容 庭,劉志昌,王 剛,李書宏,張 潔,蔡 追,陳 莊
(1.廣東省農(nóng)業(yè)科學(xué)院動(dòng)物科學(xué)研究所,畜禽育種國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣東省動(dòng)物育種與營(yíng)養(yǎng)公共實(shí)驗(yàn)室,廣東省畜禽育種與營(yíng)養(yǎng)研究重點(diǎn)實(shí)驗(yàn)室,廣州 510640;2.廣東省農(nóng)業(yè)科學(xué)院,廣州 510640)
?
亞劑量硫酸新霉素對(duì)黃羽肉雞回腸黏膜菌群組成的影響
容 庭1,劉志昌1,王 剛1,李書宏1,張 潔1,蔡 追1,陳 莊2*
(1.廣東省農(nóng)業(yè)科學(xué)院動(dòng)物科學(xué)研究所,畜禽育種國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣東省動(dòng)物育種與營(yíng)養(yǎng)公共實(shí)驗(yàn)室,廣東省畜禽育種與營(yíng)養(yǎng)研究重點(diǎn)實(shí)驗(yàn)室,廣州 510640;2.廣東省農(nóng)業(yè)科學(xué)院,廣州 510640)
以1日齡嶺南黃肉雞(♂)為試驗(yàn)動(dòng)物,研究在日糧中長(zhǎng)期添加亞劑量硫酸新霉素對(duì)黃羽肉雞回腸黏膜菌群動(dòng)態(tài)變化與組成的影響。于1、7、14、21、28、35及42日齡分別從A組(飼喂基礎(chǔ)日糧)和D組(飼喂基礎(chǔ)日糧+50 mg·kg-1硫酸新霉素)采集雞回腸腸段并提取黏膜細(xì)菌基因組DNA,采用PCR-DGGE技術(shù)分析雞回腸黏膜菌群結(jié)構(gòu),同時(shí)應(yīng)用16S rDNA基因序列技術(shù),建立42日齡雞回腸黏膜細(xì)菌16S rDNA的隨機(jī)克隆文庫(kù)。DGGE圖譜分析發(fā)現(xiàn),A、D兩組1~28日齡回腸黏膜細(xì)菌結(jié)構(gòu)存在明顯差異,其相似性為40%~60%;A、D兩組肉雞1~35日齡菌群結(jié)構(gòu)發(fā)生變化的程度不同,A組的動(dòng)態(tài)變化值(%change)為9%~33%,D組的動(dòng)態(tài)變化值為17%~45%。分析回腸文庫(kù)發(fā)現(xiàn),A組文庫(kù)有94個(gè)序列,共產(chǎn)生9個(gè)OTUs(Operational Taxonomic Units),其中未知菌屬(微桿菌屬)所占克隆總數(shù)比例最大為48.94%(46/94),其次是乳桿菌屬占38.30%(36/94);D組文庫(kù)有93個(gè)序列,共產(chǎn)生6個(gè)OTUs,其中乳桿菌屬所占克隆總數(shù)比例最大為49.46%(46/93),其次是微桿菌屬占45.16%(42/93);兩組回腸文庫(kù)中其他菌屬的組成種類與數(shù)量存在差異,且未發(fā)現(xiàn)與大腸桿菌相關(guān)的序列。A組與D組42日齡肉雞回腸黏膜菌群的組成及多樣性存在差異,尤其是乳桿菌屬的組成比例,這種差異可能是抗生素持續(xù)壓力的影響所致。
硫酸新霉素;嶺南黃肉雞;腸道黏膜菌群;16S rDNA克隆文庫(kù)
硫酸新霉素(Neomycinsulfate)為弗氏鏈霉菌(Streptomycesfradiae)的發(fā)酵產(chǎn)物,屬于氨基糖苷類廣譜抗生素[1-2],廣泛用于防治各種動(dòng)物局部感染[3],適用于胃腸道和呼吸道感染。相比其他抗生素類,它具有抗菌能力強(qiáng)、作用范圍廣、口服無(wú)毒副作用、口服后大部分以原形排出、無(wú)過(guò)敏反應(yīng)、安全和不易產(chǎn)生耐藥性和交叉耐藥性等優(yōu)點(diǎn),在國(guó)外作為常用的獸藥。但硫酸新霉素有一定的毒性,長(zhǎng)期使用會(huì)引起耳毒性和腎毒性[4],許多國(guó)家和地區(qū)對(duì)其規(guī)定了最大限量,歐盟明確規(guī)定,禁止使用氨基糖苷類抗生素作為家畜的生長(zhǎng)促進(jìn)劑。畜禽生產(chǎn)中抗生素的長(zhǎng)期使用除了發(fā)揮促生長(zhǎng)作用外,也擾亂宿主與腸道菌群之間的正常平衡,造成菌群失調(diào)[5-6]。大多數(shù)的報(bào)道都基于抗生素對(duì)畜禽腸道內(nèi)容物微生物的研究,而抗生素作為預(yù)防用藥對(duì)畜禽胃腸道黏膜微生物的研究國(guó)內(nèi)外未見報(bào)道。因此,以嶺南黃肉雞作為試驗(yàn)素材,采用PCR-DGGE技術(shù)與16S rDNA基因序列技術(shù)分析亞劑量硫酸新霉素作為預(yù)防用藥對(duì)黃羽肉雞回腸黏膜菌群組成及多樣性的影響,探討在家禽日糧中長(zhǎng)期添加亞劑量抗生素是否會(huì)導(dǎo)致腸道黏膜菌群失調(diào)、影響宿主健康,為今后深入開展飼用抗生素的應(yīng)用研究提供新的思路。
1.1 試驗(yàn)動(dòng)物與飼養(yǎng)管理
試驗(yàn)于2014年10月29日至2014年12月9日在廣東省農(nóng)業(yè)科學(xué)院畜牧研究所試驗(yàn)場(chǎng)地完成,飼養(yǎng)期42 d;試驗(yàn)選擇同1天孵化的1日齡健康嶺南黃肉雞400羽,隨機(jī)分為2組(分別編號(hào)為A組和D組),每組5個(gè)重復(fù),每個(gè)重復(fù)40羽,各組間體重均無(wú)顯著差異,A組飼喂基礎(chǔ)日糧,D組飼喂基礎(chǔ)日糧+50 mg·kg-1硫酸新霉素(干品效價(jià)為675 U·mg-1)。仔雞均在封閉式肉雞舍內(nèi)地面平養(yǎng),地面鋪放木屑,全天24 h光照,自由采食和飲水。試驗(yàn)選用玉米—豆粕型基礎(chǔ)日糧,參照NRC(1994)雞的營(yíng)養(yǎng)需要、中國(guó)雞飼養(yǎng)標(biāo)準(zhǔn)(NY/T 33-2004)、中國(guó)飼料成分及營(yíng)養(yǎng)價(jià)值表(2005)按1~21 d和22~42 d 2個(gè)階段日糧進(jìn)行配制,主要營(yíng)養(yǎng)指標(biāo):1~21日齡粗蛋白質(zhì)21%,能值為12.12 MJ·kg-1;22~42日齡,粗蛋白質(zhì)19%,能值為12.54 MJ·kg-1。試驗(yàn)采用常規(guī)免疫程序,雞舍平均溫度約22 ℃,相對(duì)濕度控制在60%~65%。期間雞未發(fā)生疾病,采用常規(guī)消毒。
1.2 指標(biāo)測(cè)定
試驗(yàn)開始(1日齡)、21日齡、42日齡,以重復(fù)為單位進(jìn)行空腹稱重。稱重前12 h撤料,不停水,于第二天早上8:00進(jìn)行空腹稱重。計(jì)算每個(gè)重復(fù)雞只的平均日增重(ADG)、試末均重(Final Weight);記錄各重復(fù)投料量及剩余量,計(jì)算每個(gè)重復(fù)平均日采食量(ADFI)和耗料增重比(F/G)。
1.3 回腸黏膜樣品采集與前處理
試驗(yàn)于第1、7、14、21、28、35及42天早上喂料前,分別從每個(gè)重復(fù)組中挑選2只健康的試驗(yàn)雞屠宰,采集回腸腸段(中部2 cm)黏膜樣品,截取1 cm用于試驗(yàn),1 cm留樣,樣品立即放入液氮中速凍后,于-80 ℃保存?zhèn)溆谩G疤幚矸椒▍⒄瘴墨I(xiàn)[7、8]。然后合并10只雞腸段菌體置于1.5 mL的TE緩沖液(10 mmol·L-1Tris pH8.0,1 mmol·L-1EDTA)中,取500 μL來(lái)提取DNA,其余1 mL立即置于液氮中速凍,于-80 ℃保存?zhèn)溆谩?/p>
1.4 細(xì)菌基因組 DNA提取與純度測(cè)定
采用EZgeneTM Bacterial gDNA Kit(Biomiga,USA)試劑盒提取10只雞回腸黏膜混合樣品基因組DNA[8-9],其操作步驟按說(shuō)明書進(jìn)行。基因組DNA濃度和純度采用ND-1000核酸蛋白質(zhì)分析儀檢測(cè)。DNA的A260/A280值作為評(píng)價(jià)純度的指標(biāo)。
1.5 變性梯度凝膠電泳(DGGE)
根據(jù)參考文獻(xiàn)[10]設(shè)計(jì)出16S rDNA的V3區(qū)PCR擴(kuò)增引物 (由上海生物工程有限公司合成),341F-GC(5′-CGCCCGCCGCGCGCGGCGGGCGG-GGCGGGGGCACGGGGGGCCTACGGGAGGCA-GCAG-3′) 和518R (5′-ATTACCGCGGCTGCTGG-3′)。PCR反應(yīng)體系(50 μL):10×buffer(with MgCl2)5 μL,dNTPs(10 mmol·L-1) 4 μL,引物(10 μmol·L-1)各0.5 μL,模板DNA(20 ng·μL-1)5 μL,TaqDNA 聚合酶(5 U·μL-1) 0.25 μL,ddH2O補(bǔ)足50 μL,同時(shí)設(shè)不添加模板的陰性對(duì)照;PCR擴(kuò)增條件:94 ℃預(yù)變性3 min;94 ℃變性30 s,57.5 ℃退火40 s,72 ℃延伸50 s,30個(gè)循環(huán),最后72 ℃延伸7 min。取5 μL PCR產(chǎn)物用1.2%的1×TAE瓊脂凝膠電泳檢測(cè)。PCR產(chǎn)物回收采用試劑盒(購(gòu)買于上海生物工程有限公司)回收,其方法依試劑盒使用說(shuō)明。
采用Bio-Rad Dcode進(jìn)行DGGE凝膠電泳。凝膠梯度為40%~60%,變性方向與電泳方向一致。100%變性劑溶液含7 mol·L-1尿素和40%去離子甲酰胺。使用1×TAE緩沖液,70 V,60 ℃電泳14 h,PCR產(chǎn)物上樣量為20 μL。參照文獻(xiàn)方法用硝酸銀染色[10],將銀染的DGGE凝膠放置在白光投射儀上,用數(shù)碼相機(jī)拍照并保存圖片。
1.6 DGGE凝膠圖像與數(shù)據(jù)分析
采用BIO-RAD Quality One 4.6.2軟件對(duì)PCR-DGGE圖像進(jìn)行聚類分析。
動(dòng)態(tài)變化性(Dynamics)計(jì)算公式[11]:%change=100-%similarity;%similarity是比較兩個(gè)相鄰時(shí)間點(diǎn)的相似性得出;%change稱為變化值或者改變值,表示在一段時(shí)間內(nèi)某個(gè)微生態(tài)系統(tǒng)的改變或更新程度。
1.7 16S rDNA隨機(jī)克隆文庫(kù)的構(gòu)建
1.7.1 細(xì)菌16S rDNA V3區(qū)PCR擴(kuò)增 以42日齡回腸黏膜細(xì)菌基因組DNA為模板,根據(jù)參考文獻(xiàn)[10]設(shè)計(jì)出16S rDNA V3區(qū)的引物(無(wú)GC夾)進(jìn)行PCR擴(kuò)增。引物(由上海生物工程有限公司合成):341F(5′-CCTACGGGAGGCAGCAG-3′)和518R (5′-ATTACCGCGGCTGCTGG-3′)。操作方法同“1.5”。取5 μL PCR產(chǎn)物用1.2%的1×TAE瓊脂凝膠電泳檢測(cè)。PCR產(chǎn)物回收采用試劑盒回收(購(gòu)買于上海生物工程有限公司),其方法依試劑盒使用說(shuō)明。
1.7.2 隨機(jī)克隆文庫(kù)構(gòu)建 PCR回收產(chǎn)物連接到pMD18-T載體(試劑盒購(gòu)于大連TaKaRa公司),置于4 ℃冰箱連接過(guò)夜,后用DH5α感受態(tài)細(xì)胞(購(gòu)于TaKaRa Bio Group)進(jìn)行重組載體轉(zhuǎn)化,將轉(zhuǎn)化產(chǎn)物加入LB培養(yǎng)液中(37 ℃,160 r·min-1),培養(yǎng)1 h后,取適量培養(yǎng)物涂布在LB抗性平板(含50 μg·mL-1Amp、20%IPTG及2.5%X-gal)上,將平板移置培養(yǎng)箱(37 ℃)中培養(yǎng)12~14 h,取出置于4 ℃冰箱過(guò)夜。從平板中挑取100個(gè)白色單菌落,接入LB培養(yǎng)液(含50 μg·mL-1Amp)中,移入搖床(170 r·min-1,37 ℃)振蕩培養(yǎng)12~14 h。以菌液作為模板,用引物BcaBEST Primer M13-47[購(gòu)于寶生物工程(大連)有限公司]擴(kuò)增pMD18-T載體目的片段,進(jìn)行陽(yáng)性克隆PCR鑒定,并挑選陽(yáng)性克隆子的菌液進(jìn)行測(cè)序(華大基因,BGl),建立克隆文庫(kù)。
1.8 隨機(jī)克隆文庫(kù)數(shù)據(jù)分析[12-14]
克隆文庫(kù)覆蓋度的大小用庫(kù)容(Coverage)來(lái)表示:C=1-n1/N,N代表文庫(kù)總克隆數(shù),n1代表在文庫(kù)中僅出現(xiàn)一次的OTU的數(shù)量;腸道菌群的多樣性指數(shù)分析采用:Simpson′index(D)=1-ΣPi2,Shannon-Weiner index(H′):H′=-ΣPilnPi,Pi=ni/N,Pi表示第i個(gè)種占總數(shù)的比例,ni為第i個(gè)物種的克隆數(shù),N為總克隆數(shù);Shannon evenness(E)=H′/H′max,H′max = lnS,其中H'max為H'的最大值;Margalef index(DMa)=(S-1)/ lnN,S為克隆文庫(kù)總的物種數(shù)。
1.9 試驗(yàn)數(shù)據(jù)處理
測(cè)序得到的16SrDNAV3區(qū)基因序列經(jīng)DNASTAR找出目的片段,并在GenBank數(shù)據(jù)庫(kù)中進(jìn)行比對(duì)分析,尋找最相似已知與已知分類地位的序列。
2.1 嶺南黃肉雞生產(chǎn)性能統(tǒng)計(jì)
由表1可看出,兩組間生產(chǎn)性能的各項(xiàng)指標(biāo)(末重、平均日增重、平均日采食量及料重比)差異均不顯著(P>0.05)。由此可見,日糧中長(zhǎng)期添加50mg·kg-1硫酸新霉素對(duì)嶺南黃肉雞不同階段的生產(chǎn)性能均無(wú)顯著影響。
2.2 回腸黏膜細(xì)菌DNA提取和16SrDNAV3區(qū)PCR擴(kuò)增
黏膜細(xì)菌DNA電泳結(jié)果發(fā)現(xiàn),片段大小約23kb,經(jīng)核酸蛋白質(zhì)儀測(cè)定可作為PCR擴(kuò)增16SrDNAV3區(qū)序列的模板。16SrDNAV3區(qū)PCR產(chǎn)物的相對(duì)分子質(zhì)量大小約為240bp,片段大小與預(yù)期的一致(圖略)。經(jīng)克隆子PCR鑒定結(jié)果顯示(圖略),用引物BcaBESTPrimerM13-47擴(kuò)增的PCR產(chǎn)物大小約330bp。條帶單一無(wú)引物二聚體,片段大小正確的鑒定為陽(yáng)性克隆子。兩組分別從LB抗性平板上隨機(jī)挑選100個(gè)陽(yáng)性克隆子,A組回腸符合測(cè)序的克隆子總數(shù)為94個(gè);D組符合測(cè)序的克隆子總數(shù)為93個(gè)。
階段Stages末重/gFinalweight平均日增重/gADG平均日采食量/gADFI料重比F/G1~21dA組GroupA417.89±5.50a18.75±0.26a32.21±0.55a1.73±0.04aD組GroupD419.85±5.57a18.85±0.26a31.22±0.59a1.68±0.02a22~42dA組GroupA1314.28±30.48a42.69±1.59a91.89±3.31a2.32±0.06aD組GroupD1337.20±17.66a43.68±1.04a95.05±1.03a2.34±0.05a1~42dA組GroupA1314.28±30.48a31.08±0.75a62.05±1.75a2.13±0.05aD組GroupD1337.20±17.66a31.65±0.43a63.14±0.52a2.13±0.03a
同列數(shù)據(jù)肩標(biāo)有相同字母或無(wú)字母表示差異不顯著(P>0.05),不相同小寫字母表示差異顯著(P<0.05)
In the same row,values with the same letter superscripts or no letter superscripts mean no significant difference (P>0.05),while with different small letter superscripts mean significant difference (P<0.05)
2.3 回腸黏膜菌群結(jié)構(gòu)的相似性聚類與動(dòng)態(tài)變化分析
DGGE圖譜(圖1)顯示,A、D兩組基因組DNA的主要特征性條帶相似(見標(biāo)識(shí)1、2),1~28日齡兩組的泳道條帶數(shù)存在明顯差異(見白色框)。BIO-RAD Quality One軟件分析DGGE圖譜發(fā)現(xiàn)(表2),1~28日齡兩組雞回腸黏膜細(xì)菌結(jié)構(gòu)的相似性較低(40%~60%),35~42日齡相似性相對(duì)較高(70%~80%)。聚類分析發(fā)現(xiàn)(圖2),A組和D組第42日齡聚為一大類,D組第1日齡至35日齡聚為一小類。動(dòng)態(tài)變化趨勢(shì)圖分析發(fā)現(xiàn)(圖3),1~42日齡時(shí)兩組雞回腸黏膜細(xì)菌結(jié)構(gòu)發(fā)生變化的程度不同,1~28日齡A組的動(dòng)態(tài)變化值(%change)為9%~33%,D組的動(dòng)態(tài)變化值為17%~45%;35~42日齡A組的動(dòng)態(tài)變化值僅為11%~17%,而D組均為33%。由此可見,在日糧中持續(xù)添加亞劑量硫酸新霉素,導(dǎo)致D組肉雞1~35日齡回腸黏膜菌群結(jié)構(gòu)發(fā)生極大變化,35~42日齡回腸黏膜菌群結(jié)構(gòu)趨于穩(wěn)定。
2.4 回腸黏膜菌群多樣性指數(shù)分析
從現(xiàn)有回腸文庫(kù)所包含信息量可知(表3),A組的庫(kù)容值與D組相當(dāng),OTU(Operational Taxonomic Unit)、H′、E、DMa及D指數(shù)略高于D組,說(shuō)明A組回腸黏膜菌群的多樣性略高于D組,細(xì)菌多樣性信息豐富,物種豐富度高。
2.5 回腸黏膜菌群隨機(jī)克隆文庫(kù)分析
由表4可知,A組回腸文庫(kù)94個(gè)序列,共9個(gè)屬,歸為7個(gè)科和3個(gè)門;D組盲腸隨機(jī)克隆文庫(kù)93個(gè)序列,共6個(gè)屬,歸為6個(gè)科和3個(gè)門。兩組中厚壁菌門(Firmicutes)所占比例最大,分別為95.74%和95.70%;其次是擬桿菌門(Bacteroidetes)、古細(xì)菌門(Euryarchaeota)、變形菌門(Proteobacteria)及放線菌門(Actinobacteria)分別占3.19%、1.06%、2.15%及2.15%。兩組厚壁菌門中芽胞桿菌科(Bacillaceae)和乳桿菌科(Lactobacillaceae)所占比例最大,分別為51.06%、45.16%和38.30%、49.46%;A組中未知菌屬(微桿菌屬)所占克隆總數(shù)比例最大為48.94%(含46個(gè)克隆子),其次是乳桿菌屬占38.30%(含36個(gè)克隆子);D組中乳桿菌屬所占克隆總數(shù)比例最大為49.46%(含46個(gè)克隆子),其次是未知菌屬(微桿菌屬)占45.16%(含42個(gè)克隆子);A與D組回腸文庫(kù)中其它菌屬的種類與數(shù)量存在差異,且未發(fā)現(xiàn)與大腸桿菌相關(guān)的序列。由此可見,在日糧中長(zhǎng)期添加亞劑量硫酸新霉素會(huì)影響42日齡嶺南黃肉雞回腸黏膜細(xì)菌的種類和組成比例。
圖1 兩組肉雞不同日齡回腸黏膜細(xì)菌基因組DNA的PCR-DGGE圖Fig.1 Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles generated from the V3 region gene of 16S rDNA of the mucosa-associated microbiota of the intestinal segments from 1 to 42 days old
表2 A、D兩組肉雞回腸黏膜細(xì)菌相似性矩陣分析
Table 2 Analysis of the similarity matrix of the mucosa-associated microbiota in ileum between group A and D
組別Group日齡Days1d7d14d21d28d35d42dA組GroupA7d67*14d6091*21d678073*28d75898089*35d67807310089*42d556762837383*D組GroupD7d55*14d7573*21d446767*28d55717383*35d6783676067*42d558673677167*A組×D組#GroupA×GroupD#50506040558071
*表示比較兩個(gè)相鄰時(shí)間點(diǎn)的相似性得出的數(shù)據(jù);#指A、D兩組同一日齡回腸黏膜細(xì)菌相似性比較
*Datas obtained from comparison of the similarity of the ileal mucosa-associated microbiota in group A (or group D) at two adjacent days of age;#Comparison of the similarity of the mucosa-associated microbiota in ileum between group A and D at 1,7,14,21,28,35 and 42 days old,respectively
圖2 兩組肉雞不同日齡回腸黏膜細(xì)菌相似性聚類樹狀圖Fig.2 The similarity dendrogram of 16S rDNA of the mucosa-associated microbiota of ileum between group A and D at 1,7,14,21,28,35 and 42 days old,respectively
表3 A與D組嶺南黃肉雞42日齡回腸黏膜菌群多樣性分析
Table 3 Analysis of the diversity of the mucosa-associated microbiota in ileum between group A and D at 42 days old
文庫(kù)LibraryOTUs庫(kù)容(C)Coverage指數(shù)(H')Shannon均勻度(E)Evenness豐富度(DMa)Richness(DMa)指數(shù)(D)SimpsonA組GroupA990.42%1.760.791.760.61D組GroupD693.55%1.350.751.100.55
圖3 A、D兩組雞回腸黏膜細(xì)菌隨時(shí)間動(dòng)態(tài)變化趨勢(shì)Fig.3 The dynamic change trend curves of the mucosa-associated microbiota of ileum between group A and D at different days old
棲居于動(dòng)物腸道中不同種類、數(shù)量龐大的微生物對(duì)宿主的營(yíng)養(yǎng)、生理及免疫產(chǎn)生深刻的影響[15-16]。從人和雞胃腸道微生物叢的有關(guān)研究發(fā)現(xiàn),胃腸道內(nèi)容物和黏膜微生物叢的組成不同[17],研究黏膜微生物叢的組成和動(dòng)態(tài)變化更能反映微生物叢與宿主的各種關(guān)系[18-19]。
表4 兩組嶺南黃肉雞42日齡回腸黏膜細(xì)菌16S rDNA 隨機(jī)克隆文庫(kù)分析
Table 4 Analysis of the random clone library of 16S rDNA of the mucosa-associated microbiota in ileum between group A and D at 42 days old
文庫(kù)Library門Phylum科Family屬Genus克隆數(shù)CloneOTUsA組GroupAFirmicutesBacteroidetesEuryarchaeotaBacillaceaeLactobacillaceaeLachnospiraceaeIncertaeSedisXIVRuminococcaceaePrevotellaceaeMethanocaldococcaceaeExiguobacterium(微桿菌屬)46OTU1Bacillus(桿菌屬)2OTU2Lactobacillus(乳桿菌屬)36OTU3Lachnospiraceae(毛螺科菌屬)1OTU4Coprococcus(規(guī)則糞球菌屬)2OTU5Sulfobacillus(酸菌屬)1OTU6Sporobacter(瘤胃球菌屬)2OTU7Prevotella(普氏菌屬)3OTU8Methanocaldococcus(甲烷暖球菌屬)1OTU9總計(jì)Total949D組GroupDFirmicutesProteobacteriaActinobacteriaBacillaceaeExiguobacterium(微桿菌屬)42OTU10LactobacillaceaeLactobacillus(乳桿菌屬)46OTU11ClostridiaceaeUnclassifiedClostridiales(未分類梭菌屬)1OTU12RhodocyclaceaeUnclassifiedRhodocyclaceae(未分類紅環(huán)菌屬)1OTU13NitrosomonadaceaeUnclassifiedNitrosomonadaceae(未分類亞硝化單胞菌屬)1OTU14MicrococcaceaeNesterenkonia(涅斯捷連科菌屬)2OTU15總計(jì)Total936
相似性≥95%序列列出;OTUs.Operational Taxonomic Units
Cloned sequence similarity≥95% was listed.OTUs.Operational Taxonomic Units
國(guó)外多數(shù)報(bào)道主要集中在常見幾種抗生素促生長(zhǎng)劑(AGPs)對(duì)雞腸道內(nèi)容物微生物叢的影響,如阿維霉素、亞甲基水楊酸桿菌肽、恩拉霉素、維吉霉素、抗球蟲藥鹽霉素等[20-25]。然而,AGPs已被世界各國(guó)禁止在畜禽飼料中添加使用或限制其最高用量,近年來(lái)關(guān)于飼用抗生素與動(dòng)物腸道微生態(tài)的報(bào)道文獻(xiàn)極少。本研究旨在探討允許使用藥物硫酸新霉素(《中華人民共和國(guó)獸藥典》一部)作為預(yù)防用藥對(duì)黃羽肉雞回腸黏膜菌群的影響,DGGE圖譜分析發(fā)現(xiàn),1~28日齡A、D兩組雞回腸黏膜細(xì)菌結(jié)構(gòu)的相似性較低(40%~60%),D組肉雞1~35日齡回腸黏膜菌群結(jié)構(gòu)發(fā)生劇烈變化,35~42日齡回腸黏膜菌群結(jié)構(gòu)趨于穩(wěn)定,建立新的平衡。試驗(yàn)期間觀察雞食料、飲水等行為方面均表現(xiàn)正常,兩組肉雞生產(chǎn)性能差異不顯著(P>0.05),顯示了抗生素持續(xù)壓力,造成腸道內(nèi)環(huán)境發(fā)生改變,迫使黏膜細(xì)菌重新選擇與定植,導(dǎo)致黏膜細(xì)菌的多樣性相對(duì)減少(表3)和兩組回腸文庫(kù)中其他菌屬的種類與組成比例存在差異(表4)。腸道菌群的穩(wěn)定性取決于胃腸道的成熟,同時(shí)受諸多因素的影響,如年齡、飼料組分、抗生素、遺傳基因等均可影響宿主的生產(chǎn)性能和腸道菌群,進(jìn)而影響宿主的營(yíng)養(yǎng)、生理及免疫[22,26-27]。
回腸文庫(kù)發(fā)現(xiàn)(表4),兩組42日齡嶺南黃肉雞回腸黏膜的優(yōu)勢(shì)菌群均是芽孢桿菌科菌屬51.06%(48/94)和45.16%(42/93)及乳桿菌屬38.30%(36/94)和49.46%(46/94),這與J.H.Gong等的研究報(bào)道有差異[30],研究結(jié)果顯示6周齡ROSS肉雞回腸黏膜的優(yōu)勢(shì)菌群為乳桿菌屬45%(23/51)和腸球菌29%(15/51),這種差異有多種因素造成,我們推測(cè)主要原因是兩種肉雞遺傳基因不同,導(dǎo)致腸道黏膜優(yōu)勢(shì)菌群選擇的寄宿范圍具有種屬特異性;B.S.Lumpkings等[28]解釋現(xiàn)代肉雞比1957年雅典加拿大隨機(jī)育成(ACR)的肉雞有較大的屠體產(chǎn)量、高脂肪墊及屠體脂肪比例,其原因可能是遺傳基因影響腸道菌群致使外源性食物能更好得滿足宿主需求。遺傳基因影響動(dòng)物腸道菌群的組成已經(jīng)被越來(lái)越多的研究證實(shí)[27-28,30],深入開展動(dòng)物遺傳基因與腸道黏膜某一特定菌群相關(guān)性研究將是未來(lái)的發(fā)展方向??股氐拇罅?、違規(guī)使用,導(dǎo)致動(dòng)物腸道菌群失調(diào)已形成共識(shí),關(guān)于抗生素、腸腔微生物及黏膜微生物三者間的相互影響研究目前尚未清楚。本研究的結(jié)果發(fā)現(xiàn),在日糧中長(zhǎng)期添加亞劑量硫酸新霉素造成黃羽肉雞回腸黏膜菌群的組成及數(shù)量發(fā)生變化,尤其是優(yōu)勢(shì)菌群的組成比例。由于本研究處于初步探索階段,很多關(guān)于飼用抗生素與腸道黏膜菌群的相互影響需進(jìn)一步研究,才能更深入地了解抗生素、腸道微生物及宿主之間的相互作用。
(1)DGGE圖譜分析發(fā)現(xiàn),A、D兩組回腸黏膜細(xì)菌結(jié)構(gòu)存在差異,1~28日齡兩組的相似性為40%~60%,35~42日齡相似性為70%~80%;D組肉雞1~35日齡回腸黏膜菌群結(jié)構(gòu)發(fā)生劇烈的變化,其動(dòng)態(tài)變化值為17%~45%;35~42日齡黏膜菌群結(jié)構(gòu)趨于穩(wěn)定,其動(dòng)態(tài)變化值均為33%。
(2)A與D組42日齡嶺南黃肉雞回腸黏膜菌群的組成存在差異,尤其是優(yōu)勢(shì)菌群的組成比例。A組的優(yōu)勢(shì)菌群是未知菌屬(微桿菌屬)48.94%(46/94)和乳桿菌屬38.30%(36/94);D組的優(yōu)勢(shì)菌群是乳桿菌屬49.46%(46/93)和未知菌屬(微桿菌屬)45.16%(42/93)。
[1] WASKMAN S A,LECHEVALIER H A.Neomycin,a new antibiotic active against streptomycin-resistant bacteria,including tuberculosis organisms[J].Science,1949,109(2830):305-307.
[2] CLAROT I,REGAZZETI A,AUZEIL N,et al.Analysis of neomycin sulfate and framycetin sulfate by high-performance liquid chromatography using evaporative light scattering detection[J].JChromatograA,2005,1087:236-244.
[3] THONGSRISOMBOON P,LIAWRUANGRATH B,LIAWRUANGRATH S,et al.Flow injection chemiluminescence determination of Neomycin in pharmaceutical formulations[J].JFlowInjectionAnal,2010,27(1):36-41.
[4] ISOHERRANEN N,SOBACK S.Determination of gentamicins C1,C1a,and C2in plasma and urine by HPLC[J].ClinChem,2000,46(6):837-842.
[5] HUYGHEBAERT G,DUCATELLE R,IMMERSEEL F V.An update on alternatives to antimicrobial growth promoters for broilers[J].VetJ,2011,187(2):182-188.
[6] DIBNER J J,RICHARDS J D.Antibiotic growth promotersin agaculture:history and mode of action[J].PoultSci,2005,84(4):634-643.
[7] LI M,GONG J H,COTTRILL M,et al.Evaluation of QIAampR@DNA Stool Mini Kit for ecological studies of gut microbiota[J].JMicrobiolMeth,2002,54(1):13-20.
[8] 張 潔,容 庭,劉志昌,等.兩純系雞胃腸道黏膜細(xì)菌l6S rDNA的PCR-DGGE分析比較[J].畜牧獸醫(yī)學(xué)報(bào),2013,44(2):204-210. ZHANG J,RONG T,LIU Z C,et al.Comparative analysis of 16S rDNA of the gastrointestinal mucosa-associated microbiota between two chicken pure lines by PCR-DGGE[J].ActaVeterinariaetZootechnicaSinica,2013,44(2):204-210.(in Chinese)
[9] 容 庭,張 潔,王 剛,等.16S rDNA克隆文庫(kù)方法分析兩純系雞回腸及盲腸細(xì)菌的組成[J].畜牧獸醫(yī)學(xué)報(bào),2014,45(8):1218-1227.
RONG T, ZHANG J, WANG G, et al. Analysis of composition of the mucosa-associated microbiota in ileum and cecum between two chicken pure lines by 16S rDNA clone library[J].ActaVeterinariaetZootechnicaSinica, 2014,45(8):1218-1227.(in Chinese)
[10] MUYZER G,DE WAAL E C,UITTERLINDEN A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S Rrna[J].ApplEnvironMicrobiol,1993,59(3):695-700.
[11] MARZORATI M,WITTEBOLLE L,BOON N,et al.How to get more out of molecular fingerprints:practical tools for microbial ecology[J].EnvironMicrobiol,2008,10(6),1571-1581.
[12] GOOD I L.The population frequencies of species and the estimation of population parameters[J].Biometrika,1953,40:237-264.
[13] ELISHAHED M S,SENKO J M,NAJAR F Z,et al.Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring[J].ApplEnvironMicrobiol,2003,69(9):5609-5621.
[14] HILL T C J,WALSH K A,HARRIS J A,et al.Using ecological diversity measures with bacterial communities[J].FEMSMicrobiolEcol,2003,43(1):1-11.
[15] SAVAGE D C.Microbial ecology of the gastrointestinal tract[J].AnnuRevMicrobiol,1977,31(70):107-133.
[16] ZOETENDAL E G,COLLIER C T,KOIKE S,et al.Molecular ecological analysis of the gastrointestinal microbiota:A review[J].JNutr,2004,134(2):465-472.
[17] ZHU X Y,ZHONG T,PANDYA Y,et al.16SrRNA-based analysis of microbiota from the cecum of broiler chickens[J].ApplEnvironMicrobiol,2002,68(1):124-137.
[18] ZOETENDAL E G,VON WRIGHT A,VILPPONEN-SALMELA T,et al.Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces[J].ApplEnvironMicrobiol, 2002,68(7):3401-3407.
[19] LEPAGE P,SEKSIK P,SUTREN M,et al.Biodiversity of the mucosa-associated microbiota is stable along the distaldigestive tract in healthy individuals and patients with IBD[J].InflammBowelDis, 2005,11(5):473-480.
[20] KNARREBORG A,SIMON M A,ENGBERG RMJENSEN B B,et al.Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages[J].ApplEnvironMicrobiol,2002,68(12):5918-5924.
[21] SMIRNOV A,PEREZ R,AMIT-ROMACH E,et al.Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation[J].JNutr,2005,135(2):187-192.
[22] PEDROSO A A,MENTEN J F M,LAMBAIS M R,et al.Intestinal bacterial community and growth performance of chickens fed diets containing antibiotics[J].PoultSci,2006,85(4):747-752.
[23] DUMONCEAUX T J,HILL J E,SEAN M,et al.Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken[J].ApplEnvironMicrobiol,2006,72(4):2815-2823.
[24] ZHOU H,GONG J,BRISBIN J T,et al.Appropriate chicken sample size for identifying the composition of broiler intestinal microbiota affected by dietary antibiotics,using the Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis Technique[J].PoultSci,2007,86(12):2541-2549.
[25] JOHANSEN C H,BJERRUM L, PEDERSEN K.Impact of salinomycin on the intestinal microflora of broiler chickens[J].ActaVetScand,2007,49(1):30.
[26] VAN HEMERT S,HOEKMAN A J,SMITS M A,et al.Gene expression response to aSalmonellainfection in the chicken intestine differ between lines[J].VetImmunolImmunopathol, 2006,114(3-4):247-258.
[27] BJERRUM L,PEDERSEN K,ENGBERG R M.The influence of whole wheat feeding onSalmonellainfection and gut flora composition in broilers[J].AvianDis,2005,49(1):9-15.
[28] LUMPKINGS B S,BATAL A B,LEET M D.Evaluation of the bacterial community and intestinal development of different genetic lines of chickens[J].PoultSci,2010,89(8):1614-1621.
[29] GONG J H,F(xiàn)ORSTER R J,YU H,et al.Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum[J].FEMSMicrobiolEcol,2002,41(3):171-179.
(編輯 白永平)
Impact of Subclinical Doses of Neomycin Sulfate on the Ileal Mucosa-Associated Microbiota Composition of Broiler Chickens
RONG Ting1,LIU Zhi-chang1,WANG Gang1,LI Shu-hong1,ZHANG Jie1,CAI Zhui1,CHEN Zhuang2*
(1.StateKeyLaboratoryofLivestockandPoultryBreeding,GuangdongPublicLaboratoryofAnimalBreedingandNutrition,GuangdongKeyLaboratoryofAnimalBreedingandNutrition,InstituteofAnimalScience,GuangdongAcademyofAgriculturalSciences,Guangzhou510640,China;2.GuangdongAcademyofAgriculturalSciences,Guangzhou510640,China)
The experiment was conducted to study on the effects of subclinical doses of neomycin sulfate on the ileal mucosa-associated microbiota (MAM) composition and dynamic change of broiler chickens at 1 to 42 days old.Chicken ileal segments were collected in group A (basal diet) and B (basal diet with 50 mg·kg-1Neomycin Sulfate),and MAM DNA were extracted at day 1,7,14,21,28,35 and 42,respectively.The community of the ileal MAM between two groups were analyzed by Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)at various ages,and the random clone library of 16S rDNA V3 region of the MAM in ileum at 42 days old between Group A and D was established by analysis of 16S rDNA gene sequences.DGGE profiles showed that the structure of the MAM in ileum between the two groups were of remarkable difference during day 1-28,and the similarity of the MAM in ileum was 40%-60%.The alterations of MAM of ileum were remarkably different between the two groups during day 1-35,with 9%-33% change in group A and 17%-45% change in group D.Analysis of the library in ileum indicated that nine operational taxonomic units (OTUs) (form 94 gene sequences or clones) were detected in the group A,as compared with 6 OTUs (form 93 clones) in the group D.ExiguobacteriumandLactobacilluswere predominant in the group A and D,counting for 48.94%,38.30% and 45.16%,49.46%, respectively.The amount of other species found in ileum in group A were different from that in group D.In addition,sequence known being related toColibacilluswere not detected in group A and D.These results indicated that the composition and diversity of the MAM in ileum at day 42 does exist difference between group A and D,especially the proportion ofLactobacillus,these difference might be caused by the continuous antibiotic pressure selection.
neomycin sulfate;lingnan yellow broiler;intestinal mucosa-associated microbiota;16S rDNA clone library
11.11843/j.issn.0366-6964.2016.11.019
2016-06-15
廣東省科技計(jì)劃項(xiàng)目(2009B020307001);廣東省農(nóng)業(yè)科學(xué)院院長(zhǎng)基金項(xiàng)目(201621)
容 庭(1983-),男,海南樂(lè)東人,碩士,高級(jí)畜牧師,主要從事動(dòng)物腸道微生態(tài)研究,E-mail: blueskyrt@163.com
*通信作者:陳 莊(1963-),男,研究員,碩士生導(dǎo)師,E-mail: Chenzh1963@vip.sina.com
S852.6
A
0366-6964(2016)11-2301-09