楊秀芝,楊春杰,董春法,李繼伍,周志全,熊一凡,江子健
(1.湖北理工學(xué)院,湖北黃石435003;2.華中科技大學(xué),湖北武漢430070)
基于ANSYS有限元對雙絲焊焊接的三維溫度場模擬
楊秀芝1,2,楊春杰1,董春法1,李繼伍1,周志全1,熊一凡1,江子健1
(1.湖北理工學(xué)院,湖北黃石435003;2.華中科技大學(xué),湖北武漢430070)
焊接熱過程是一個動態(tài)熱循環(huán)過程,涉及到電弧變化、材料冶金和化學(xué)、傳熱、傳質(zhì)和力學(xué)性能改變的復(fù)雜過程,在焊接過程中和焊后將產(chǎn)生相當(dāng)大的殘余應(yīng)力和變形,影響焊接結(jié)構(gòu)的制造精度、強度、韌性和使用性能。焊接三維數(shù)值模擬研究的現(xiàn)實意義在于:全面預(yù)測影響殘余應(yīng)力與變形的各種因素及其影響規(guī)律,達到優(yōu)化焊接結(jié)構(gòu)設(shè)計和工藝設(shè)計,控制焊接應(yīng)力及變形,焊接數(shù)值模擬技術(shù)已成為目前國內(nèi)外發(fā)展的重要方向。
雙絲焊;溫度場;焊接模擬;程序設(shè)計
焊接熱過程是一個動態(tài)熱循環(huán)過程,它涉及到電弧的物理、材料冶金和化學(xué)、傳熱、傳質(zhì)和力學(xué)性能改變的復(fù)雜過程,在焊接過程中和焊后將產(chǎn)生相當(dāng)大的殘余應(yīng)力和變形,影響焊接結(jié)構(gòu)的制造精度、強度、韌性和使用性能。焊接三維數(shù)值模擬研究的現(xiàn)實意義在于:全面預(yù)測影響殘余應(yīng)力與變形的各種因素及其影響規(guī)律,達到優(yōu)化焊接結(jié)構(gòu)設(shè)計和工藝設(shè)計,控制焊接應(yīng)力及變形。焊接數(shù)值模擬技術(shù)已成為目前國內(nèi)外發(fā)展的重要方向。
焊接過程中電源快速移動,產(chǎn)生極不均勻的焊接溫度場導(dǎo)致母材發(fā)生塑性應(yīng)變和顯微相變,焊接熱應(yīng)力是產(chǎn)生焊接變形和開裂的根本原因,同時焊接熱循環(huán)過程是材料發(fā)生復(fù)雜相變的熱力學(xué)保證。焊接溫度、熱應(yīng)力、相變?nèi)咧g的耦合效應(yīng)如圖1所示。
1.1 雙絲焊過程的模型
焊接熱過程的準(zhǔn)確計算與控制是進行焊接冶
金過程分析、焊接缺陷(如應(yīng)力變形)分析,并進一步控制焊接過程的前提。數(shù)值仿真技術(shù)可以提前對影響焊接生產(chǎn)的傳質(zhì)、傳熱和相變因素的主次進行甄別,并按影響程度優(yōu)先考慮或采取適當(dāng)簡化、補償?shù)却胧?/p>
圖1 焊接溫度、熱應(yīng)力、相變之間的耦合熱效應(yīng)關(guān)系
1.1.1 實體材料模型
在進行數(shù)值模擬時需考慮隨溫度變化的各種熱物理參數(shù)值。在此采用插值法確定高溫段材料的各種熱物性參數(shù)值。圖2、圖3為部分熱物性曲線。
圖2 密度隨溫度變化曲線
圖3 熱傳導(dǎo)系數(shù)與溫度曲線
試驗采用的焊板材料為10Ni3CrMoV,其化學(xué)成分和機械性能如表1所示。
表1 母材10Ni3CrMoV成分和機械性能
1.1.2 幾何模型的建立
在建立幾何模型時,根據(jù)仿真計算幾何對象和施加載荷的對稱性,故仿真計算的幾何模型和有限元模型均按照一半建模,且將模型分為三大塊:遠離焊縫區(qū)(母材區(qū))、過渡區(qū)(熔合區(qū))和焊縫區(qū),以便計算過程中大大減少有限元的單元數(shù)目[4]。焊接數(shù)值計算時,當(dāng)橢球熱源模型的半軸參數(shù)確定后,焊接過程中的生熱區(qū)域也就確定。因此,將焊縫區(qū)域分為上下兩個區(qū)域:上部受熱源直接加熱的受熱區(qū)和下部傳熱但不生熱的部分。建立實體幾何模型時取上面生熱區(qū)部分的高度為h,并保證h≥c(取c=max(ci)),焊縫寬度記為Width1,焊縫區(qū)模型長度記為Len,這樣處理后能在下一步仿真計算焊接熱源生熱的熱流值時縮減計算機的判斷受熱單元范圍,提高計算效率,節(jié)省計算時間。簡化后實體模型尺寸為500 mm×75 mm×24 mm,建立的幾何模型如圖4所示。
圖4 幾何實體模型
1.1.3 有限元模型的形成
在熱分析中選用的ANSYS軟件中的三維熱實體單元為SOLID70、SOLID90兩單元;在焊接殘余應(yīng)力和應(yīng)變分析時則相對應(yīng)的采用軟件中的三維熱力耦合單元SOLID5、SOLID98兩單元。在過渡區(qū)20節(jié)點的SOLID90單元能轉(zhuǎn)變退化生成過渡金字塔單元,使每個單元所需的隨機存儲單元(RAM)更少而大大節(jié)省仿真計算時間。Mesh網(wǎng)格劃分后,仿真焊件焊縫區(qū)的單元選擇為規(guī)則的正六面體,目的在于方便下一步單元選取和施加熱流載荷。網(wǎng)格劃分后的有限元模型如圖5所示。邊界條件建立:焊件的初始溫度設(shè)定為室溫30℃。同時,在計算應(yīng)力場時,為防止計算中產(chǎn)生的整體剛性位移,在焊縫
下底面施加相應(yīng)的位移約束。圖6和圖7分別為施加了對流換熱邊界和位移約束后的有限元模型。施加載荷:在熱分析中,內(nèi)生熱率HGEN常作為體載施加于單元上,將焊接電弧產(chǎn)生的熱流值作為生熱率(HGEN)加載到對應(yīng)的有限元單元來模擬計算雙絲焊接過程中的生熱過程,用于模擬電流生熱。雙橢球體熱源模型更適合模擬焊接熔池深寬比較大的深熔型焊接過程[5-6]。所以在溫度場的數(shù)值仿真計算中,選用熔深型的雙橢球熱源模型為數(shù)值計算的內(nèi)熱源的分布計算數(shù)學(xué)模型,如圖8所示。設(shè)前、后半部分橢球能量分配系數(shù)分別為ff、fr,且ff+fr=2。熱流分布函數(shù)如下
圖5 有限元網(wǎng)格模型
圖6 表面對流邊界
圖7 位移約束
圖8 雙橢球熱源模型
前半部分橢球熱流分布函數(shù)
后半部分橢球熱流分布函數(shù)
式中與熔池形狀相關(guān)的特征參數(shù)aij、bi、ci(i=1,2;j=1,2)有不同的值且相互獨立,通過調(diào)整a、b、c參數(shù)便可調(diào)整所模擬的溫度場。
焊接溫度場分析程序主要包括:幾何實體模型文件、有限元模型文件、移動熱源的熱流值分布計算文件、邊界條件設(shè)置文件、計算加載求解文件和數(shù)據(jù)后處理文件。殘余應(yīng)力場程序設(shè)計是在計算應(yīng)力場時,焊縫下底面必須施加相應(yīng)的位移約束防止計算中產(chǎn)生的整體剛性位移;同時,將熱分析中三維熱實體單元SOLID70、SOLID90修改為三維熱力耦合單元SOLID5、SOLID98。所以,在溫度場分析的程序基礎(chǔ)上加上邊界約束條件設(shè)置文件即可。在ANSYS程序中,好的生熱率計算與加載方法能大大減少模擬仿真的計算時間,進行焊接熱場模擬其移動熱源的計算加載方式是關(guān)鍵。
2.1 計算與加載
首先,在焊接的每一載荷步中將加熱區(qū)域內(nèi)的節(jié)點提取出來,并計算這些節(jié)點坐標(biāo)位置的生熱密度值;其次,將生熱值加載在對應(yīng)位置處的節(jié)點上。并建立某節(jié)點位置的關(guān)鍵信息與其生熱值的一一對應(yīng)關(guān)系。節(jié)點編號、坐標(biāo)值和生熱密度值之間的對應(yīng)關(guān)聯(lián)模式:計算所有的熱流值只需一重循環(huán),其計
算效率很高,以節(jié)點的編號為關(guān)鍵信息,訪問ANSYS數(shù)據(jù)庫讀取其坐標(biāo)值,然后計算其熱流值。這樣通過單元編號獲取其質(zhì)心坐標(biāo),再計算其質(zhì)心處的熱流密度值,最后將生熱值作為生熱率加載在此節(jié)點單元上。
2.2 移動熱源的算法
雙橢球熱源模型的直接生熱部位是位于橢球區(qū)的兩個不同的1/4橢球半軸生熱區(qū)所組成的區(qū)域(前弧區(qū)為雙橢球熱源模型的前1/4橢球區(qū)域,后弧區(qū)為后1/4橢球區(qū)域)。不在橢球區(qū)域的其他熱流值都為零值,在此橢球區(qū)域內(nèi)的熱流值按照程序計算遵循橢球分布??傮w生熱值計算步驟如下:第一步為“總體原則”,即首先根據(jù)的橢球幾何約束方程來判定計算區(qū)域是否屬于各自橢球區(qū)域內(nèi)的單元,在橢球區(qū)域內(nèi),則由相應(yīng)的雙橢球熱源模型公式分別計算其熱流值,否則賦值為零。設(shè)移動焊接熱源每移動一步的位移記為Esize,雙橢球熱源模型的總長記為Len,則整個載荷步數(shù)目為N(N=Len/Esize)。第二步為“單獨計算分別存儲”,即焊接電弧產(chǎn)生的熱源每移動一步,所包含的模型中的單元就改變一次,定義兩個M×N維數(shù)值型數(shù)組(記為HGEN11、HGEN12),分別存放前、后弧區(qū)的生熱流值分布。其中,數(shù)組中的一列記錄存儲一個移動載荷步下的熱流值分布數(shù)值,以此類推,第n載荷步的熱流值分布則存儲記錄在數(shù)組的第n列中。在每一載荷步中,按單元編號的順序依次計算出在該坐標(biāo)位置處的熱流值,從而保證了數(shù)組中某一行單元的熱流值與此單元編號一一對應(yīng)。第三步為“累計相加”,即在移動焊接的第n載荷步時,熱源中心距記為Dis,且Dis= n×Esize,此時熱流分布值存儲在數(shù)組的第n列。假設(shè)Num=L/Esize,則當(dāng)后絲熱源中心位于n×Esize時,前絲熱源中心正在(Num+n)×Esize處。此時,后絲熱源產(chǎn)生的熱流值分布存儲在數(shù)組HGENsum2的第n列,前絲熱源產(chǎn)生的熱流值分布存儲在數(shù)值HGENsum1的第(Num+n)列,這兩列相加就得到了此載荷步下整個雙絲熱源所產(chǎn)生的熱流值分布。最后再將前、后熱源的生熱值分布數(shù)組根據(jù)列項的間隔數(shù)再次合并并存儲到數(shù)組HGEN_sum中,則通過此數(shù)組就完全記錄存儲了整個雙絲移動過程中的生熱值分布數(shù)值。圖9表述了雙絲移動熱源熱流加載的流程框圖。由此可見,完全通過數(shù)組運算精確的獲取在某一載荷步下,分別位于前、后絲熱源的橢球形加熱區(qū)域內(nèi)的各個生熱單元。如圖10所示,模擬計算選取的幾何形狀尺寸與橢球模型參數(shù)與形狀一一對應(yīng),初步驗證了此加載算法的可靠性和正確性。
圖9 雙絲移動熱源計算加載流程框圖
圖10 加熱區(qū)的生熱單元分布
雙絲埋弧焊總的熱輸入E(單位:J/cm)的計算表達式為:E=η(U1I1+U2I2)/v。焊接規(guī)范如表2所示。在表2工藝參數(shù)下,接頭形貌及熱循環(huán)曲線如圖11所示。
表2 雙絲焊工藝規(guī)范
3.1 焊接模擬參數(shù)擬定
按表2的焊接工藝規(guī)范,選用前、后絲的能量分配系數(shù)分別為0.48、1.52及0.52、1.48進行模擬仿真,對于雙絲埋弧焊η取0.8以上[7]。如表3所示,模擬計算時雙橢球熱源特征參數(shù)得到的計算結(jié)果與試驗測試值一致。同理,其他雙絲焊接工藝規(guī)范的情況下,前、后絲分配系數(shù)取值以此類推。
3.1 試驗結(jié)果與模擬結(jié)果對比
焊接試驗驗證使用的鋼板設(shè)為不預(yù)熱,設(shè)室溫30℃;焊接形成有限元模型的焊縫處的最小單元
mesh網(wǎng)格大小為2 mm,節(jié)點數(shù)為58 272,網(wǎng)格劃分后有限元模型的單元數(shù)為46 357,總移動載荷步數(shù)為261步。選用表2的焊接參數(shù),在ANSYS后臺下自行開發(fā)設(shè)計的程序,采用默認(rèn)求解算法進行計算,計算整個焊接過程中焊板的溫度場分布云圖后,取高溫1 300℃以上為焊接熔池區(qū),得到雙絲間距為60 mm時的熔池形貌如圖12所示。觀察圖12可以清晰地看在選定的焊接規(guī)范下,雙絲間距為60 mm,焊接過程形成兩個分離的熔池,這與采用相同焊接規(guī)范焊接試驗測量的結(jié)果相同。同理,在此規(guī)范下,雙絲間距小于50 mm,雙絲焊熔池為類似單絲焊下的一個熔池;當(dāng)雙絲間距L>50 mm時,雙絲共熔池將逐步分離形成雙熔池;當(dāng)雙絲間距L增加至100 mm時,焊縫對稱面上明顯地形成了兩個獨立熔池,就像兩個單絲單獨施焊,其溫度場如圖13所示。
圖11 表2工藝參數(shù)下某接頭形貌及熱循環(huán)曲線
表3 模擬中雙橢球特征參數(shù)值mm
圖12 間距L=60 mm熔池形貌
圖13 間距L=100 mm等溫面
采用K型-鎳硅熱電偶,測量焊縫背面正下方不同深度(見圖14)處焊接熱循環(huán)曲線如圖15所示。測量值與仿真值之間有差值,原因是熱場仿真計算是做了相應(yīng)假設(shè)且測量本身存在誤差,但這種誤差在可接受范圍內(nèi),證明了本算法的可行性與正確性。
圖14 部分熱電偶布置示意
選取由(0,0,0)和(0,0,500)兩點構(gòu)成的沿焊縫中心的直線路徑來考察在不同絲間距下,雙焊接過程中沿路徑上各點的溫度變化規(guī)律。同樣,以表2的規(guī)范取焊速為60 cm/min,在同一載荷步下計算在相同焊接參數(shù)的四種絲間距下的雙絲電弧共同施焊時焊接溫度場變化情況,如圖16所示,縱坐標(biāo)值表示溫度,橫坐標(biāo)值表示焊縫中心線長度(路徑)。由圖16可知,每條溫度曲線兩個峰值間的間距與雙絲的間距位置相對應(yīng),并且前絲位置處的峰值溫度都低于后絲位置處的峰值溫度。隨著絲間距的增
大,前、后弧各自的兩個溫度峰值之間的差值縮減,且每種雙絲間距下的前、后兩個溫度峰值降低。這表明雙絲焊接雙絲的布置影響了焊接熱量的集中,導(dǎo)致溫度分布趨向均勻。當(dāng)雙絲間距L=100 mm時,其溫度歷程曲線的變化趨勢與單絲焊時曲線走向類似。
圖15 熱循環(huán)曲線
圖16 雙絲焊路徑溫度曲線
(1)采用雙橢球熱源模型,運用APDI語言的循環(huán)語句實現(xiàn)了雙絲焊移動熱源在工件上的移動,模擬仿真建立了雙絲焊接溫度場和應(yīng)力場的三維動態(tài)模型。
(2)采用K型-鎳硅熱電偶對雙絲焊焊縫進行溫度采集來驗證模擬計算的結(jié)果,其計算值與實測值基本吻合。
Page 32
Three dimensional temperature field simulation of double wire welding based on ANSYS finite element method
YANG Xiuzhi1,2,YANG Chunjie1,DONG Chunfa1,LI Jiwu1,ZHOU Zhiquan1,XIONG Yifan1,JIANG Zijian1
(1.Hubei Polytechnic University,Huangshi 435003,China;2.Huazhong University of Science and Technology,Wuhan 430070,China)
Weldingthermal cycle thermal process is a dynamic process,involvingarc changes,materials,metallurgyand chemical change,heattransfer,masstransferandthemechanicalpropertiesofcomplexprocess,considerableresidualstressand distortion would generatein the weldingprocessandafterwelding,affectingthemanufacturingprecisionofweldingstructure,strength,toughnessandoperationalperformance. The practical significance of three-dimensional numerical simulation studies is that the comprehensive prediction and its influencing factors that affect the residual stress and deformation ofthe law,tooptimize the weldingstructure design and process design,control welding stress and deformation,weldingnumerical simulation technologyhas become an important direction ofdevelopment at home and abroad.
double wire welding;temperature field;welding simulation;program design
TG404
A
1001-2303(2016)07-0022-07
10.7512/j.issn.1001-2303.2016.07.06
2015-07-27;
2016-07-04
湖北省教育廳青年項目資助(Q20123001);湖北省自然科學(xué)基金資助項目(2014CFB177);校級博士引進項目(11yjz01R)
楊秀芝(1974—),女,湖北武漢人,博士,副教授,主要從事機械設(shè)計與制造、模具新材料的開發(fā)和設(shè)計及表面強化、3D打印技術(shù)等方面的研究與教學(xué)。