周碧波,張潤(rùn)玲,雷 勇
(呂梁學(xué)院數(shù)學(xué)系,山西 呂梁 033000)
Riemann-Liouville和Cputo分?jǐn)?shù)階微積分
周碧波,張潤(rùn)玲,雷 勇
(呂梁學(xué)院數(shù)學(xué)系,山西 呂梁 033000)
利用伽馬函數(shù)無(wú)窮積分探討了從整數(shù)階微積分到分?jǐn)?shù)階微積分的過(guò)渡和演繹.通過(guò)證明整數(shù)階微積分僅是分?jǐn)?shù)階微積分的一種特殊情況,拓寬了導(dǎo)數(shù)和積分的概念.闡述了Riemann-Liouville和Cputo兩種不同分?jǐn)?shù)階導(dǎo)數(shù)定義的區(qū)別和聯(lián)系,給出了Hadamard積分與Riemann-Liouville導(dǎo)數(shù)之間的關(guān)系.
整數(shù)階微積分;分?jǐn)?shù)階微積分;伽馬函數(shù);Hadamard積分
牛頓和萊布尼茨創(chuàng)立的微積分是變量數(shù)學(xué)時(shí)期最主要的科學(xué)成就,微積分的誕生是全部科學(xué)史上,也是人類歷史上最偉大最有影響的創(chuàng)舉.分?jǐn)?shù)階微積分最早由著名數(shù)學(xué)家Hospital于1695年提出:
耶魯大學(xué)教授Manderbrot指出:自然界和科學(xué)界存在大量的分?jǐn)?shù)維.分?jǐn)?shù)階微積分已成為研究分?jǐn)?shù)階微分方程、分形函數(shù)等的有力工具,被廣泛應(yīng)用于分形幾何、分形函數(shù)、分形偏微分方程、函數(shù)空間等領(lǐng)域的研究[1-4],分?jǐn)?shù)階在量子力學(xué)、化學(xué)物理、流體學(xué)、電力網(wǎng)絡(luò)、粘彈性、醫(yī)學(xué)等眾多領(lǐng)域也有著廣泛的應(yīng)用[5-6].
引理 變上限函數(shù)積分具有如下性質(zhì):
由引理可得
由此不難推出n階整數(shù)階變上限函數(shù)的導(dǎo)數(shù)公式
由于整數(shù)階導(dǎo)數(shù)和積分在不考慮常數(shù)的情況下是互逆運(yùn)算,對(duì)式(2)兩邊同時(shí)求n階積分,再由伽馬函數(shù)性質(zhì)可得
定義1[8](Riemann-Liouville分?jǐn)?shù)階積分) 若函數(shù)f(t)連續(xù),則f(t)的α次積分為
其中:α>0,t>0,f∈L′[0,t].
定義2[9](Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)) 設(shè)函數(shù)f(t)連續(xù),當(dāng)0<α<1時(shí),f(t)的α次導(dǎo)數(shù)為
當(dāng)n-1<α≤n時(shí),則有
在引入分?jǐn)?shù)階導(dǎo)數(shù)以后,整數(shù)階導(dǎo)數(shù)就成為分?jǐn)?shù)階導(dǎo)數(shù)的特殊情況,下面以冪函數(shù)為例來(lái)說(shuō)明.
其中m-1<α≤m.當(dāng)α取整數(shù)時(shí)結(jié)論與整數(shù)階導(dǎo)數(shù)結(jié)論完全吻合,但是由于Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)具有超奇異性,不便于工程和物理建模中的應(yīng)用,意大利地球物理學(xué)家Cputo提出了弱奇異的分?jǐn)?shù)階導(dǎo)數(shù),該導(dǎo)數(shù)定義解決了分?jǐn)?shù)階微積分中分?jǐn)?shù)階初值問(wèn)題.
定義3[9](Cputo分?jǐn)?shù)階導(dǎo)數(shù)) 設(shè)n-1<α≤n,函數(shù)f(t)n階可導(dǎo),則f(t)的α次Cputo導(dǎo)數(shù)為
由以上定義可以看出,Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)和Cputo分?jǐn)?shù)階導(dǎo)數(shù)定義的區(qū)別在于積分和求導(dǎo)的順序不同,Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)是先積分再求導(dǎo),而Cputo分?jǐn)?shù)階導(dǎo)數(shù)是先求導(dǎo)后積分,從數(shù)學(xué)的角度上來(lái)說(shuō),Cputo分?jǐn)?shù)階導(dǎo)數(shù)定義的要求更高一些,它要求函數(shù)具有n階導(dǎo)數(shù).Cputo方法的主要優(yōu)勢(shì)是使分?jǐn)?shù)階微分方程的初始條件可以采用和整數(shù)階微分方程相同的形式.
另外,在分?jǐn)?shù)階導(dǎo)數(shù)微分方程數(shù)值計(jì)算中經(jīng)常需要構(gòu)造差分格式,為了方便計(jì)算,經(jīng)常把Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)中的積分部分轉(zhuǎn)化為Hadamard積分,現(xiàn)給出Hadamard積分定義.
定義4[7](Hadamard積分) 設(shè)g(w)足夠光滑,0< α≤1,g(w)的Hadamard積分為
其中:a-b表示積分的上限和下限,a為積分下限,b為積分上限.
定理1 令f(t)=(t-a)k,設(shè)α>0,k>-1,則有
證明 由Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)定義有
令x=a+u(t-a),則有
定理2 設(shè)f(t)、g(t)為兩個(gè)函數(shù),λ、μ為常數(shù),則有
證明 由條件可得
定理3 當(dāng)0<α≤1時(shí),Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)和Hadamard積分有如下關(guān)系
其中
定理3給出了當(dāng)0<α≤1時(shí),Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)和Hadamard積分之間的關(guān)系,這個(gè)關(guān)系式對(duì)于微分方程構(gòu)造差分格式計(jì)算近似值具有非常重要的意義,若m-1<α≤m,依然可以利用Hadamard積分定義和泰勒公式得到類似的Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)展開式.
[1]ZHAI C B,YAN W P,YANG C.A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(1):858-866.
[2]WANG G T,LIU S Y.BELEANU D,et al.A new impulsive multi-orders fractional differential equation involving multi-point fractional integral boundary condition[J].Abstract and Applied Analysis,2014,DOI:10.1155/2014/932747.
[3]FECKA M,ZHOU Y,WANG J.On the concept existence of solution for impulsive fractional differential equations[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(7):3050-3060.
[4]ZHOU Y,JIAO F,LI J.Existence and uniqueness for type fractional neutral differential equations[J].Nonlinear Analysis:Theory,Methods and Applications,2009,71(7):2724-2731.
[5]ZHANG X M,ZHANG M.On the concept of general solution for impulsive differential equations of fractional order[J].Applied Mathematics and Computation,2015(268):103-120.
[6]常福宣,吳吉春,薛禹群,等.考慮時(shí)空相關(guān)的分?jǐn)?shù)階對(duì)流-彌散方程及其解[J].水動(dòng)力學(xué)研究與進(jìn)展,2005,20(3):34-38. CHANG F X,WU J C,XUE Y Q,et al.The fractional order advection dispersion equation with temporal and spatial correlation and its solution[J].Journal of Hydrodynamics,2005,20(3):34-38(in Chinese).
[7]LAKSHMIKANTHAM V.Theory of fractional differential equations[J]. Nonlinear Analysis,2008,69(8):2677-2682.
[8]LIANG S H,ZHANG J H.Positive solutions for boundary value problems of nonlinear fractional differential equation[J].Nonlinear Analysis, 2009,71(11):5545-5550.
[9]KIBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and ApplicationofFractionalDifferentialEquations[M].Amsterdam:Elsevier,2006.
(責(zé)任編校 馬新光)
Fractional order differential and integral of Riemann-Liouville and Cputo
ZHOU Bibo,ZHANG Runling,LEI Yong
(Department of Mathematics,Lvliang University,Lvliang 033000,Shanxi Province,China)
The transition from the integer order differential and integral calculus to the fractional order calculus is discussed by using the gamma function infinite integral.It is proved that the fractional calculus is just a special case of fractional order calculus,and the concept of derivative and integral is broadened.The difference and contact of Riemann Liouville and Cputo fractional derivatives are expounded,and the relation between Hadamard integral and Riemann Liouville derivative is given. Keywords:integer order differential and integral;fractional order differential and integral;gamma function;Hadamard integral
O175
A
1671-1114(2016)05-0020-03
2016-03-02
呂梁學(xué)院自然科學(xué)青年基金資助項(xiàng)目(ZRXY201306,ZRXY201308).
周碧波(1978—),男,講師,主要從事非線性泛函分析方面的研究.
張潤(rùn)玲(1966—),女,副教授,主要從事非線性泛函分析方面的研究.