晉守博,費(fèi)時龍,趙美玲
(宿州學(xué)院 數(shù)學(xué)與統(tǒng)計學(xué)院,安徽 宿州 234000)
一類具有非線性阻尼的波動方程解的存在性
晉守博,費(fèi)時龍,趙美玲
(宿州學(xué)院 數(shù)學(xué)與統(tǒng)計學(xué)院,安徽 宿州 234000)
文章研究一類具有非線性阻尼和異號源項的波動方程的初邊值問題,給出波動方程弱解的定義,利用Galerkin方法構(gòu)造了方程的近似解,并利用Minkowski不等式和H?lder不等式對近似解進(jìn)行估計,討論在不同范數(shù)下的收斂性,通過一個重要的引理,解決非線性阻尼項的收斂性問題,得到波動方程的一個弱解.
波動方程;弱解;存在性;非線性阻尼
本文將考慮如下一類具有非線性阻尼項的波動方程的初邊值問題
其中常數(shù)α,a,b>0,2<k<m,有界區(qū)域Ω?Rn具有光滑邊界,m,p,q滿足:
具有阻尼的波動方程是從包含黏性效應(yīng)物體的運(yùn)動中提出的,近年來,越來越多的學(xué)者開始研究這類方程,當(dāng)波動方程的阻尼項具有非線性形式時,方程的結(jié)構(gòu)變得較為復(fù)雜,Georgiev和Todorova在文獻(xiàn)[1]中給出了如下一類具有非線性阻尼和單個源項的波動方程utt-Δu+a|ut|m-1ut=b|u|p-1u,x∈Ω,t>0,證明了方程整體解的存在性,并分析了解在有限時間內(nèi)爆破的條件.文獻(xiàn)[2]討論了方程utt-Δu-Δut-Δutt+Δ2u+a|ut|m-2ut=b|u|p-2u,x∈Ω,t>0整體解的存在性和解的漸近性,文獻(xiàn)[3]證明了含有k拉普拉斯算子項的波動方程整體解的存在性問題,但是沒有考慮含有多個源項的波動方程的初邊值問題.如果物理系統(tǒng)中同時存在多個源項,波動方程的結(jié)構(gòu)將會變得更加復(fù)雜,文獻(xiàn)[4]證明了含有2個異號源項的波動方程utt-Δu=a|u|p-1u-b|u|q-1u,x∈Ω,t>0,整體解的存在性,文獻(xiàn)[5]分析了方程解的爆破現(xiàn)象,文獻(xiàn)[6]將上述結(jié)論推廣至含有3個源項的波動方程,另外文獻(xiàn)[7-8]對含有多個源項的波動方程做了系統(tǒng)研究,但是都沒有考慮阻尼項對方程的影響,尤其是非線性阻尼項的影響.本文將考慮同時含有非線性阻尼項和異號源項的波動方程整體解的存在性問題.
[1]GEORGIEV V,TODOROVA G.Existence of a solution of the wave equation with nonlinear damping and source terms[J]. J Differ Equation,1994,109:295-308.
[2]DI Huafei,SHANG Yadong.Global existence and asymptotic behavior of solution for the double dispersive-dissipative wave equation with nonlinear damping and source terms[J].Boundary Value Problems,2015,29:1-15.
[3]狄華婓,尚亞東.一類帶有非線性阻尼項和源項的四階波動方程整體解的存在性與不存在性[J].數(shù)學(xué)物理學(xué)報,2015,35(3):618-633.
[4]徐潤章,沈繼紅,劉亞成.位勢井及其對具異號源項波動方程的應(yīng)用[J].工程數(shù)學(xué)學(xué)報,2007,24(5):931-934.
[5]XU Runzhang,YU Tao.Remarks on wave equations involving two opposite nonlinear source terms[J].J Appl Math Com?put,2009,29:15-18.
[6]李寶平,帥鯤,蒲志林.位勢井在3個非線性源項波動方程中的應(yīng)用[J].四川師范大學(xué)學(xué)報(自然科學(xué)版),2014,37(2):152-156.
[7]劉亞成,徐潤章,于濤.具有多個非線性源項的波動方程[J].應(yīng)用數(shù)學(xué)和力學(xué),2007,28(9):1079-1086.
[8]XU Runzhang.Cauchy problem of generalized boussinesq equation with combined power-type nonlinearities[J].Mathemat?ical Metheod in Applied Science,2011,34:2318-2328.
[9]LIONS J L.Quelques méthodes de résolution des problémes aux limites non linéaires[M].Paris:Dounod Gauthier-Villars,1969.
The Existence of Solutions for a Class of Wave Equation with Nonlinear Damping
JIN Shoubo,F(xiàn)EI Shilong,ZHAO Meiling
(School of Mathematics and Statistics,Suzhou University,234000,Suzhou,Anhui,China)
The initial boundary value problem of wave equations with nonlinear damping and source terms of different signs is considered.The definition of weak solution for the wave equations is firstly described.And then,the approximate solutions of the equations are constructed by the Galerkin method.The approximate so?lutions are estimated by the Minkowski inequality and the Holder inequality,and the convergence is dis?cussed in different norms.Finally,the convergence problem of nonlinear damping is solved by an important lemma,and a weak solution is obtained.
wave equation;weak solution;existence;nonlinear damping
O 175.2
A
2095-0691(2016)04-0008-04
2016-03-29
國家大學(xué)生創(chuàng)新項目(201410379021);安徽省高校自然科學(xué)研究項目(KJ2016A770);高校優(yōu)秀青年人才支持計劃重點項目(gxyqZD2016340);宿州學(xué)院優(yōu)秀青年人才支持計劃重點項目(2016XQNRL003)
晉守博(1980- ),男,河南洛陽人,碩士,講師,研究方向為偏微分方程.