李壟清 馬 良 李文建(中國(guó)科學(xué)院蘭州近代物理研究所 蘭州 730000)
電離輻照技術(shù)控制生鮮食品病原菌污染的研究進(jìn)展
李壟清 馬 良 李文建
(中國(guó)科學(xué)院蘭州近代物理研究所 蘭州 730000)
綜合討論了世界范圍內(nèi)食源性疾病的發(fā)展及食品輻照技術(shù)的應(yīng)用現(xiàn)狀,綜述了國(guó)內(nèi)外輻照技術(shù)控制生鮮食品病原菌的研究進(jìn)展,并對(duì)輻照食品的安全性和受照劑量問題進(jìn)行了探討。未來的研究,將繼續(xù)積累生鮮食品中對(duì)電離輻射敏感的病原菌數(shù)據(jù),重點(diǎn)探索影響輻照的因素和機(jī)理,從輻照組合處理方法入手,建立和完善各種食品輻照的劑量、工藝程序和操作規(guī)范。
食品,輻照,食源性病原菌,食品安全
傳統(tǒng)的生鮮食品保藏主要依靠物理和生物化學(xué)方法。其中,物理方法主要有冷藏、灌裝、真空包裝,借助器械使用飲用水、清潔劑(如洗滌劑)刷洗或噴吹,以及機(jī)械擦除處理進(jìn)行的產(chǎn)品表面清潔和消毒。但低溫冷藏并不能完全阻止鮮切產(chǎn)品中病原微生物的生長(zhǎng)[16]。研究表明,與食源性疾病密切相關(guān)的病原菌如水果汁液中沙門氏菌、大腸桿菌,在冷凍儲(chǔ)藏條件下生存時(shí)間比室溫下更長(zhǎng)[17];與洗滌劑配套進(jìn)行的刷洗、擦除處理雖能有效清除生鮮食品表面的土和微生物,但同時(shí)也擦除了部分阻止微生物入侵的蠟質(zhì)層。鮮切萵苣的大腸桿菌在各種試驗(yàn)溫度下都能夠在24 h內(nèi)穿過傷口滲透,且病原菌在4 oC條件下具有比高溫環(huán)境更高的滲透度[18]。生物化學(xué)方法存在使用范圍和種類、以及處理規(guī)則方面的諸多限制,并且這些技術(shù)對(duì)侵入食品內(nèi)的病原體幾乎無能為力。革新的食品保藏技術(shù)要求保持食品生物性能和感官特性的最優(yōu)化,既能夠確保食品的營(yíng)養(yǎng)品質(zhì)和礦質(zhì)成分,杜絕防腐劑,又能簡(jiǎn)化加工工序、無熱力操作。目前認(rèn)同的替代技術(shù)主要有輻照[19]、臭氧[20]、噬菌體[21]、對(duì)抗性細(xì)菌[22],及對(duì)抗性細(xì)菌和噬菌體聯(lián)合處理的方法[23]等,而食品輻照技術(shù)也許是最理想的選擇[15]。
食品輻照常用電離輻照,即輻照源60Co和137Cs產(chǎn)生的伽瑪射線、5 MeV以下的X射線和加速器生成的10 MeV以下電子束[24]。電離輻照技術(shù)不僅具有穿透食品包裝滅除病原菌、昆蟲和害蟲的廣譜性和高效性,還具有全程無熱源、無添加劑、無化學(xué)殘留,工序簡(jiǎn)易等優(yōu)點(diǎn),且能快速地進(jìn)行滲透性消毒[25],因而倍受食品行業(yè)的青睞。
文獻(xiàn)記載的食品輻照技術(shù)可追溯到1896年,僅在發(fā)現(xiàn)X射線一年之后[26]。受時(shí)代認(rèn)知和應(yīng)用上的局限性影響,對(duì)食品輻照慢性毒性的顧慮和其它風(fēng)險(xiǎn)的擔(dān)憂曾一度籠罩食品行業(yè)內(nèi)外[20]。英國(guó)多數(shù)消費(fèi)者曾反對(duì)利用輻照技術(shù)修飾食品維生素[27]。1981年聯(lián)合國(guó)糧農(nóng)組織、國(guó)際原子能機(jī)構(gòu)和世界衛(wèi)生組織聯(lián)合專家委員會(huì)建議“經(jīng)10 kGy以下劑量輻照的任何食品都沒有毒理學(xué)方面問題,無需再進(jìn)行毒理學(xué)檢測(cè)”[21],從而推動(dòng)了世界范圍內(nèi)輻照食品商業(yè)化的快速發(fā)展。食品法典委員會(huì)在1996~2004年制定并頒發(fā)了 10項(xiàng)輻照食品標(biāo)準(zhǔn)[28],包括歐盟在內(nèi)的一些國(guó)家也對(duì)輻照食品實(shí)行強(qiáng)制標(biāo)簽政策[29]。經(jīng)歷了半個(gè)多世紀(jì)的發(fā)展,2005年世界輻照食品的數(shù)量已達(dá) 40.5萬噸,包括調(diào)味品和干菜 18.6萬噸(46%)、谷物和水果 8.2萬噸(20%)、肉魚食品 3.2萬噸(8%)、大蒜和土豆8.8萬噸(22%)、以及健康食品如蘑菇、蜂蜜等在內(nèi)的其它消毒食品 1.7萬噸(4%)[19]。根據(jù)Kume等[30,31]和Aruscavage等[32]分析,2005~2010年歐洲輻照食品數(shù)量呈下降趨勢(shì),美國(guó)、澳大利亞及其它地區(qū)這一數(shù)據(jù)呈緩慢地增長(zhǎng)趨勢(shì),而部分亞洲國(guó)家輻照食品呈持續(xù)性增長(zhǎng)趨勢(shì)。2010年的調(diào)查數(shù)據(jù)顯示,由于中國(guó)和亞洲其它國(guó)家輻照食品數(shù)量的快速增加,保守估計(jì),目前全球年輻照食品數(shù)量超過100萬噸[25]。
生鮮食品致病的病原微生物有大腸桿菌、沙門氏菌屬和結(jié)腸炎耶爾森氏菌屬等;病毒如甲型肝炎病毒、諾洛病毒等;原生動(dòng)物如環(huán)孢子蟲、微小隱孢子蟲等[7,32-35]。而食源性流行病的發(fā)生則主要與生鮮食品中沙門氏菌屬和大腸桿菌高度相關(guān)[5,7,34,36]。因此,革新的生鮮食品輻照技術(shù)能否替代傳統(tǒng)技術(shù)的首要條件取決于控制生鮮食品中大腸桿菌和沙門氏菌的效率。
Grasso等[37]對(duì)比電子束輻射滅活鮮甘藍(lán)中土著微生物區(qū)系和大腸桿菌效率,發(fā)現(xiàn)2.3 kGy的吸收劑量對(duì)二者滅活率超過4 log CFU/g。Kim等[38]發(fā)現(xiàn)利用電子束輻照新收獲香瓜表面,吸收劑量為1 kGy時(shí)對(duì)沙門氏菌屬滅除率可超過3 log CFU/g。Chimbombi等[39]采用電子束輻射23 oC環(huán)境下存放的香瓜3 h后,在1 kGy吸收劑量條件下滅活鼠傷寒沙門氏菌效率可達(dá)2.65 log CFU/g。電子束輻照西蘭花的吸收劑量達(dá)到3 kGy時(shí)可延長(zhǎng)其保質(zhì)期,并保持了其理化特性[40]。類似的研究也都說明,電子束輻照技術(shù)對(duì)抑制生鮮食品中大腸桿菌和沙門氏菌的作用顯著。
Mahmoud[41]利用X射線輻照卷心萵苣碎片,累積劑量為1 kGy時(shí)基本上滅除了大腸桿菌,對(duì)病原生物、沙門氏菌和福氏志賀氏菌的滅除效率分別達(dá)到4.4、 4.1、4.8、4.4 log CFU/5 cm2。而且,2 kGy吸收劑量輻照上述微生物時(shí),抑制率更是超過5 log CFU/5 cm2。進(jìn)一步說明X射線輻照,尤其是2 kGy的吸收劑量幾乎可滅除生鮮食品中包括大腸桿菌和沙門氏菌在內(nèi)的致病微生物,具有其它技術(shù)無法比擬的優(yōu)勢(shì)。
Lee等[42]對(duì)比研究了γ輻射滅活鼠傷寒沙門氏菌、大腸桿菌、葡萄球菌屬和李斯特菌的效率,吸收劑量為1 kGy時(shí)削皮黃瓜的上述菌群滅活效率分別為3.12、1.94、2.11和 2.97 log CFU/g,菠菜則分別達(dá)到2.83、2.53、2.77和2.36 log CFU/g,在牛蒡上為2.51、5.73、4.22和3.78 log CFU/g。Fan等[43]采用γ輻射滅活這些鮮菜,吸收劑量為1.0 kGy時(shí)其表面和內(nèi)藏的大腸桿菌存活率僅分別為 3~8 log CFU/g和2~3 log CFU/g。類似的研究Gomes等[40]發(fā)現(xiàn)吸收劑量達(dá)到1 kGy時(shí)鮮萵苣葉滅活大腸桿菌達(dá)3~4 log CFU/g,吸收劑量為1 kGy時(shí)生菜中鼠傷寒沙門氏菌和金黃色葡萄球菌的滅活率達(dá)到 3 log CFU/片葉[44]。Niemira[45]發(fā)現(xiàn)1 kGy吸收劑量下菠菜和萵苣的表觀、色澤保持完好,滅活大腸桿菌超過5 log CFU/g。并且,若在4 oC環(huán)境下連續(xù)照射菠菜和萵苣48 h,則菠菜和萵苣中大腸桿菌的存活率還要分別減少1.9和2.5 log CFU/g[46]。不同種蔬菜的輻照研究發(fā)現(xiàn),1 kGy吸收劑量條件下,足以滅除包括人類致病元兇大腸桿菌和沙門氏菌在內(nèi)的食源性病菌[37,41]。
因此,電離輻照技術(shù)消除生鮮食品中大腸桿菌和沙門氏菌的顯著效率決定了其在控制世界性食源性疾病爆發(fā)中的特殊地位。
我國(guó)食品輻照的研究始于1958年。80年代國(guó)科委、科研院所相繼開展了蔬菜、水果、肉制品、蛋及水產(chǎn)品等18個(gè)品種食品輻照的試驗(yàn)研究。早在1996年4月5日,衛(wèi)生部就頒布第47號(hào)令《輻照食品衛(wèi)生管理辦法》。目前,我國(guó)已制定輻照食品衛(wèi)生標(biāo)準(zhǔn)8項(xiàng),工藝標(biāo)準(zhǔn)17項(xiàng)[47],等效采用國(guó)際食品法典委員會(huì)4類9項(xiàng)輻照食品檢測(cè)標(biāo)準(zhǔn)[48]。到2014年,28個(gè)省、市、自治區(qū)鈷源輻照裝置 123座,輻照食品200多種,計(jì)18萬噸[49]。有關(guān)部門已經(jīng)從毒理學(xué)、生物學(xué)特性及營(yíng)養(yǎng)質(zhì)量方面認(rèn)同食品輻照技術(shù),輻照食品也被絕大多數(shù)消費(fèi)者逐漸接受。目前,相關(guān)研究已初步探明γ射線滅除日常消費(fèi)食品中病原菌的最佳受照劑量和滅除效率,并給出具體食品品種的受照劑量。如哈益明等[50]采用 γ射線輻照雞肉至吸收劑量為5 kGy時(shí),取得了細(xì)菌總數(shù)滅除率高達(dá)99.98%效果;李俐俐等[51]發(fā)現(xiàn)殺滅蝦仁葡萄球菌的最佳吸收劑量為5~6 kGy;真空包裝的淡腌白魚以60Co射線輻照至吸收劑量為 2.5 kGy時(shí),滅菌率為99%[52];8 kGy劑量輻照真空包裝雞肉后在室溫貯藏180 d后菌落總數(shù)、霉菌、大腸菌群和沙門氏菌分別為180 CFU/g、25 CFU/g、30 MPN/100 g、0 CFU/25 g,指標(biāo)全部符合禽肉制品衛(wèi)生要求[53]。馮敏等[54]輻照處理大豆蛋白粉中病原菌至不同吸收劑量,發(fā)現(xiàn)4 kGy吸收劑量下,菌落總數(shù)低至120 CFU/g、霉菌10 CFU/g和大腸菌群<30 MPN/100 g的滅除效果。當(dāng)吸收劑量提高到6 kGy時(shí),菌落總數(shù)下降到63 CFU/g,而大腸菌群和霉菌數(shù)量幾乎保持不變。說明大腸菌群和霉菌對(duì)吸收劑量影響不顯著。另有報(bào)道,輻照鮮豬肉至吸收劑量為4 kGy,相比對(duì)照組保質(zhì)期可提高33倍,而豬熏、醬制品和低溫肉制品的最佳吸收劑量則為 8 kGy[55]。
此外,對(duì)放射性電子束輻照生鮮食品的對(duì)比研究也在進(jìn)一步開展。已有文獻(xiàn)報(bào)道,電子束輻照能有效殺滅葡萄表面的細(xì)菌、霉菌、酵母菌、大腸菌群[56];電子束輻照與酸化亞氯酸鈉(ASC)組合能有效地殺滅鮮切青椒中的鼠傷寒沙門氏菌、大腸桿菌和李斯特菌,從而延長(zhǎng)其貨架期[57];草莓保藏的最佳吸收劑量為3.5 kGy[58];3~6 kGy吸收劑量可有效殺滅魷魚絲[59]、泥蚶肉中的病原菌[60]。而對(duì)比研究發(fā)現(xiàn),γ射線和電子束輻照素雞后,菌落總數(shù) D10值分別為0.43和0.48,差異并不顯著[61],類似研究發(fā)現(xiàn),兩種輻照對(duì)牛肉火腿中微生物的殺滅效果同樣無顯著差異[62]。但也有學(xué)者認(rèn)為,電子束輻照滅菌效果不如γ射線[61-64],前者只能穿透厚度4.5 cm、密度1 g/cm2左右的食品。加之我國(guó)目前商用電子加速器的開發(fā)嚴(yán)重滯后,相關(guān)技術(shù)參數(shù)、標(biāo)準(zhǔn)尚不完善,這項(xiàng)技術(shù)在我國(guó)的應(yīng)用受到限制。
首先,輻照食品的安全問題長(zhǎng)期以來備受爭(zhēng)議,人類雖然已經(jīng)過半個(gè)多世紀(jì)的探索,但直到 2003年,輻照食品仍然存在安全疑問[65]。詳盡查閱資料后可以發(fā)現(xiàn),早期對(duì)食品輻照安全的質(zhì)疑已隨著科學(xué)技術(shù)的發(fā)展被否定。即便是最近研究關(guān)注的輻照副產(chǎn)物2 -烷基環(huán)丁酮[66],在某種程度上或許是食品輻照處理后獨(dú)一無二的產(chǎn)物(雖然也有自然界堅(jiān)果中發(fā)現(xiàn)環(huán)丁酮報(bào)道),也在經(jīng)過詳盡動(dòng)物毒理實(shí)驗(yàn)數(shù)據(jù)收集[66]、經(jīng)權(quán)威食品機(jī)構(gòu)確認(rèn),環(huán)丁酮并不具有毒理學(xué)上的風(fēng)險(xiǎn)[67-68]。
其次,受照劑量是關(guān)系到食品輻照成敗的關(guān)鍵。依據(jù)大量劑量<10 kGy γ輻照滅除多種微生物的有效性研究結(jié)果、以及在輻照過程中食品感觀、化學(xué)組成完好性方面達(dá)成的共識(shí)[69-72],F(xiàn)AO/IAEA/WHO早在1999年就已明文規(guī)定了以10 kGy劑量作為食品輻照國(guó)際安全線[73]。EPA、IAEA和EU的相關(guān)法規(guī)也已授權(quán)了詳細(xì)的輻射類型(γ輻射、X射線和電子束)、能量(X射線和電子束分別為5、10 MeV)和推薦劑量。然而,大量實(shí)驗(yàn)結(jié)果證明,γ射線滅除細(xì)菌的吸收劑量為0.5~50 kGy,有效滅除病毒和孢子的吸收劑量高達(dá)10~50 kGy,大面積滅除孢子則需要50 kGy。低劑量輻射不能消除包括芽胞桿菌屬、葡萄球菌屬、產(chǎn)氣夾膜梭狀芽孢菌和肉毒桿菌等微生物引起的食物中毒問題,但滅除病毒和孢子的高輻照劑量會(huì)導(dǎo)致食品纖維性碳水化合物結(jié)構(gòu)退化、油脂成分陳腐臭味[74];甚至有研究發(fā)現(xiàn)當(dāng)吸收劑量超過1 kGy,一些生鮮食品出現(xiàn)表觀、色澤和質(zhì)地質(zhì)量下降問題[43]。因此,尋求既能減小輻射劑量又能夠達(dá)到不破壞生鮮食品結(jié)構(gòu)性能的安全方法是目前食品輻照技術(shù)仍需繼續(xù)探索的領(lǐng)域。一項(xiàng)采用高氧封裝處理菠菜幼苗葉的研究發(fā)現(xiàn),在0.7 kGy吸收劑量和室溫飽和 100%氧氣環(huán)境下,測(cè)試微生物數(shù)量減少到5 log CFU/g,由此篩選出最有效的組合是1 kGy吸收劑量與富氧包裝。受此啟迪,我們建議從影響食品輻照效率的標(biāo)靶對(duì)象、產(chǎn)品類型、生產(chǎn)環(huán)節(jié)(完整、去核、剝皮或切片與否)和封裝因素著手,采用組合輻照處理的方法,如改良真空包裝或探索其他新方法等,以便在降低吸收劑量的同時(shí)又能高效滅除生鮮食品中的病原菌。
再次,食品輻照存在病毒和真菌對(duì)輻射的抗性問題[5,43],這也許與孢子和病毒體型微小有關(guān)。因?yàn)檩椛渲挥袦?zhǔn)確無誤地作用于微生物致命位點(diǎn)才能有效發(fā)揮殺菌作用,孢子和病毒相對(duì)于體型較大的桿菌,難免有漏網(wǎng)之嫌。解決這一技術(shù)問題,則需要今后從輻照工藝程序方面不斷探索解決。
伴隨全球經(jīng)濟(jì)發(fā)展,不斷增加的生鮮食品需求也使得食源性疾病事件爆發(fā)的概率驟增。傳統(tǒng)消毒方法對(duì)食品內(nèi)部的微生物幾乎無能為力,改進(jìn)消毒方法勢(shì)在必行。從國(guó)內(nèi)外研究進(jìn)展來看,降低人類食源性疾病發(fā)病率的唯一途徑仍然是食品消毒,因?yàn)槟壳翱深A(yù)見的技術(shù)無法阻斷農(nóng)業(yè)生產(chǎn)系統(tǒng)中動(dòng)物飼料污染、屠宰后的鮮肉污染、肥料污染以及出廠成品污染之間的關(guān)聯(lián)性,不能從根本上阻止食品污染。從控制食源性病原菌的研究進(jìn)展來看,與大腸桿菌和沙門氏菌屬相關(guān)的生鮮食品污染仍然是持續(xù)關(guān)注的問題。電離輻照技術(shù)以其滅除大腸桿菌和沙門氏菌屬這類主要食源性病原菌的顯著效率,以及保障生鮮食品外觀質(zhì)地和色澤的諸多優(yōu)點(diǎn),奠定了其作為替代其它食品保藏技術(shù)的優(yōu)勢(shì)地位。未來的研究建議繼續(xù)積累生鮮食品中對(duì)輻射敏感的病原菌和霉菌數(shù)據(jù),重點(diǎn)探索影響輻照的因素和機(jī)理,從輻照組合處理方法入手,不斷探索、建立和完善各種食品輻照的最佳劑量、工藝程序和操作規(guī)范。
1Christopher R, Braden C R, Tauxe R V. Emerging trends in foodborne diseases[J]. Infectious Disease Clinics of North America, 2013, 27(3): 517-533. DOI: 10.1016/j.idc. 2013.06.001.
2McEntire J. Foodborne disease: the global movement of food and people[J]. Infectious Disease Clinics of North America, 2013, 27(3): 687-693. DOI:10.1016/j.idc.2013. 05.007.
3Statistics Canada. Tables by subject: food and nutrition,food available, by major food groups[EB/OL]. [2015-11-18]. http://www40.statcan.ca/l01/ind01/l3_920_ 921-eng.htm?hili_famil102.
4Bruna C, Luís C, Ana C C. Investigation on the knowledge associated with foodborne diseases in consumers of northeastern Portugal[J]. Food Control,2013, 30(1): 54-57. DOI: 10.1016/j.foodcont.2012.06. 028.
5Warriner K, Huber A, Namvar A, et al. Recent advances in the microbial safety of fresh fruits and vegetables[J]. Advance in Food and Nutrition Research, 2009, 57(4): 155-208. DOI: 10.1016/S1043-4526(09)57004-0.
6WHO. Food safety and foodborne illness[EB/OL]. [2007-12-05]. http://www.who.int/mediacentre/factsheets/ fs237/en/.
7Sivapalasingam S, Friedman C R, Cohen L, et al. Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997[J]. Journal of Food Protection, 2004, 67(10): 2342-2353.
8Bruggen A.H.C. Epidemiology of enteric pathogens in the vegetable production chain: is the risk higher in the organic than in the conventional chain?[R]. Wageningen: Wageningen University, Plant Sciences, 2003.
9Scharff R L. Health-related costs from foodborne illness in the United States[EB/OL]. The United States: the PEW CharitableTrusts,[2010-03-03].http://www. producesafetyproject.org/admin/assets/files/Health-Relate d-Foodborne-Illness-Costs-Report.pdf-1.pdf.
10 Majowicz S E, Musto J, Scallan E, et al. The global burden of nontyphoidal Salmonella gastroenteritis[J]. Clinical Infectious Disease, 2010, 50(6): 882-889. DOI: 10.1086/650733.
11 Painter J, Hoekstra R, Ayers T, et al. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States,1998-2008[J]. Emerging Infectious Disease, 2013, 19(3): 407-415. DOI: 10.3201/eid1903.111866.
12 Fletcher J, Leach J, Eversole K, et al. Human pathogens on plants: designing a multidisciplinary strategy for research[J]. Phytopathology, 2013, 103(4): 306-315. DOI: 10.1094/PHYTO-09-12-0236-IA.
13 龐璐, 張哲, 徐進(jìn). 2006~2010年我國(guó)食源性疾病暴發(fā)簡(jiǎn)介[J]. 中國(guó)食品衛(wèi)生雜志, 2011, 23(6): 560-563. PANG Lu, ZHANG Zhe, XU Jin. Surveillance of foodborne disease outbreaks in China from 2006 to 2010[J]. Chinese Journal of Food Hygiene, 2011, 23(6): 560-563.
14 田禮欽, 滕臣剛. 2001~2013年蘇州市食源性疾病暴發(fā)事故流行病學(xué)分析[J]. 中國(guó)食品衛(wèi)生雜志, 2015,27(6): 614-619. TIANLiqin,TENGChengang.Analysison epidemiological characteristic of foodborne disease in Suzhou from 2001 to 2013[J]. Chinese Journal of Food Hygiene, 2015, 27(6): 614-619.
15 Havelaar A H, Brul S, De J A, et al. Future challenges to microbial food safety[J]. International Journal of Food Microbiology, 2010, 139(S): 79-94. DOI: 10.1016/j. ijfoodmicro.2009.10.015.
16 Farber J M, Wang S L, Cai Y, et al. Changes in populations of Listeria monocytogenes inoculated on packaged fresh-cut vegetables[J]. Journal of Food Protection. 1998, 61(2): 192-195.
17 Parish M E, Beuchat L R, Suslow T V, et al. Methods to reduce/eliminate pathogens from fresh and fresh-cut produce[J]. Comprehensive Reviews in Food Science and Food Safety, 2003, 2(S1): 161-173 DOI: 10.1111/j. 1541-4337.2003.tb00033.x.
18 Takeuchi K, Frank J F. Penetration of Escherichia coli O157:H7 into lettuce tissues as affected by inoculum size and temperature and the effect of chlorine treatment on cell viability[J]. Journal of Food Protection, 2000, 63(4): 434-440.
19 Tamikazu K, Masakazu F, Setsuko T, et al. Status of food irradiation in the world[J]. Radiation Physics and Chemistry, 2009, 78(3): 222-226. DOI: 10.1016/j. radphyschem.2008.09.009.
20 Richard W, Lacey S F, Dealler. Food irradiationunsatisfactory preservative[J]. British Food Journal, 1990,92(1): 15-17.
21 WHO. The Wholesomeness of irradiated food (JACFI)report[M]. Geneva: Technical Report Press, 1981: 659-660.
22 Webb T, Lang T. Food irradiation: the facts[M]. Wellingborough: Thorsons Press, 1987: 48-49.
23 Moseley B E. Radiation damage and its repair in Nonsporulating Bacteria[M]. UK: Society for Applied Bacteriology Symposium Press, 1984: 142-147.
24 Codex Committee on Food Addicatives. General standard for irradiated foods[EB/OL]. Italy: Codex alimentarius,2003[2015-04-13]. http://www.codexalimentarius.net.
25 Peter B R. Food irradiation is safe: half a century of studies[J]. Radiation Physics and Chemistry, 2014, 105:78-82. DOI: 10.1016/j.radphyschem.2014.05. 016.
26 Molins R. Food irradiation-principles and applications[M]. New York: Wiley Interscience Press, 2001: 219-220.
27 Edward C D. The centenary of the British Food Journal,1899~1999 changing issues in food safety regulation and nutrition[J]. British Food Journal, 1998, 100(10/11): 433-550.
28 Codex Alimentarius Commission, CAC/GL 79-2012 guidelines on the application of general principles of food hygiene to the control of viruses in food[S]. Italy: Codex Committee on Food Hygiene, 2012.
29 Arvanitoyannis I S. Irradiation of food commodities: techniques, applications, detection, legislation, safety and consumer opinion[M]. USA Academic Press, Elsevier Publisher, 2010: 50-51.
30 Kume T, Furuta M, Todoriki S, et al. Status of food irradiation[J]. Radiation Physics and Chemistry, 2009, 78: 222-226. DOI: 10.1016/j.radphyschem.2008.09.009.
31 Kume T, Todoriki S. Food irradiation in Asia, the European Union and the United States: A status update[J]. Radioisotopes, 2013, 62(5): 291-299. DOI: 10.3769/ radioisotopes.62.291.
32 Aruscavage D, Lee K, Miller S. et al. Interactions affecting the proliferation and control of human pathogens on edible plants[J]. Journal of Food Science, 2006, 71(8): 89-99. DOI: 10.1111/j.1750-3841. 2006.00157.x.
33 Beuchat L R. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables[J]. Microbes and Infection, 2002, 4(4): 413-423. DOI: 10.1016/S1286-4579(02)01555-1.
34 Buck J W, Walcott R R, Beuchat L R. Recent trends in microbiological safety of fruits and vegetables[EB/OL]. America: Plant Health, 2003[2003-01-21]. http://www. plantmanagementnetwork.org/pub/php/review/2003/safety/. DOI: 10.1094/PHP-2003-0121-01-RV.
35 Rangel J M, Sparling P H, Crowe C, et al. Epidemiology of Escherichia coli O157:H7 outbreaks, United States,from 1982 to 2002[J]. Emerging Infectious Disease, 2005,11(4): 603-609.
36 Brandl M T. Fitness of human enteric pathogens on plants and implications for food safety[J]. Annual Review of Phytopathology, 2006, 44(1): 367-392. DOI: 10.1146/ annurev.phyto.44.070505.143359.
37 Grasso E M, Uribe-Rendon R M, Lee K. Inactivation of Escherichia coli inoculated onto fresh-cut chopped cabbage using electron-beam processing[J]. Journal of Food Protection, 2011, 74(1): 115-118. DOI: 10.4315/ 0362-028X.JFP-10-281.
38 Kim J, Moreira R, Castell-Perez E. Simulation of pathogen inactivation in whole and fresh-cut cantaloupe (Cucumis melo) using electron beam treatment[J]. Journal of Food Engineering, 2010, 97(3): 425-433. DOI: 10. 1016/jfoodeng.200910.038.
39 Chimbombi E, Moreira R, Kim J, et al. Prediction of targeted Salmonella enterica serovar Typhimurium inactivation in fresh cut cantaloupe (Cucumis melo L.)using electron beam irradiation[J]. Journal of Food Engineering, 2011, 103(4): 409-416. DOI: 10.1016/j. jfoodeng.2010.11.011.
40 Gomes C, Da Silva P, Chimbombi E, et al. Electron-beam irradiation of fresh broccoli heads (Brassica oleracea L. italica)[J]. Food Science and Technoloy, 2008, 41(10): 1828-1833. DOI: 10.1016/j.fm.2005.12.001.
41 Mahmoud B S M. Effects of X-ray radiation on Escherichia coli O157:H7, Listeria monocytogenes,Salmonella enterica and Shigella flexneri inoculated on Whole Roma Tomatoes[J]. Food Microbiology, 2010,27(8): 109-114. DOI:10.1016/j.fm.2009.09.003.
42 Lee N Y, Jo C, Shin D H, et al. Effect of gammairradiation on pathogens inoculated into ready-to-use vegetables[J]. Food Microbiology, 2006, 23(7): 649-656. DOI: 10.1016/j.fm.2005.12.001.
43 Fan X, Niemira B A, Prakash A. Irradiation of fresh fruits and vegetables[J]. Food Technology, 2008, 62(3): 36-43.
44 GomesC,MoreiraRG,Castell-PerezE. Radiosensitization of Salmonella spp. and Listeria spp. in ready-to-eat baby spinach leaves[J]. Journal of Food Science, 2011, 76(1): 141-148. DOI: 10.1111/j.1750-3841.2010.01904.x.
45 Niemira B A, Fan X. Low-dose irradiation of fresh and fresh-cut produce: safety, sensory and shelf life[M]. Iowa: Blackwell Publishing and the Institute of Food Technologists Press, 2005: 169-184.
46 Niemira B A, Cooke P H. Escherichia coli O157:H7 biofilm formation on Romaine lettuce and spinach leaf surfaces reduces efficacy of irradiation and sodium hypochlorite washes[J]. Journal of Food Science, 2010,75(5): 270-277. DOI: 10.1111/j.1750-3841.2010. 01650.x.
47 姜曉燕, 王曉英, 郭云昌, 等. 我國(guó)輻照食品衛(wèi)生法規(guī)和標(biāo)準(zhǔn)修訂現(xiàn)狀[J]. 標(biāo)準(zhǔn)科學(xué), 2013, 10: 58-61. JIANG Xiaoyan, WANG Xiaoying, GUO Yunchang, et al. Status quo of national sanitary regulations and standardsof irradiated Food[J]. Standard Science, 2013, 10: 58-61.
48 朱珍, 王寧, 李振興. 輻照食品檢測(cè)技術(shù)的研究進(jìn)展[J].中國(guó)漁業(yè)質(zhì)量與標(biāo)準(zhǔn), 2015, 5(2): 56-64. ZHU Zhen, WANG Ning, LI Zhenxing. Review of detection methods for irradiated foods[J]. Chinese Fishery Quality and Standards, 2015, 5(2): 56-64.
49 杜濤. 輻照技術(shù)提速發(fā)展, 中國(guó)輻照食品產(chǎn)業(yè)尚有差距[N]. 中國(guó)食品報(bào), 2015-5-21(04). DU Tao. An accelerating irradiated technology and China's gap in irradiated food industry[N]. China Food Newspaper, 2015-5-21(04).
50 哈益明, 居華, 王鋒, 等. γ射線輻照控制冷卻雞肉中的致病菌及貯藏期變化研究[J]. 輻射研究與輻射工藝學(xué)報(bào), 2009, 27(5): 275-279. HA Yiming, JU Hua, WANG Feng, et al. Gamma irradiation control of pathogenic bacteria and their growth during storage time in cooled chicken[J]. Journal of Radiation Research and Radiation Processing, 2009, 27(5): 275-279.
51 李俐俐, 嚴(yán)登秀, 趙永富, 等. 出口冷凍蝦仁輻照技術(shù)研究[J].江蘇農(nóng)業(yè)科學(xué), 2009(6): 332-333. DOI: 10.3969/j.issn.1002-1302.2009.06.140. LI Lili, YAN Dengxiu, ZHAO Yongfu, et al. Technical study of irradiation on exports cold shrimp meat[J]. Jiangsu Agricaltural Science, 2009(6): 332-333. DOI: 10. 3969/j.issn.1002-1302.2009.06.140.
52 仲濟(jì)健, 盧立新. 真空包裝淡腌白魚的輻照保藏研究[J]. 食品工業(yè)科技, 2012, 33(13): 336-338. ZHONG Jijian, LU Lixin. Effects of Irradiation on vacuum package storage quality of salted fish[J]. Science and Technology of Food Industry, 2012, 33(13): 336-338.
53 朱佳廷, 馮敏, 楊萍, 等. 輻照對(duì)寵物食品雞肉中致病微生物及貯藏效果的影響[J]. 江蘇農(nóng)業(yè)科學(xué), 2012,40(8): 252-254. ZHU Jiating, FENG Min, YANG Ping, et al. Effects of irradiation on the pets food pathogenic bacteria and their growth during storage time in cooled chicken[J]. Jiangsu Agricaltural Science, 2012, 40(8): 252-254.
54 馮敏, 王玲, 朱佳廷, 等. 大豆蛋白粉輻照殺菌技術(shù)規(guī)范[J]. 江蘇農(nóng)業(yè)科學(xué), 2010(6): 407-408. DOI: 10.3969/j.issn.1002-1302.2010.06.161. FENG Min, WANG Ling, ZHU Jiating, et al. Technical specification of irradiation in reducing soy protein flour borne pathogens[J]. Jiangsu Agricaltural Science, 2010(6): 407-408. DOI: 10.3969/j.issn.1002-1302.2010.06. 161.
55 楊興武. 綠色食品豬肉及肉制品輻照保鮮試驗(yàn)研究[J].內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2003, 24(2): 11-14. DOI: 10.3969/j.issn.1009-3575.2003.02.003. YANG Xingwu. Experiment of radiation green food pork and meat to keep fresh[J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 2003,24(2): 11-14. DOI: 10.3969/j.issn.1009-3575.2003.02.003.
56 王秋芳, 陳召亮, 喬勇進(jìn), 等. 高能電子束輻照對(duì)巨峰葡萄保鮮效果的研究[J]. 核農(nóng)學(xué)報(bào), 2010, 24(2): 319-324. DOI: 10.11869/hnxb.2010.02.0319. WANG Qiufang, CHEN Zhaoliang, QIAO yongjin, et al. Effects of high energy electron beam on physiological quality of kyoho grape[J]. Scientia Agricultura Sinica,2010, 24(2): 319-324. DOI: 10.11869/hnxb.2010.02.0319.
57 王少丹, 陳玉貞, 陳慶敏, 等. 電子束輻照對(duì)鮮切青椒表面食源性致病菌殺滅效果的研究[J]. 食品工業(yè)科技,2012, 33(15): 67-70. WANG Shaodan, CHEN Yuzhen, CHEN Qingmin, et al. Study on electron beam irradiation in reducing food borne pathogens on the surface of fresh-cut green pepper[J]. Science and Technology of Food Industry, 2012, 33(15): 67-70.
58 楊俊麗, 喬勇進(jìn), 喬旭光, 等. 高能電子束輻照對(duì)草莓常溫貯藏品質(zhì)的影響[J]. 食品與發(fā)酵工業(yè), 2010, 36(1): 191-195. YANG Junli, QIAO Yongjin, QIAO Xuguang, et al. Effect of high energy electron beam irradiation on normal temperature storage quality of strawberry[J]. Food and Fermentation Industries, 2010, 36(1): 191-195.
59 姚周麟, 周星宇, 丁士芳, 等. 電子束冷殺菌對(duì)即食魷魚絲保藏作用的研究[J]. 食品工業(yè)科技, 2009, 30(6): 323-325. YAO Zhoulin, ZHOU Xingyu, DING Shifang, et al. Study on the preservation of instant shredded squid with electron-beamcoldsterilization[J].Scienceand Technology of Food Industry, 2009, 30(6): 323-325.
60 楊文鴿, 李超, 徐大倫, 等. 電子束輻照對(duì)泥蚶肉揮發(fā)性風(fēng)味成分的影響[J]. 中國(guó)食品學(xué)報(bào), 2012, 12(3): 176-184. DOI: 10.3969/j.issn.1009-7848.2012.03.025. YANG Wenge, LI Chao, XU Dalun, et al. Effect of electron beam irradiation on the volatile flavors in tegillarca granosa meat[J]. Journal of Chinese Institute of Food Science and Technology, 2012, 12(3): 176-184. DOI: 10.3969/j.issn.1009-7848.2012.03.025.
61 賈倩, 李淑榮, 高美須, 等. 電子束和 γ射線輻照對(duì)素雞殺菌效果及氧化效應(yīng)的影響[J].食品科學(xué), 2013,34(13): 61-65. DOI: 10.7506/spkx1002-6630-201313013.JIA Qian, LI Shurong, GAO Meixu, et al. Comparative effects of electron beam and gamma ray irradiation on microorganism inactivation and oxidation of steamed tofu rolls[J]. Food Science, 2013, 34(13): 61-65. DOI: 10.7506/spkx1002-6630-201313013.
62 汪昌保, 趙永富, 王志東, 等. γ射線與電子束輻照肉制品的初步研究[J]. 江蘇農(nóng)業(yè)科學(xué), 2011, 39(6): 425-427. DOI: 10.3969/j.issn.1002-1302.2011.06.171. WANG Cangbao, ZHAO Yongfu, WANG Zhidong, et al. Effects of electron beam and gamma ray irradiation on the fresh-cut meat produce[J]. Jiangsu Agricaltural Science,2011, 39(6): 425-427. DOI: 10.3969/j.issn.1002-1302. 2011.06.171.
63 劉福莉, 陳華才, 楊菁怡. γ輻照和電子束輻照對(duì)豬肉火腿腸質(zhì)量的影響研究[J]. 中國(guó)計(jì)量學(xué)院學(xué)報(bào), 2010,21(4): 314-318. DOI: 10.3969/j.issn.1004-1540.2010.04. 008. LIU Fuli, CHEN Huacai, YANG Jingyi. Effects of gamma irradiation and electron beam irradiation on the quality of pork hams[J]. Journal of China University of Metrology,2010,21(4):314-318.DOI:10.3969/j.issn. 1004-1540.2010.04.008.
64 尚頤斌. 電子束和 γ射線輻照對(duì)冷鮮肉品質(zhì)影響的差異及作用機(jī)制研究[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2013. SHANG Yibin. Study on the comparison effects and mechanism of electron beam and gamma irradiation on fresh chilled pork[D]. Beijing: China Agriculture University, 2013.
65 Public Citizen. Questioning Food Irradiation: A History of research into the safety of irradiated foods[EB/OL]. Washington DC: Critical Mass Energy and Environment program[2003-05-14].https://www.citizen.org/documents/ questionin girradiation.pdf.
66 Fan X, Sommers C H. Food Irradiation Research and Technology[M]. Iowa: Wiley-Blackwell Publishing Press,2013: 43-61.
67 Food and Drug Administration. Irradiation in the production, processing and handling of food. Final rule[J]. Federal Register, 2008, 73(164): 49593-49603.
68 European Food Safety Authority. Scientific opinion on the chemical safety of irradiation of food[J]. European Food Safety Authority Journal, 2011, 9(4): 930. DOI: 10.2903/j. efsa.2011.1930.
69 Farkas J, Mohacsi-Farkas C. History and future of food irradiation[J]. Trends in Food Science & Technology,2011, 22(2-3): 121-126. DOI: 10.1016/j.tifs.2010.04.002.
70 Sadecka J. Influence of two sterilization ways,gamma-irradiation and heat treatment, on the volatiles of black pepper[J]. Czech Journal of Food Sciences, 2010,28(1): 44-52.
71 Sadecka J, Kolek E, Pe?ka J, et al. Influence of two sterilization ways on the volatiles of black pepper (Piper nigrum L.)[J]. Chemicke Listy, 2005, 99(14): 335-338.
72 Hsiao W, Hsiao P, Fong I, et al. Effect of gamma irradiation on microbial decontamination, and chemical and sensory characteristic of lycium fruit[J]. Radiation Physics and Chemistry, 2006, 75(5): 596-603.
73 WHO: High-dose irradiation: wholesomeness of food irradiated with doses above 10 kGy. Report of a joint FAO/IAEA/WHO study group. WHO Technical Report Series 890[R]. Geneva: World Health Organization, 1999.
74 Miller R B. Electronic irradiation of foods[M]. New York: Food Engineering Series. 2005: 8-11.
Advances in research of ionizing radiation on pathogen contamination of fresh produce
LI Longqing MA Liang LI Wenjian
(Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China)
In this article, we made a comprehensive discussion on the development of worldwide foodborne illnesses and application status of ionizing radiation techniques, reviewed the ability of ionizing radiation to inactivate a wide range of microorganisms, and debated the safety of radiation techniques and absorbed dose level. Future studies will investigate the sensitivity of pathogenic microorganisms to ionizing radiation. They will aim to identify critical factors that determine microbial resistance to ionizing radiation and assess the effects of such factors on the inactivation mechanism and repair pathway efficiency, establishing an integrated standard for food irradiation dose,technological process and operation specification.
Food, Irradiation, Foodborne illnesses, Food security
CLC TL99
食源性疾病一直是世界范圍內(nèi)受到廣泛關(guān)注的公共衛(wèi)生問題。隨著社會(huì)經(jīng)濟(jì)的發(fā)展和全球人口的逐年增加,食品供應(yīng)已從19世紀(jì)前的地方性消費(fèi)為主過渡到消費(fèi)者多元化地選擇距離產(chǎn)地越來越遠(yuǎn)的食品,并不斷推動(dòng)全球食品進(jìn)口以10%的年增長(zhǎng)速度持續(xù)增長(zhǎng),尤其是生鮮食品水果和蔬菜,其在1980~2004年間增速高達(dá)94%[1-3];另外,食品貿(mào)易全球化傾向、動(dòng)物產(chǎn)品的工業(yè)化生產(chǎn)、食品加工的高度集中、尤其生鮮食品需求的增長(zhǎng),也擴(kuò)大了源于環(huán)境、動(dòng)物、人類本身、以及土壤到餐桌各環(huán)節(jié)生物污染的傳播范圍,從而增加了食源性傳染病風(fēng)險(xiǎn)[4-5]。流行病統(tǒng)計(jì)顯示,近十年來,發(fā)達(dá)國(guó)家食源性疾病年發(fā)病率上升到了30%[6]。20世紀(jì)70年代,在醫(yī)療技術(shù)和綜合國(guó)力領(lǐng)先全球的美國(guó),還極少有人認(rèn)同食品是流行疾病爆發(fā)的媒介或誘因(當(dāng)時(shí)食源性流行病發(fā)病率僅占 0.7%,病例也只占總病例1%),到90年代,這一比率分別上升到6%和12%[7],并且在之后的13年間持續(xù)攀升,至2003年,食源性流行病發(fā)病率和病例比率已分別上升到 16%和30%[8],僅在1998~2008年,高達(dá)24%的食源性發(fā)病率,就造成約2 000萬美國(guó)病人付出了高達(dá)386億美元醫(yī)療費(fèi)代價(jià)[9]。世界其它地方如歐洲、加勒比海、亞洲、大洋洲、中東和非洲,每年僅食源性沙門氏菌引發(fā)的腸胃病例就分別高達(dá)506.5、4.2、8 642.5、2.4、56.3和245.8萬例[10]。值得關(guān)注的是,大約46%食源性疾病源于植物性產(chǎn)品[11],主要包括一些植物生物學(xué)特性的沙門氏菌、大腸桿菌和其它病原菌[12]。2006~2010年,我國(guó)食源性疾病暴發(fā)事件報(bào)告有2 023起,發(fā)病62 920人,死亡967人。僅微生物引發(fā)的食源性疾病暴發(fā)事件數(shù)和患者數(shù)分別高達(dá) 40.09%和 61.92%[13-14]。因此,在食品貿(mào)易全球化背景下,與日俱增的生鮮食品消費(fèi)需求和頻繁肆虐的食源性疾病事件,不僅給食品保藏技術(shù)提出了嚴(yán)峻挑戰(zhàn),也為其技術(shù)革新帶來了巨大的利益和發(fā)展機(jī)遇[15]。
LI Longqing (female) was born in February 1992, and received her bachelor degree from Sichuan University in 2014. Now she is a master candidate in Institute of Modern Physics, Chinese Academy of Science, majoring in biological engineering
29 December 2015; accepted 29 March 2016
Ph.D. LI Wenjian, professor, E-mail: wjli@impcas.ac.cn
TL99
10.11889/j.1000-3436.2016.rrj.34.040101
甘肅省科技支撐計(jì)劃(Y406050SJ00)項(xiàng)目資助
李壟清,女,1992年2月出生,2014年于四川大學(xué)獲得學(xué)士學(xué)位,現(xiàn)為中國(guó)科學(xué)院近代物理研究所生物工程專業(yè)在讀碩士研究生,研究方向?yàn)橹仉x子輻照誘變微生物育種
李文建,博士,研究員,E-mail: wjli@impcas.ac.cn
初稿2015-12-29;修回2016-03-29
Supported by the Science and Technology Support Plan of Gansu Province (Y406050SJ00)