尚 凱 平, 王 興, 周 景 輝
( 大連工業(yè)大學(xué) 輕工與化學(xué)工程學(xué)院, 遼寧 大連 116034 )
?
水滑石中鎂、鎳比對(duì)木素解聚產(chǎn)物分布的影響
尚 凱 平, 王 興, 周 景 輝
( 大連工業(yè)大學(xué) 輕工與化學(xué)工程學(xué)院, 遼寧 大連 116034 )
采用化學(xué)共沉淀法,制備了不同鎂、鎳、鋁摩爾比的水滑石,并用XRD、FT-IR和SEM對(duì)460 ℃焙燒后的樣品進(jìn)行表征,并以制得的水滑石為催化劑對(duì)楊木乙醇制漿木素進(jìn)行超臨界解聚。用GC-MS對(duì)木素解聚產(chǎn)物進(jìn)行分析,探索不同鎂、鎳摩爾比(0、4、8、16)的催化劑對(duì)木素超臨界催化解聚產(chǎn)物分布的影響。GC-MS檢測(cè)結(jié)果表明,解聚產(chǎn)物可分為芳香烴類、酯類、醇類、醛類、酚類和少量的其他產(chǎn)物,當(dāng)鎂、鎳摩爾比為8時(shí),芳香烴類、醛類和酯類產(chǎn)物含量最高;鎂、鎳摩爾比為0時(shí),酚類產(chǎn)物含量最高。
木素;水滑石;解聚;超臨界
0 引 言
由于化石燃料消耗量的增加以及環(huán)境保護(hù)要求的提高,生物質(zhì)木素作為一種替代能源備受關(guān)注。木素可以通過(guò)生物/熱化學(xué)轉(zhuǎn)換過(guò)程轉(zhuǎn)化為液體燃料和化學(xué)品[1],然而由于木素結(jié)構(gòu)的復(fù)雜性,使得它在轉(zhuǎn)化為高附加值產(chǎn)品的有效利用率受到限制[2]。解聚反應(yīng)是一種熱化學(xué)轉(zhuǎn)換方式,它能將木素?zé)峤獾漠a(chǎn)率提高到75%,而且解聚產(chǎn)物可以直接進(jìn)行多種應(yīng)用[3-4]。木素解聚產(chǎn)物得率及產(chǎn)物分布主要取決于所使用的溶劑、催化劑和熱力學(xué)條件。目前研究熱點(diǎn)集中在開發(fā)新型高效且具有一定選擇性的催化劑領(lǐng)域[5-7]。本文主要研究了鎳鎂鋁水滑石中Mg2+、Ni2+摩爾比對(duì)催化劑形貌及結(jié)構(gòu)的影響,及催化劑中不同Mg2+、Ni2+摩爾比對(duì)木素解聚產(chǎn)物的分布調(diào)控。
1.1 原料及儀器
實(shí)驗(yàn)試劑均為國(guó)藥集團(tuán)化學(xué)試劑有限公司的分析純?cè)噭?。木素為乙醇制漿黑液經(jīng)酸沉、過(guò)濾、洗滌、干燥制得。
D/Max-3B型X射線衍射儀,Rigaku公司,Cu陽(yáng)極靶,掃描速度8°/min;6890N/5973N型氣相色譜-質(zhì)譜聯(lián)用儀,Agilent公司。
1.2 催化劑的制備
通過(guò)化學(xué)共沉淀法[8]制備鎳鎂鋁水滑石。使n(Ni2++Mg2+)/n(Al3+)=3,即稱取Al(NO3)3·9H2O (18.76 g,0.05 mol),改變Mg(CH3COO)2·4H2O和Ni(NO3)2·6H2O的量,使n(Mg2+)/n(Ni2+)分別為0、4、8、16,分別溶于300 mL的去離子水中配成4種溶液,用去離子水配制一定量的NaOH溶液和Na2CO3溶液,將溶解好的4種溶液在劇烈攪拌下緩慢加入到Na2CO3溶液中,通過(guò)滴加NaOH溶液維持混合液的pH 為10±0.2,保溫(65±3) ℃。滴定結(jié)束,攪拌72 h靜置24 h后對(duì)溶液進(jìn)行真空抽濾并洗滌,將得到的濾餅溶解于高濃度的Na2CO3溶液中,靜置10 h對(duì)其進(jìn)行真空抽濾、洗滌、烘干制得鎳鎂鋁水滑石。在460 ℃下對(duì)其焙燒,得到含Ni復(fù)合金屬氧化物即鎳鎂鋁水滑石催化劑。
1.3 超臨界乙醇催化解聚木素
在100 mL超臨界反應(yīng)器中加入催化劑1 g、木素2 g、無(wú)水乙醇40 mL,密封后抽真空并加熱至300 ℃,反應(yīng)時(shí)間8 h。反應(yīng)結(jié)束后立即用流動(dòng)水冷卻至室溫。取2 mL解聚產(chǎn)物用氣相色譜-質(zhì)譜聯(lián)用儀進(jìn)行分析。
2.1 催化劑的FT-IR分析
圖1 460 ℃焙燒后不同n(Mg2+)/n(Ni2+)水滑石的FT-IR譜圖
Fig.1 FT-IR spectrum for hydrotalcites with various n(Mg2+)/n(Ni2+) calcinated at 460 ℃
2.2 催化劑的XRD分析
對(duì)制備的不同n(Mg2+)/n(Ni2+)的鎳鎂鋁水滑石在460 ℃焙燒后的樣品進(jìn)行XRD分析,如圖2所示。由圖2可知,460 ℃焙燒后,在n(Mg2+)/ n(Ni2+)=0時(shí),出現(xiàn)強(qiáng)且尖銳的NiO晶相衍射峰,在4≤n(Mg2+)/n(Ni2+)≤16均出現(xiàn)MgO晶相衍射峰,這符合鎳鎂鋁水滑石的特點(diǎn),表明用此方法可以成功制備目標(biāo)催化劑鎳鎂鋁水滑石。
圖2 460 ℃焙燒后不同n(Mg2+)/n(Ni2+)水滑石的XRD譜圖
Fig.2 XRD spectrum for hydrotalcites with variousn(Mg2+)/n(Ni2+) calcinated at 460 ℃
2.3 SEM分析
對(duì)制備的n(Mg2+)/n(Ni2+)=4的鎳鎂鋁水滑石在460 ℃焙燒后的樣品用掃描電鏡觀察,如圖3所示。由圖3可知水滑石結(jié)構(gòu)已經(jīng)完全塌陷,滑石結(jié)構(gòu)塌陷生成的MgO晶粒較大,片層結(jié)構(gòu)較好,比表面積大。比表面積越大,暴露的活性位點(diǎn)越多,催化效果越好。
圖3 460 ℃焙燒后n(Mg2+)/n(Ni2+)=4時(shí)水滑石的SEM圖
Fig.3 SEM pattern for hydrotalcites atn(Mg2+)/n(Ni2+) of 4 calcinated at 460 ℃
2.4 不同Mg2+、Ni2+摩爾比催化劑的木素解聚產(chǎn)物
表1為用不同n(Mg2+)/n(Ni2+)鎳鎂鋁水滑石催化劑對(duì)木素進(jìn)行超臨界解聚產(chǎn)物GC-MS的分析結(jié)果。通過(guò)對(duì)GC-MS中各單體所占百分比進(jìn)行分類加和得出表1。由表1可知木素解聚產(chǎn)物可分為芳香烴類、酯類、醇類、醛類、酚類和其他產(chǎn)物。不同n(Mg2+)/n(Ni2+)催化劑對(duì)木素超臨界解聚產(chǎn)物分布調(diào)控效果顯著。在n(Mg2+)/n(Ni2+) 從0增加到16的過(guò)程中,醛類產(chǎn)物含量處于一個(gè)波動(dòng)的狀態(tài),鎳具有催化加氫的作用可以斷裂木素中的C—O—C鍵生成醛、醇等單體產(chǎn)物。隨著鎳含量增加,催化加氫效果也增強(qiáng),促使醇類單體進(jìn)一步轉(zhuǎn)化為醛類等物質(zhì),因此醇類單體的變化趨勢(shì)應(yīng)與醛類單體的變化趨勢(shì)相反,這與表中趨勢(shì)一致。在各個(gè)比值下酯類單體都大量存在,說(shuō)明大量酯化反應(yīng)的發(fā)生,這是由于木素中苯環(huán)連接鍵斷裂以及連氧苯環(huán)開環(huán)生成的小分子羧酸與體系的乙醇進(jìn)行反應(yīng)生成大量酯類單體。Mg2+與Ni2+有協(xié)同催化作用,對(duì)芳香烴單體具有一定的選擇性,n(Mg2+)/n(Ni2+)=16時(shí)芳香烴類單體較n(Mg2+)/n(Ni2+)=8時(shí)減少。
表1 木素解聚產(chǎn)物分布
3 結(jié) 論
用化學(xué)共沉淀法制備不同Mg2+、Ni2+質(zhì)量比的鎳鎂鋁水滑石,460 ℃焙燒后, XRD、FT-IR和SEM表明其具有典型水滑石特征,用此方法可以制備目標(biāo)催化劑鎳鎂鋁水滑石。
木素在水滑石鎳鎂鋁催化劑下,超臨界解聚產(chǎn)物主要分為芳香烴類、酯類、醇類、醛類、酚類。
不同Mg2+、Ni2+質(zhì)量比水滑石催化劑對(duì)木素解聚產(chǎn)物分布具有一定調(diào)控作用。n(Mg2+)/n(Ni2+)=8時(shí)芳香烴類、醛類和酯類產(chǎn)物含量最高,n(Mg2+)/n(Ni2+)=0時(shí)酚類產(chǎn)物含量最高。
[1] JOFFRES B, NGUYEN M T, LAURENTI D, et al. Lignin hydroconversion on MoS 2-based supported catalyst: comprehensive analysis of products and reaction scheme[J]. Applied Catalysis B: Environmental, 2016, 184: 153-162.
[2] LI C Z, ZHAO X C, WANG A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624.
[3] KIM J Y, OH S, HWANG H, et al. Assessment of miscanthus biomass (Miscanthussacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis[J]. Energy, 2014, 76: 284-291.
[4] GORDOBIL O, MORIANA R, ZHANG L, et al. Assesment of technical lignins for uses in biofuels and biomaterials: structure-related properties, proximate analysis and chemical modification[J]. Industrial Crops and Products, 2016, 83: 155-165.
[5] GUO D L, WU S B, LIU B, et al. Catalytic effects of NaOH and Na2CO3additives on alkali lignin pyrolysis and gasification[J]. Applied Energy, 2012, 95(2): 22-30.
[6] MEIER D, ANTE R, FAIX O. Catalytic hydropyrolysis of lignin: influence of reaction conditions on the formation and composition of liquid products[J]. Bioresource Technology, 1992, 40(2): 171-177.
[7] OLCESE R N, FRAN?OIS J, BETTAHAR M M, et al. Hydrodeoxygenation of guaiacol, a surrogate of lignin pyrolysis vapors, over iron based catalysts: kinetics and modeling of the lignin to aromatics integrated process[J]. Energy and Fuels, 2013, 27(2): 975-984.[8] HUANG X, KORNYI T I, BOOT M D, et al. Catalytic depolymerization of lignin in supercritical ethanol[J]. ChemSusChem, 2014, 7(8): 2276-2288.
司曉菲,呂繼祥,李沅,劉兆麗,孫巖峰.多孔淀粉微球的制備及應(yīng)用[J].大連工業(yè)大學(xué)學(xué)報(bào),2016,35(6):452-456.
Effect of mole ratio of Mg and Ni in hydrotalcite catalysts on lignin pyrolyzation
SHANG Kaiping, WANG Xing, ZHOU Jinghui
( School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China )
Hydrotalcite catalysts were prepared with different mole ratio of Ni, Mg and Al by chemical co-precipitation roasting at 460 ℃, and characterized by XRD, FT-IR and SEM. The catalytic depolymerization of aspen lignin was in the supercritical ethanol with hydrotalcite as catalyst. The pyrolyzed products were characterized by GC-MS, and the effects of mole ratio of Mg and Ni (0, 4, 8, 16) on lignin pyrolyzing were also evaluated. GC-MS confirmed that the pyrolyzed products of lignin were mainly composed of aromatic hydrocarbons, esters, alcohols, aldehydes, phenols and other compounds. The yields of aromatic hydrocarbons, aldehydes and esters reached highest when the mole ratio of Mg and Ni was 8, while the maximum yield of phenolic was obtained when the mole ratio of Mg and Ni was zero.
lignin; hydrotalcite; pyrolyze; supercritical
2016-08-31.
國(guó)家自然科學(xué)基金資助項(xiàng)目(31470604).
尚凱平(1991-),男,碩士研究生;通信作者:周景輝(1957-),男,教授.
TS711
A
1674-1404(2016)06-0449-03
SHANG Kaiping, WANG Xing, ZHOU Jinghui. Effect of mole ratio of Mg and Ni in hydrotalcite catalysts on lignin pyrolyzation[J]. Journal of Dalian Polytechnic University, 2016, 35(6): 449-451.