雷曉波,郭 成,袁 波,熊守權(quán)
(1.西華大學(xué)先進(jìn)材料及能源研究中心,四川 成都 610039,2. 成都工業(yè)職業(yè)技術(shù)學(xué)校,四川 成都 610218)
?
·先進(jìn)材料及能源·
Sn摻雜對p型BiSbTe合金熱電性能的影響
雷曉波1,郭 成2,袁 波1,熊守權(quán)1
(1.西華大學(xué)先進(jìn)材料及能源研究中心,四川 成都 610039,2. 成都工業(yè)職業(yè)技術(shù)學(xué)校,四川 成都 610218)
采用高能球磨制粉、直流熱壓成型的方法制備Sn摻雜Bi0.5Sb1.5Te3合金的塊材試樣 (Bi0.5Sb1.5)1-xSnxTe3(x=0, 0.25%, 0.5%, 1%) ,對試樣的物相、微觀結(jié)構(gòu)和熱電性能進(jìn)行分析。X線衍射圖譜表明所有樣品的物相均為Bi0.5Sb1.5Te3,Sn摻雜后沒有出現(xiàn)第二相。掃描電鏡圖像表明Sn摻雜對晶粒尺寸的影響不大,因而晶格熱導(dǎo)率變化不大。通過Sn的摻雜,試樣在提高電導(dǎo)率的同時降低了塞貝克系數(shù),這主要是由于Sn摻雜對載流子濃度的影響。試樣Bi0.5Sb1.5Te3的量綱一熱電優(yōu)值ZT在348 K達(dá)到1.16,在423 K之前均大于1,比傳統(tǒng)方法制備的BiSbTe合金的ZT平均值提高了20%,這有利于熱電的實際應(yīng)用。
BiSbTe合金;Sn摻雜;熱電材料;晶格熱導(dǎo)率;熱電優(yōu)值
熱電材料是一種能夠在熱能和電能間直接轉(zhuǎn)換的功能材料[1-3],可用于工業(yè)生產(chǎn)中大量低密度廢熱的回收發(fā)電[4-5],具有廣泛的應(yīng)用前景。熱電材料的性能主要由量綱一熱電優(yōu)值ZT來表征,ZT=S2σT/κ,其中T表示熱力學(xué)溫度,S、σ和κ分別表示材料的塞貝克系數(shù)、電導(dǎo)率和熱導(dǎo)率,而熱導(dǎo)率主要由晶格熱導(dǎo)率κL和電子熱導(dǎo)率κe組成。可見,ZT值高的熱電材料需要同時具備較高的功率因子(S2σ)和較低的熱導(dǎo)率[6]。合金化和材料納米結(jié)構(gòu)化是目前提高材料熱電性能的2種主要途徑。A.F.Ioffe等[7]首先提出Bi2Se3、Sb2Te3和Bi2Te3可以在相當(dāng)寬的組分范圍內(nèi)形成膺三元固溶體合金,可在材料內(nèi)部引入適當(dāng)?shù)狞c缺陷,在保持載流子遷移率不明顯降低的前提下使聲子散射增加,從而降低晶格熱導(dǎo)率κL[8-13]。
納米結(jié)構(gòu)化是指通過在塊體材料內(nèi)部形成納米尺寸的晶粒或第二相,形成的大量晶界或界面在對材料功率因子(S2σ)影響不大的同時可大幅度降低材料的晶格熱導(dǎo)率κL[14-15]。納米復(fù)合材料的制備通常分為制備納米粉末和制備成塊材2個步驟。納米粉末的制備方法有水熱法[16]、濕化學(xué)法[17]、旋淬[18]和高能球磨[19-20]等,而將納米粉末制備成塊材的方法有放電等離子燒結(jié)[21]、冷壓、擠壓成型和熱壓燒結(jié)[19-20]等,其中熱壓燒結(jié)可較好地控制BiSbTe合金的擇優(yōu)生長,可有效地避免溶體生長法制備該合金易于解理的問題,更利于熱電器件的實際應(yīng)用。Poudel等[19]的研究表明,通過高能球磨及直流快速熱壓燒結(jié)制備出的BiSbTe合金中大量分布的晶界在降低晶格熱導(dǎo)率的同時還能在晶界處產(chǎn)生晶界勢壘,從而抑制雙極效應(yīng)對熱電效應(yīng)的不利影響[22]。另外,p型BiSbTe合金中摻入ZnAlO[23]、PbTe[24]、SiC[25]等異質(zhì)納米尺寸雜質(zhì)后晶格材料的熱導(dǎo)率明顯降低。
Bi2Te3的載流子主要來自晶格內(nèi)存在的大量本征點缺陷,Bi原子填充到Te原子的位置形成的BiTe'的反位缺陷為其主要形式[26],這使得非摻雜的Bi2Te3通常呈現(xiàn)為p型。研究表明,通過Sn元素對Bi2Te3[27]或Sb2Te3[28]的摻雜可有效地改變晶格中反位缺陷的數(shù)目,從而改變載流子濃度。Disalvo[29]、Kutasov等[30]和Kulbachinskii等[31]提出通過Sn摻雜很有可能在Bi2Te3能帶上形成共振能級,這會在一定程度上提高材料的塞貝克系數(shù),從而改善熱電性能。本文通過高能球磨獲得納米粉末,采用直流熱壓的方法獲得塊體摻雜Sn元素的p型BiSbTe合金,嘗試通過獲得微細(xì)晶粒以降低晶格熱導(dǎo)率,并探索Sn元素對BiSbTe合金熱電性能的影響。
本文實驗所用原料為純度99.99%的Bi、Sb、Te和Sn粉末,按化學(xué)式 (Bi0.5Sb1.5)1-xSnxTe3(x=0, 0.25%, 0.5%, 1%) 稱量原料。隨后,將稱量好的原料與不銹鋼磨球一起放入不銹鋼球磨罐中。原料稱量及裝罐過程均在有氬氣保護(hù)的低氧、低濕度手套箱中進(jìn)行。球磨參數(shù)為轉(zhuǎn)速1 400 r/m,球磨時間10 h。為確保成分均勻,每球磨2 h后,將球磨罐放入手套箱中打開,刮下黏附在罐壁的粉末,重新擰緊罐蓋,再次球磨。球磨完成后,將制備好的粉體在手套箱中取出,并裝入直徑12.7 mm的石墨模具中,在真空度10-1Pa、壓力60 MPa條件下用直流快速熱壓方法熱壓燒結(jié),燒結(jié)溫度500 ℃,保溫時間2 min。
采用Cu-Ka靶材,用X線衍射儀(DX-2500)對樣品進(jìn)行物相分析,掃描速度為2 °/min,掃描范圍為10~80°;通過掃描電子顯微鏡(日立S-3400N)對熱壓成形后的試樣斷面進(jìn)行觀察和分析。將熱壓磨好的φ12 mm×2.5 mm圓片用于測量熱擴(kuò)散系數(shù)D(耐馳,LFA457),從測過熱導(dǎo)率的圓片上切出3 mm×3 mm×12 mm的條狀樣品用于塞貝克系數(shù)和電導(dǎo)率的測試(愛發(fā)科ZEM-3)。材料密度ρ由阿基米德方法測得,通過κ=ρDCP計算熱導(dǎo)率。
2.1 塊材相對密度分析
根據(jù)XRD圖譜計算出樣品的晶格常數(shù),再根據(jù)晶型和摻雜元素量分別計算出該系列合金樣品的理論密度。實測密度與理論密度的對比結(jié)果如表1所示。可知本實驗采用高能球磨元素粉末加快速熱壓的方法可以制備出致密度高的塊體材料,且相對密度隨著Sn的摻雜有增加的趨勢。
表1 熱壓后試樣的密度
2.1 物相與結(jié)構(gòu)表征
圖1為該組塊材試樣 (Bi0.5Sb1.5)1-xSnxTe3(x=0, 0.25%, 0.5%, 1%) 的XRD譜圖。試樣Bi0.5Sb1.5Te3的峰位與圖譜庫中Bi0.5Sb1.5Te3的基本一致, Sn摻雜后沒有檢測到第二相。衍射峰較寬,說明晶粒尺寸較小。隨著Sn含量的增加,衍射峰位明顯地向小角度方向偏移,說明晶格常數(shù)隨Sn的摻雜有增大的趨勢。
圖1 (Bi0.5Sb1.5)1-xSnxTe3 (x=0, 0.25%, 0.5%, 1%)塊材試樣的XRD譜圖
圖2(a)為熱壓后塊材試樣Bi0.5Sb1.5Te3的斷面SEM圖像??梢?,其晶粒呈現(xiàn)明顯的層狀結(jié)構(gòu),這與該合金層狀晶體結(jié)構(gòu)一致。經(jīng)過直流快速熱壓的塊材內(nèi)部排列緊密,氣孔數(shù)量明顯小于傳統(tǒng)工藝,這與樣品的相對密度(大于97%)測量結(jié)果相吻合。圖2(a)中還可見,Bi0.5Sb1.5Te3晶粒粒徑在1 μm左右。圖2 (b) 為(Bi0.5Sb1.5)1-xSnxTe3(x=0.25%) 樣品的斷面SEM圖像??梢姡?jīng)過Sn摻雜的晶粒尺寸與未摻雜樣品相比,無明顯變化。
(a)
(b)
2.2 熱電性能分析
圖3 (a)、(b) 分別示出p型 (Bi0.5Sb1.5)1-xSnxTe3(x=0, 0.25%, 0.5%, 1%)系列試樣的電導(dǎo)率和塞貝克系數(shù)隨溫度的變化曲線??芍?,對于(Bi0.5Sb1.5)1-xSnxTe3(x=0.25%, 0.5%, 1%) Sn摻雜試樣來說,電導(dǎo)率隨摻雜量的增加而有所提高,塞貝克系數(shù)隨摻雜量的變化趨勢與之對應(yīng),這說明載流子濃度的變化為其主要原因。據(jù)Horak等[32]報道,當(dāng)Sn的摻雜量較少時,會以SnBi′的形式存在晶格中,這種極性鍵會提高晶體中反位缺陷 (BiTe′和SbTe′)的數(shù)量,從而提高空穴濃度。聲學(xué)波散射是BiSbTe合金的主要載流子散射機(jī)制[23,33],而實際上多晶BiSbTe合金的載流子濃度數(shù)量級為1019cm-3[23,34];因此,在低溫段(300~400 K),離化雜質(zhì)散射也是該材料中的散射機(jī)制之一[26]。結(jié)合電導(dǎo)率的公式σ=neμ可知,我們認(rèn)為所有Sn摻雜試樣的電導(dǎo)率均低于Bi0.5Sb1.5Te3是載流子濃度提高和遷移率下降共同作用的結(jié)果。圖3 (a) 所有試樣電導(dǎo)率隨溫度下降,在450 K之后下降趨勢有所緩和。圖 3(b) 中塞貝克系數(shù)在450 K之后開始快速下降,這是由于Bi0.5Sb1.5Te3材料本征激發(fā)后載流子濃度激增及出現(xiàn)異號載流子的原因。
(a)
(b)
(c)
(d)
圖3 (Bi0.5Sb1.5)1-xSnxTe3(x=0, 0.25%, 0.5%, 1%)樣品電導(dǎo)率(a)、塞貝克系數(shù)(b)、熱導(dǎo)率(c)和晶格熱導(dǎo)率(d)隨溫度的變化關(guān)系
圖3 (c) 和 (d) 示出了(Bi0.5Sb1.5)1-xSnxTe3(x=0, 0.25%, 0.5%, 1%) 系列試樣的熱導(dǎo)率和晶格熱導(dǎo)率隨溫度的變化關(guān)系。材料的熱導(dǎo)率通常由電子輸運引起的電子熱導(dǎo)率和聲子輸運所引起的晶格熱導(dǎo)率組成。根據(jù)Wiedemann-Franz方程κe=LσT可估算電子熱導(dǎo)率,其中L表示洛倫茲常數(shù)。在以聲學(xué)聲子散射為主要散射機(jī)制的非簡并半導(dǎo)體材料中,洛倫茲常數(shù)可取1.6×10-8V2K-2[34-35]??偀釋?dǎo)率減去電子熱導(dǎo)率之后,即可得到材料的晶格熱導(dǎo)率。圖3 (c) 表明,所有試樣的熱導(dǎo)率κ都在溫度升高的過程中先下降,然后上升,這與BiSbTe材料的載流子在350 K左右發(fā)生本征熱激發(fā)有關(guān)。結(jié)合圖 3(d) 可知,Sn的摻雜提高了試樣的熱導(dǎo)率,增加部分主要來自于晶格熱導(dǎo)率。整體上,所有樣品的熱導(dǎo)率均較低,與文獻(xiàn)報道的納米復(fù)合結(jié)構(gòu)的BiSbTe材料接近[19-20]。圖3 (d)的晶格熱導(dǎo)率與文獻(xiàn)報道的納米結(jié)構(gòu)Bi2Te3基熱電材料相當(dāng)[34],低于熔煉法制備的Bi2Te3基材料的晶格熱導(dǎo)率[13,19]。從圖 3(d)可看出Sn的摻雜并未降低晶格熱導(dǎo)率,這與前面SEM圖的結(jié)果相符,摻雜后試樣的晶粒大小沒有減小,晶界數(shù)量沒有增多。
圖4 (a)和(b)分別示出 (Bi0.5Sb1.5)1-xSnxTe3(x=0, 0.25%, 0.5%, 1%)系列試樣的功率因子(S2σ)和量綱一熱電優(yōu)值ZT與溫度的關(guān)系??梢?,制備試樣的功率因子都在溫度增加時呈現(xiàn)下降趨勢,與塞貝克系數(shù)、電導(dǎo)率隨溫度的變化趨勢一致。圖3(b)表明,p型Bi0.5Sb1.5Te3合金經(jīng)摻雜Sn元素后,功率因子和ZT值不能得到改善。Bi0.5Sb1.5Te3試樣在348 K的時候ZT達(dá)到1.16左右,與文獻(xiàn)[19]的納米結(jié)構(gòu)的BiSbTe合金的實驗結(jié)果類似,并且在423 K之前ZT值都大于1,與傳統(tǒng)制備方法[36]所得的樣品相比,其平均ZT值提高20%左右,非常有利于提高整個溫度范圍內(nèi)的熱電轉(zhuǎn)換效率[5,37]。
(a)
(b)
本文通過球磨、直流熱壓的方法,制備了(Bi0.5Sb1.5)1-xSnxTe3(x=0, 0.25%, 0.5%, 1%)系列塊材試樣,具備相對密度高、晶粒尺寸細(xì)小和晶粒取向各向異性等特點。該制備方法工藝簡單,可快速制備出微米晶粒結(jié)構(gòu)的熱電塊材。SEM圖像表明摻雜前后由于晶粒尺寸變化不大,晶格熱導(dǎo)率沒有明顯變化。XRD圖譜表明所有試樣的圖譜均與Bi0.5Sb1.5Te3相一致,Sn摻雜后沒有出現(xiàn)第二相。其中Bi0.5Sb1.5Te3試樣的最大量綱一熱電優(yōu)值ZT在348 K時達(dá)到了1.16左右,這主要歸功于低的熱導(dǎo)率。ZT值在423 K之前都大于1,高于(約20%) 傳統(tǒng)方法制備的BiSbTe合金,這對熱電應(yīng)用非常有利。Bi0.5Sb1.5Te3合金摻雜Sn元素后,塞貝克系數(shù)有所提高的同時電導(dǎo)率有所下降,功率因子和ZT值不能得到改善。
[1]嚴(yán)瀟, 袁波. Half-Heusler 熱電材料的研究進(jìn)展[J]. 西華大學(xué)學(xué)報 (自然科學(xué)版), 2016,35 (1): 29.
[2]張勤勇. Al2O3對PbTe 微觀結(jié)構(gòu)和熱電性能的影響[J].西華大學(xué)學(xué)報(自然科學(xué)版), 2011, 30(6): 95.
[3]Joseph P Heremans, Bartlomiej Wiendlocha, Audrey M Chamoire. Resonant levels in bulk thermoelectric semiconductors[J]. Energy & Environmental Science, 2012, 5(2), 5510.
[4]任志鋒, 劉瑋書. 熱電材料研究的現(xiàn)狀與發(fā)展趨勢[J]. 西華大學(xué)學(xué)報(自然科學(xué)版), 2013, 32(3): 1.
[5]Dongliang Zhao,Gang Tan. A review of thermoelectric cooling: Materials, modeling and applications[J]. Applied Thermal Engineering, 2014, 66(1): 15.
[6]趙立東, 張德培, 趙勇. 熱電能源材料研究進(jìn)展[J]. 西華大學(xué)學(xué)報(自然科學(xué)版), 2015, 34(1): 1.
[7]Ioffe A F. Semiconductor thermoelements, and Thermoelectric cooling[M].London: Infosearch, Limited, 1957 A.
[8]Wang Zhou, Vemishetti A, Ejembi J I,et al. High thermoelectric performance of fullerene doped Bi0.5Sb1.5Te3alloys [J]. Materials Science and Engineering: B, 2016, 205: 36.
[9]Yan Xiao, Poudel Bed, Yi Ma, et al.Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi2Te2.7Se0.3[J]. Nano letters, 2010, 10(9): 3373.
[10]Wang Xin, Cai Kefeng, An Baijun,et al. Gas induced reduction synthesis of Sb2Te3and Bi0.5Sb1.5Te3nanosheets and their evolvement mechanism[J]. Journal of Materiomics, 2015, 1(4): 316.
[11]Bhame S D, Pravarthana D, Prellier W,et al. Enhanced thermoelectric performance in spark plasma textured bulk ntype Bi2Te2.7Se0.3and p-type Bi0.5Sb1.5Te3[J]. Applied Physics Letters, 2013, 102(21): 211901.
[12]Ovsyannikov S V, Grigor'eva Y A, Vorontsov G V,et al. Thermoelectric properties of p-Bi2-xSbxTe(3)solid solutions under pressure[J]. Physics of the Solid State, 2012, 54(2): 261.
[13]Phi-Khanh N, Hyoung L K, Jaeyun M,et al. Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3nanoparticles with enhanced thermoelectric performance[J]. Nanotechnology, 2012, 23(41): 415604.
[14]Chen G, Dresselhaus M S, Dresselhaus G, et al. Recent developments in thermoelectric materials[J]. International Materials Reviews, 2003, 48(1):45.
[15]Chen G, Shakouri A. Heat transfer in nanostructures for solid-state energy conversion[J]. Journal of Heat Transfer, 2002, 124(2): 242.
[16]Zhao Yixin, Dyck J S, Hernandez B M, et al.Improving thermoelectric properties of chemically synthesized Bi2Te3-based nanocrystals by annealing[J]. The Journal of Physical Chemistry C, 2010, 114(26): 11607.
[17]Zhang Yichi, Wang Heng, Stephan Kraemer,et al. Surfactant-Free Synthesis of Bi2Te3-Te Micro-Nano Heterostructure with Enhanced Thermoelectric Figure of Merit[J]. ACS nano, 2011, 5(4): 3158.
[18]Xie Wenjie, Tang Xinfeng, Yan Yonggao,et al.Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys[J]. Applied Physics Letters, 2009, 94(10): 102111.
[19]Poudel Bed, Hao Qing, Ma Yi , et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634.
[20]Ma Yi, Hao Qing , Poudel Bed, et al. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks[J]. Nano Letters, 2008, 8(8): 2580.
[21]Zhang Zhihui, Peter A S, Enrique J L,et al. Thermoelectric and transport properties of nanostructured Bi2Te3by spark plasma sintering[J]. Journal of Materials Research, 2011, 26(3): 475.
[22]Je-Hyeong B, Ali S. Enhancing the thermoelectric figure of merit through the reduction of bipolar thermal conductivity with heterostructure barriers[J]. Applied Physics Letters, 2014, 105(5): 052106.
[23]Zhang Ting, Zhang Qiushi, Jiang Jun,et al.Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO[J]. Applied Physics Letters, 2011, 98(2): 022104.
[24]Shreyashi G, Zhou Chen, Donald M,et al.Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications[J]. Journal of Solid State Chemistry, 2011, 184(12): 3195.
[25]Chen Chen, Liu Dawei, Zhang Boping, et al.Enhanced Thermoelectric Properties Obtained by Compositional Optimization in p-Type BixSb2-xTe3Fabricated by Mechanical Alloying and Spark Plasma Sintering[J]. Journal of electronic materials, 2011, 40(5): 942.
[26]Navratil J, Klichova I , Karamazov S, et al. Behavior of Ag Admixtures in Sb2Te3and Bi2Te3Single Crystals[J]. Journal of Solid State Chemistry, 1998, 140(1): 29.
[28]Jaworski C M, Kulbachinskii V, Heremans J P. Resonant level formed by tin in Bi2Te3and the enhancement of room-temperature thermoelectric power[J]. Physical Review B, 2009, 80(23): 233201.
[29]Disalvo F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703.
[30]Kutasov V A , Luk’yanova L N, Konstantinov P P , et al. Carrier mobility in nonstoichiometric n-Bi2Te3-xSexsolid solutions[J]. Physics of the Solid State, 1997, 39(3): 419.
[31]Kulbachinskii V A, Brandt N B , Cheremnykh P A ,et al. Magnetoresistance and Hall Effect in Bi2Te3〈 Sn〉 in Ultrahigh Magnetic Fields and under Pressure[J]. physica status solidi (b), 1988, 150(1): 237.
[32]Horak J , Lo?t′ák P, Matyá? M. Point Defects in Sn-Doped Sb2Te3Single Crystals[J]. physica status solidi (b), 1985, 129(1): 381.
[33]Zhao X B, Ji X H, Zhang Y H,et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites[J].Applied Physics Letters, 2005, 86(6): 062111.
[34]Zhang Qian, Zhang Qinyong, Chen Shuo,et al.Suppression of Grain Growth by Additive in Nanostructured p-type Bismuth Antimony Tellurides[J]. Nano Energy, 2012, 1(1): 183.
[35]Liu Weishu, Zhang Qinyong, Lan Yucheng,et al.Thermoelectric Property Studies on Cu-Doped n-type CuxBi2Te2.7Se0.3Nanocomposites[J]. Advanced Energy Materials, 2011, 1(4): 577.
[36]Hung Changhsu,Huang Jingyi, Huang Tsai-Kun . Enhancing Figure of Merit of Bi0.5Sb1. 5Te3Through Nano-composite Approach[J].China Steel Technical Report, 2014, 27:57.
[37]Stevens R J, Weinstein S J, Koppula K S. Theoretical limits of thermoelectric power generation from exhaust gases[J]. Applied Energy, 2014, 133: 80.
(編校:夏書林)
Effects of Sn Doping on Thermoelectric Properties of p Type BiSbTe Alloy
LEI Xiaobo1, GUO Cheng2, YUAN Bo1, XIONG Shouquan1
(1.Centers for Advanced Materials and Energy,Xihua University,Chengdu 610039 China,2.ChengduIndustrialVocationalTechnicalCollege,Chengdu610218China))
A series of Sn-doped (Bi0.5Sb1.5)1-xSnxTe3(x=0, 0.25%, 0.5%, 1%) bulk samples were prepared by nano powders from high-energy ball milling and compacted samples from direct current pressing method. Then the phase, microstructure and thermoelectric properties of the samples were analyzed. The X-ray diffraction patterns showed that there was no other phases except Bi0.5Sb1.5Te3in all bulk samples, while the Scanning Electron Microscope images indicated that Sn doped samples had little effect on the grain size, resulting little change in lattice thermal conductivity. The Sn doped samples got higher Seebeck coefficient and lower electrical conductivity, which was mainly because of the influences on the carrier density from Sn dopant. The maximum dimensionless figure of merit ZT of 1.16 was archived at 348 K in Bi0. 5Sb1.5Te3sample, which was mainly attributed to the reduced lattice thermal conductivity from the enhanced phonon scattering by the interfaces of greatly increased micron or sub-micron grains and precipitation than the sample prepared by conventional method. The prepared Bi0.5Sb1.5Te3sample’s ZT is higher than 1 before 423 K, about 20% improving comparing with the average ZT of the sample prepared by traditional method , which is advantageous for practical application.
BiSbTe alloy; Sn dopant; thermoelectric materials; lattice thermal conductivity; thermoelectric figure of merit
2016-03-15
教育部春暉計劃項目(Z2015082,Z2014043);四川省科技廳科研項目(2015TD0017,2014-125,2016142,2016135);四川省教育廳科研項目(16ZB0156)。
雷曉波(1988—)男,助理實驗師,碩士,主要研究方向為中低溫?zé)犭姴牧稀?/p>
TB34
A
1673-159X(2016)05-0064-6
10.3969/j.issn.1673-159X.2016.05.012