云石溶蝕發(fā)生在油氣充注后(圖8C,D)。溶孔內(nèi)經(jīng)常充填晚期方解石(圖8B),卻未見晚期方解石溶解。在灰?guī)r中并未見到溶孔。ZG9井的白云巖被認(rèn)為是熱液白云巖化形成的[66],本次研究發(fā)現(xiàn)白云石均一溫度為96.1℃~121.6℃(圖4),也證實(shí)白云石形成于深埋藏環(huán)境。灰?guī)r段與白云巖段儲層物性差異明顯,顯然不能用抗壓實(shí)作用的差異來解釋,倒退溶解也解釋不了。我們認(rèn)為這一差異是與沉積時期水動力條件、原始孔隙大小有關(guān)。無論是白云巖段、還是灰?guī)r段,在白云巖化之前都是灰?guī)r,但是,兩者晶粒大小不同、原始孔隙度差異,導(dǎo)致后期深部富Mg2+的熱鹵水優(yōu)先流入相對多孔的灰?guī)r,發(fā)生了熱液白云巖化作用。而致密的灰?guī)r則因熱流體無法進(jìn)入,沒有發(fā)生白云巖化作用。熱液白云巖化發(fā)生,表明溶液對白云石是超飽和的,對方解石是不飽和的,于是,發(fā)生方解石的溶解作用、白云石對方解石的交代作用,而不可能同時發(fā)生白云石的溶解作用。白云巖段白云石溶解作用,可能的機(jī)理包括,①中奧陶世—晚奧陶世期間地層抬升,發(fā)生風(fēng)化殼巖溶作用;②熱化學(xué)硫酸鹽還原作用。前人研究認(rèn)為,熱液白云巖化作用與二疊紀(jì)熱液活動有關(guān)[66]。因此,在中奧陶世—晚奧陶世期間地層抬升之時,鷹山組尚未發(fā)生熱液白云巖化作用,表明白云石溶解不可能是風(fēng)化殼巖溶的產(chǎn)物,相反,應(yīng)該發(fā)生在深埋環(huán)境中。
在寒武系地層中也發(fā)現(xiàn)了TSR改造白云巖儲層的現(xiàn)象。例如TZ75井。之前的工作已經(jīng)討論過TZ75等井上寒武統(tǒng)白云巖儲層中發(fā)生TSR[59]。發(fā)生TSR的井段巖芯上發(fā)現(xiàn)大量白云巖的溶孔,薄片觀察表明儲層中的部分孔隙由晚期白云石和晚期方解石溶蝕形成的(圖2A)。晚期高溫方解石和白云石溶蝕孔隙的存在提供了埋藏溶蝕作用的溶蝕效應(yīng)的證據(jù)。巖石學(xué)觀察表明,TZ75井多孔白云巖儲層常與豐富的黃鐵礦、硬石膏和TSR方解石共生[59]。深埋溶蝕孔隙與TSR反應(yīng)物和生成物的密切共生關(guān)系,表明溶蝕作用很可能與TSR有關(guān)。如圖9所示,塔中75井巖芯孔隙度結(jié)果顯示,發(fā)生TSR的上寒武統(tǒng)下部的孔隙度明顯高于之上的各個地層,而未發(fā)生TSR的上寒武統(tǒng)上部、蓬萊壩組與良里塔格組孔隙度相近。類似地,ZS1C井6 912~6 932 m白云巖儲層為氣層,硫化氫含量高達(dá)11.4%,孔隙度為6.5%,儲層段上下的地層孔隙度都在1%以下。這些現(xiàn)象說明TSR作用可能一定程度上增加了白云巖的孔隙度。
圖6 ZG9井巖芯照片A.第一筒次,灰色泥晶灰?guī)r,取芯井段6 241~6 249.95 m,十分致密;B.第二筒次,淺灰色白云巖,取芯井段6 260.66~6 268.21 m,孔洞極為發(fā)育;C. 灰色泥晶灰?guī)r,取芯井段6 424~6 431 m,十分致密。Fig.6 Photos of core samples in Well ZG9
圖7 ZG9井取芯井段孔隙度變化Fig.7 Porosity variations in the cored interval in Well ZG9
圖8 白云石埋藏溶蝕(ZG9井,6 265 m,O1-2y; B和D引自Jia et al.[63])A.白云石被大量溶蝕;B.白云石溶孔中充填方解石(被茜素紅染為紅色)C.瀝青充填在孔隙中心,說明油氣充注后,白云石還發(fā)生了一次溶蝕;D.晶形極好的白云石被溶解。Fig.8 Photomicrographs showing burial dolomite dissolutions in Well ZG9
圖9 TZ75井巖芯孔隙度與深度關(guān)系圖Fig.9 Core porosity changes in TSR and non-TSR interval in Well TZ75
(1) 塔中地區(qū)寒武系—奧陶系發(fā)生埋藏溶蝕作用,識別標(biāo)志包括:高溫或含烴類包裹體的晚期成巖礦物被溶蝕或切穿,沿成巖晚期的縫合線或晚期裂縫產(chǎn)生溶蝕孔隙。
(2) TSR溶蝕的機(jī)制主要為水溶硬石膏、白云石與油氣烴類反應(yīng)。這種機(jī)制在塔中深部的寒武系儲層中可能廣泛存在,有利于深埋優(yōu)質(zhì)白云巖儲層的形成。
(3) 塔中地區(qū)寒武系—奧陶系發(fā)現(xiàn)大量硬石膏、重晶石、黃鐵礦、方解石、瀝青和硫化氫,巖礦、均一溫度及同位素證據(jù)說明發(fā)生TSR。
(4) TSR可以促進(jìn)深埋碳酸鹽巖的溶解,導(dǎo)致孔隙增加或重新分配。在深埋條件下,TSR對白云巖的改造作用強(qiáng)于灰?guī)r,因此更易成為優(yōu)質(zhì)儲層。
致謝 在論文撰寫過程中受到了陳代釗等專家的親切指導(dǎo),在此一并感謝。
References)
1 趙文智,胡素云,劉偉,等. 再論中國陸上深層海相碳酸鹽巖油氣地質(zhì)特征與勘探前景[J]. 天然氣工業(yè),2014,34(4):1-9. [Zhao Wenzhi, Hu Suyun, Liu Wei, et al. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: a further discussion[J]. Natural Gas Industry, 2014, 34(4): 1-9.]
2 王招明,謝會文,陳永權(quán),等. 塔里木盆地中深1井寒武系鹽下白云巖原生油氣藏的發(fā)現(xiàn)與勘探意義[J]. 中國石油勘探,2014,19(2):1-13. [Wang Zhaoming, Xie Huiwen, Chen Yongquan, et al. Discovery and exploration significance of Cambrian subsalt dolomite original hydrocarbon reservoir at Well Zhongshen-1 in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13.]
3 Cai Chunfang, He Wenxian, Jiang Lei, et al. Petrological and geochemical constraints on porosity difference between Lower Triassic sour-and sweet-gas carbonate reservoirs in the Sichuan Basin[J]. Marine and Petroleum Geology, 2014, 56: 34-50.
4 Zhu Dongya, Meng Qingqiang, Jin Zhijun, et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin, northwestern China[J]. Marine and Petroleum Geology, 2015, 59: 232-244.
5 Heydari E. The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, upper Jurassic Smackover Formation, Black Creek Field, Mississippi[J]. AAPG Bulletin, 1997, 81(1): 26-45.
6 Vandeginste V, Swennen R, Reed M H, et al. Host rock dolomitization and secondary porosity development in the Upper Devonian Cairn Formation of the Fairholme carbonate complex (South-west Alberta, Canadian Rockies): diagenesis and geochemical modelling[J]. Sedimentology, 2009, 56(7): 2044-2060.
7 Schmidt V, McIlreath I A, Budwill A E. Origin and diagenesis of Middle Devonian pinnacle reefs encased in evaporites, "A" and "E" pools, Rainbow Field, Alberta[M]//Roehl P O, Choquette P W. Carbonate Petroleum Reservoirs. New York: Springer-Verlag, 1985: 140-160.
8 James N P, Choquette P W. Diagenesis of Limestones-the meteoric diagenetic environment[M]//Moore C. Carbonate Diagenesis and Porosity. Amsterdam: Elsevier, 1984: 161-194.
9 Schlager W. Carbonate Sedimentology and Sequence Stratigraphy[M]. SEPM Concepts in Sedimentology and Paleontology, 2005, 8: 200.
10 Weidlich O. Meteoric diagenesis in carbonates below karst unconformities: heterogeneity and control factors[M]//van Buchem F S P, Gerdes K D, Esteban M. Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East: Stratigraphic and Diagenetic Reference Models. Geological Society, London, Special Publication, 2010, 329(1): 291-315.
11 Halley R B, Schmoker J W. High-porosity Cenozoic carbonate rocks of south Florida: progressive loss of porosity with depth[J]. AAPG Bulletin, 1983, 67(2): 191-200.
12 Scholle P A, Halley R B. Burial diagenesis: out of sight, out of mind[C]//Schneidermann N, Harris P M. Carbonate Cements. Tulsa, OK: SEPM Special Publication, 1985, 36: 309-334.
13 Machel H G, Lonnee J. Hydrothermal dolomite-a product of poor definition and imagination[J]. Sedimentary Geology, 2002, 152(3/4): 163-171.
14 Mazzullo S L, Harris P M. Mesogenetic dissolution: its role in porosity development in carbonate reservoirs[J]. AAPG Bulletin, 1992, 76(5): 607-620.
15 Davies G R, Smith L B, Jr. Structurally controlled hydrothermal dolomite reservoir facies: an overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690.
16 Al-Aasm I. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin[J]. Journal of Geochemical Exploration, 2000, 78-79: 9-15.
17 Cantrell D L, Swart P K, Hagerty R M. Genesis and characterization of dolomite, Arab-D reservoir, Ghawar field, Saudi Arabia[J]. GeoArabia, 2004, 9(2): 1-26.
18 Gasparrini M, Bechst?dt T, Boni M. Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution[J]. Marine and Petroleum Geology, 2006, 23(5): 543-568.
19 Smith L B, Jr. Origin and reservoir characteristics of Upper Ordovician Trenton-Black River hydrothermal dolomite reservoirs in New York[J]. AAPG Bulletin, 2006, 90(11): 1691-1718.
20 Jin Zhijun, Zhu Dongya, Zhang Xuefeng, et al. Hydrothermally fluoritized Ordovician carbonates as reservoir rocks in the Tazhong area, Centraltarim Basin, NW China[J]. Journal of Petroleum Geology, 2006, 29(1): 27-40.
21 Cai Chunfang, Li Kaikai, Li Hongtao, et al. Evidence for cross formational hot brine flow from integrated87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China[J]. Applied Geochemistry, 2008, 23(8): 2226-2235.
22 潘文慶,胡秀芳,劉亞雷,等. 塔里木盆地西北緣奧陶系碳酸鹽巖中兩種來源熱流體的地質(zhì)與地球化學(xué)證據(jù)[J]. 巖石學(xué)報(bào),2012,28(8):2515-2524. [Pan Wenqing, Hu Xiufang, Liu Yalei, et al. Geological and geochemical evidence for two sources of hydrothermal fluids found in Ordovician carbonate rocks in northwestern Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(8): 2515-2524.]
23 金之鈞,朱東亞,胡文瑄,等. 塔里木盆地?zé)嵋夯顒拥刭|(zhì)地球化學(xué)特征及其對儲層影響[J]. 地質(zhì)學(xué)報(bào),2006,80(2):245-254. [Jin Zhijun, Zhu Dongya, Hu Wenxuan, et al. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica, 2006, 80(2): 245-254.]
24 吳茂炳,王毅,鄭孟林,等. 塔中地區(qū)奧陶紀(jì)碳酸鹽巖熱液巖溶及其對儲層的影響[J]. 中國科學(xué) D輯:地球科學(xué),2007,37(增刊):83-92. [Wu Maobing, Wang Yi, Zheng Menglin, et al. The hydrothermal karstification and its effect on Ordovician carbonate reservoir in Tazhong uplift of Tarim Basin, Northwest China[J]. Science in China Series D: Earth Sciences, 2007, 37(Suppl.): 83-92.]
25 呂修祥,解啟來,楊寧,等. 塔里木盆地深部流體改造型碳酸鹽巖油氣聚集[J]. 科學(xué)通報(bào),2007,52(增刊):142-148. [Lü Xiuxiang, Xie Qilai, Yang Ning, et al. Hydrocarbon accumulation in deep fluid modified carbonate rock in the Tarim Basin[J]. Chinese Science Bulletin, 2007, 52(Suppl.): 142-148.]
26 朱東亞,金之鈞,胡文瑄,等. 塔里木盆地深部流體對碳酸鹽巖儲層影響[J]. 地質(zhì)論評,2012,54(3):348-354. [Zhu Dongya, Jin Zhijun, Hu Wenxuan, et al. Effects of deep fluid on carbonates reservoir in Tarim Basin[J]. Geological Review, 2012, 54(3): 348-354.]
27 潘文慶,劉永福,Dickson J A D,等. 塔里木盆地下古生界碳酸鹽巖熱液巖溶的特征及地質(zhì)模型[J]. 沉積學(xué)報(bào),2009,27(5):983-994. [Pan Wenqing, Liu Yongfu, Dickson J A D, et al. The geological model of hydrothermal activity in outcrop and the characteristics of carbonate hydrothermal karst of Lower Paleozoic in Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(5): 983-994.]
28 楊海軍,李開開,潘文慶,等. 塔中地區(qū)奧陶系埋藏?zé)嵋喝芪g流體活動及其對深部儲層的改造作用[J]. 巖石學(xué)報(bào),2012,28(3):783-792. [Yang Haijun, Li Kaikai, Pan Wenqing, et al. Burial hydrothermal dissolution fluid activity and its transforming effect on the reservoirs in Ordovician in Central Tarim[J]. Acta Petrologica Sinica, 2012, 28(3): 783-792.]
29 Li Kaikai, Cai Chunfang, Jia Lianqi, et al. The role of thermochemical sulfate reduction in the genesis of high-quality deep marine reservoirs within the central Tarim Basin, western China[J]. Arabian Journal of Geosciences, 2014, 8(7): 4443-4456.
30 Krouse H R, Viau C A, Eliuk L S, et al. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature, 1988, 333(6172): 415-419.
31 Baric G, Mesic I, Jungwirth M. Petroleum geochemistry of the deep part of the Drava Depression, Croatia[J]. Organic Geochemistry, 1998, 29(1/2/3): 571-582.
32 朱光有,張水昌,梁英波,等. TSR對深部碳酸鹽巖儲層的溶蝕改造—四川盆地深部碳酸鹽巖優(yōu)質(zhì)儲層形成的重要方式[J]. 巖石學(xué)報(bào),2006,22(8):2182-2194. [Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR: an important type of deep-buried high-quality carbonate reservoirs in Sichuan basin [J]. Acta Petrologica Sinica, 2006, 22(8): 2182-2194.]
33 Ma Yongsheng, Guo Xusheng, Guo Tonglou, et al. The Puguang gas field: new giant discovery in the mature Sichuan Basin, southwest China[J]. AAPG Bulletin, 2007, 91(5): 627-643.
34 賈承造. 中國塔里木盆地構(gòu)造特征與油氣[M]. 北京:石油工業(yè)出版社,1997:1-438. [Jia Chengzao. Structural Characteristics and Oil and Gas in China’s Tarim Basin[M]. Beijing: Petroleum Industrial Press, 1997: 1-438.]
35 Choquette P W, James N P. Diagenesis #12. Diagenesis in limestones-3. The deep burial environment[J]. Geoscience Canada, 1987, 14(1): 3-35.
36 Amthor J E, Mountjoy E W, Machel H G. Subsurface dolomites in upper Devonian Leduc Formation buildups, central part of Rimbey-Meadowbrook reef trend, Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology, 1993, 41(2): 164-185.
37 Mountjoy E W, Machel H G, Green D, et al. Devonian matrix dolomites and deep burial carbonate cements: a comparison between the Rimbey-Meadowbrook reef trend and the deep basin of west-central Alberta[J]. Bulletin of Canadian Petroleum Geology, 1999, 47(4): 487-509.
38 Wendte J. Origin of molds in dolostones formed by the dissolution of calcitic grains: evidence from the Swan Hills Formation in west-central Alberta and other Devonian formations in Alberta and northeastern British Columbia[J]. Bulletin of Canadian Petroleum Geology, 2006, 54(2): 91-109.
39 BiehlB C, Reuning L, Schoenherr J, et al. Impacts of hydrothermal dolomitization and thermochemical sulfate reduction on secondary porosity creation in deeply buried carbonates: a case study from the Lower Saxony Basin, northwest Germany[J]. AAPG Bulletin, 2016, 100(4): 597-621.
40 朱東亞,胡文瑄,宋玉才,等. 塔里木盆地塔中45井油藏螢石化特征及其對儲層的影響[J]. 巖石礦物學(xué)雜志,2005,24(3):205-215. [Zhu Dongya, Hu Wenxuan, Song Yucai, et al. Fluoritization in Tazhong 45 reservoir: characteristics and its effect on the reservoir bed[J]. Acta Petrologica et Mineralogica, 2005, 24(3): 205-215.]
41 He Kun, Zhang Shuichang, Mi Jingkui, et al. The speciation of aqueous sulfate and its implication on the initiation mechanisms of TSR at different temperatures[J]. Applied Geochemistry, 2014, 43(4): 121-131.
42 Machel H G. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights[J]. Sedimentary Geology, 2001, 140(1/2): 143-175.
43 Toland W L. Oxidation of organic compounds with aqueous sulfate[J]. Journal of the American Chemical Society, 1960, 82(8): 1911-1916.
44 Worden R H, Smalley P C, Oxtoby N H. Gas souring by thermochemical sulfate reduction at 140℃[J]. AAPG Bulletin, 1995, 79: 854-863.
45 Cai Chunfang, Hu Wangshui, Worden R H. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in Central Tarim[J]. Marine and Petroleum Geology, 2001, 18(6): 729-741.
46 Cross M M, Manning D A C, Bottrell S H, et al. Thermochemical sulphate reduction (TSR): experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs[J]. Organic Geochemistry, 2004, 35(4): 393-404.
47 Orr W L. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas[M]//Campos R, Goni J. Advances in Organic Geochemistry 1975. Enadisma, Madrid, Spain, 1977: 571-597.
48 Worden R H, Smalley P C, Oxtoby N H. The effects of thermochemical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate gas reservoirs[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3925-3931.
49 Ma Anlai, Zhang Shuichang, Zhang Dajiang. Ruthenium-ion-catalyzed oxidation of asphaltenes of heavy oils in Lunnan and Tahe oilfields in Tarim Basin, NW China[J]. Organic Geochemistry, 2008, 39(11): 1502-1511.
50 Zhang Tongwei, Ellis G S, Walters C C, et al. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments[J]. Organic Geochemistry, 2008, 39(3): 308-328.
51 Machel H G, Krouse H R, Sassen R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Applied Geochemistry, 1995, 10(4): 373-389.
52 Worden R H, Smalley P C. H2S-producing reactions in deep carbonate gas reservoirs: khuff formation, Abu Dhabi[J]. Chemical Geology, 1996, 133(1/2/3/4): 157-171.
53 Cai Chunfang, Worden R H, Bottrell S H, et al. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan basin, China[J]. Chemical Geology, 2003, 202(1/2): 39-57.
54 Cai Chunfang, Xie Zengye, Worden R H, et al. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: towards prediction of fatal H2S concentrations[J]. Marine and Petroleum Geology, 2004, 21(10): 1265-1279.
55 Cai Chungfang, Zhang Chunming, Cai Liulu, et al. Origins of Palaeozoic oils in the Tarim Basin: evidence from sulfur isotopes and biomarkers[J]. Chemical Geology, 2009, 268(3/4): 197-210.
56 Cai Chunfang, Li Kaikai, Zhu Yangming, et al. TSR origin of sulfur in the Permian and Triassic reservoir bitumen in East Sichuan Basin, China[J]. Organic Geochemistry, 2010, 41(9): 871-878.
57 Cai Chunfang, Zhang Chunming, He Hong, et al. Carbon isotope fractionation during methane-dominated TSR in East Sichuan Basin gasfields, China: a review[J]. Marine and Petroleum Geology, 2013, 48: 100-110.
58 姜乃煌,朱光有,張水昌,等. 塔里木盆地塔中83井原油中檢測出2-硫代金剛烷及其地質(zhì)意義[J]. 科學(xué)通報(bào),2007,52(24):2871-2875. [Jiang Naihuang, Zhu Guangyou, Zhang Shuichang, et al. Detection of 2-thiaadamantanes in the oil from Well TZ-83 in Tarim Basin and its geological implication[J]. Chinese Science Bulletin, 2007, 52(24): 2871-2875.]
59 Jia L, Cai C, Yang H, et al. Thermochemical and bacterial sulfate reduction in the Cambrian and Lower Ordovician carbonates in the Tazhong Area, Tarim Basin, NW China: evidence from fluid inclusions, C, S, and Sr isotopic data[J]. Geofluids, 2015, 15(24): 421-437.
60 孫玉善,韓杰,張麗娟,等. 塔里木盆地塔中地區(qū)上奧陶統(tǒng)礁灘體基質(zhì)次生孔隙成因——以塔中62井區(qū)為例[J]. 石油勘探與開發(fā),2007,34(5):541-547,589. [Sun Yushan, Han Jie, Zhang Lijuan, et al. Genesis of reef flat body matrix secondary pores in Upper Ordovician in central area of Tarim Basin[J]. Petroleum Exploration and Development, 2007, 34(5): 541-547, 589.]
61 Cai Chunfang, Hu Guoyi, Li Hongxia, et al. Origins and fates of H2S in the Cambrian and Ordovician in Tazhong area: evidence from sulfur isotopes, fluid inclusions and production data[J]. Marine and Petroleum Geology, 2015, 67: 408-418.
62 Li Sumei, Shi Quan, Pang Xiongqi, et al. Origin of the unusually high dibenzothiophene oils in Tazhong-4 Oilfield of Tarim Basin and its implication in deep petroleum exploration[J]. Organic Geochemistry, 2012, 48: 56-80.
63 Jia Lianqi, Cai Chunfang, Jiang Lei, et al. Petrological geochemical constraints on diagenesis and deep burial dissolution of the Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2016, 78:271-290.
64 Hao Fang, Guo Tonglou, Zhu Yangming, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China[J]. AAPG Bulletin, 2008, 92(5): 611-637.
65 鄔光輝,李啟明,肖中堯,等. 塔里木盆地古隆起演化特征及油氣勘探[J]. 大地構(gòu)造與成礦學(xué),2009,33(1):124-130. [Wu Guanghui, Li Qiming, Xiao Zhongrao, et al. The evolution characteristics of Palaeo-uplifts in Tarim Basin and its exploration directions for oil and gas[J]. Geotectonica et Metallogenia, 2009, 33(1): 124-130.]
66 Lin Changsong, Yang Haijum, Liu Jingyan, et al. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: significance for the evolution of Paleo-uplifts and tectonic geography during deformation[J]. Journal of Asian Earth Sciences, 2012, 46: 1-19.
67 趙文智,沈安江,胡素云,等. 塔里木盆地寒武-奧陶系白云巖儲層類型與分布特征[J]. 巖石學(xué)報(bào),2012,28(3):758-768. [Zhao Wenzhi, Shen Anjiang, Hu Suyun, et al. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, northwestern China[J]. Acta Petrologica Sinica, 2012, 28(3): 758-768.]
Thermochemical Sulfate Reduction-related Mesogenetic Dissolution of Deeply Buried Dolostone Reservoirs in the Tazhong Area
JIA LianQi1CAI ChunFang1,2LI HongXia1WANG TianKai1ZHANG Wen3KONG LingWu4
(1. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. Department of Geochemistry, Yangtze University, Wuhan 430100, China; 3. Research Institute of Petroleum Exploration and Development, Tarim Oilfield Company, PetroChina, Korla, Xinjaing 841000, China; 4. CNOOC Research Institute, Beijing 100028, China)
Deeply buried (4 500 to 7 000 m) carbonate reservoirs in the Tazhong area, Tarim basin, NW China show obvious heterogeneity with porosity from zero in limestones to 27.8% in sour dolostones. However, origin of the porosity remains puzzled. Petrographic features, C, O isotopes were determined, and fluid inclusions were analyzed on diagenetic calcite and dolomite from Ordovician reservoirs to solve the puzzle. Ordovician carbonate reservoirs in the Tazhong area are controlled mainly by initial sedimentary environments and primary and near-surface diagenetic processes. However, vugs and pores generated from eogenetic and telogenetic meteoric dissolution were observed to have partially been destroyed due to subsequent compaction, filling and cementation. In some localities or wells (e.g. well ZG9 and TZ75), mesogenetic dissolution (e.g. thermochemical sulfate reduction, TSR) probably played an important role in pore production and reservoir quality improvement. The occurrence of TSR within Ordovician carbonate reservoirs are supported by TSR-originated calcite replacement of sulphate, and the association of sulfur species including acid gases (H2S), pyrite, anhydrite or barite and elemental sulfur with hydrocarbon and12C-rich calcite with elevated homogenization temperatures. The TSR is observed to company with intensive dolomite dissolution, suggesting that TSR may have induced burial dissolution and thus probably increased the porosity of the sour dolostones reservoirs at least in some places. In contrast, no significant mesogenetic dissolution occurred in limestone reservoirs. The deeply buried sour dolostone reservoirs may therefore be potential exploration targets in Tarim basin.
mesogenetic dissolution; thermochemical sulfate reduction; Cambrian; Ordovician; Tazhong area
1000-0550(2016)06-1057-11
10.14027/j.cnki.cjxb.2016.06.005
2016-05-20; 收修改稿日期: 2016-08-17
國家科技重大專項(xiàng)課題(2011ZX05008-003);國家自然基金項(xiàng)目(41125009)[Foundation: National Science and Technology Major Project, No. 2011ZX05008-003; National Natural Science Foundation of China, No. 41125009]
賈連奇 男 1985年出生 博士后 油氣儲層地質(zhì) E-mail: jlq@gmail.iggcas.ac.cn
蔡春芳 男 研究員 E-mail:cai_cf@mail.iggcas.ac.cn
TE122.2
A