章希睿,劉志文,王亞昕,徐友根
(北京理工大學(xué) 信息與電子學(xué)院,北京 100081)
?
四元數(shù)域主特征空間投影魯棒自適應(yīng)波束形成
章希睿,劉志文,王亞昕,徐友根
(北京理工大學(xué) 信息與電子學(xué)院,北京 100081)
針對(duì)常規(guī)四元數(shù)域波束形成器在模型誤差條件下的性能退化問題,提出基于拉伸三極子雙平行陣列的四元數(shù)域主特征空間投影魯棒自適應(yīng)波束形成方法. 相比現(xiàn)有四元數(shù)域最劣態(tài)最優(yōu)化魯棒波束形成器,該方法無需求解具有高計(jì)算復(fù)雜度的凸優(yōu)化問題,且不涉及用戶參數(shù)的優(yōu)化設(shè)置,更易于實(shí)現(xiàn). 仿真結(jié)果表明,所提出的波束形成器可有效克服信號(hào)相消問題,能夠以較低的計(jì)算成本獲取優(yōu)于四元數(shù)域最劣態(tài)最優(yōu)化魯棒自適應(yīng)波束形成器的性能,且其優(yōu)勢(shì)在高信噪比和短快拍條件下尤為顯著.
魯棒自適應(yīng)波束形成;電磁矢量傳感器陣列;四元數(shù);主特征空間投影
自適應(yīng)波束形成技術(shù)可廣泛應(yīng)用于雷達(dá)、聲納、無線通信、語音信號(hào)處理以及超聲成像等領(lǐng)域,并已取得許多重要成果與進(jìn)展[1-5]. 面對(duì)當(dāng)今日益復(fù)雜多變的電磁環(huán)境,僅利用信號(hào)幅度、相位、頻率和波形等信息已遠(yuǎn)遠(yuǎn)不夠,將具有極化分集特性的電磁矢量傳感器應(yīng)用于自適應(yīng)波束形成技術(shù)中就顯得十分必要. 在文獻(xiàn)[6-7]中,交叉偶極子和三極子首次被應(yīng)用于自適應(yīng)陣列系統(tǒng),可有效抑制與期望信號(hào)具有相同或相近入射角的干擾源. 此后,基于全電磁矢量傳感器的自適應(yīng)波束形成方法輸出信干噪比性能得到定量研究[8-9].
近年來,基于四元數(shù)的電磁矢量傳感器陣列信號(hào)處理方法受到廣泛關(guān)注[10-14]. 在信號(hào)波達(dá)方向估計(jì)方面,文獻(xiàn)[15-16]中首次基于雙分量傳感器陣列構(gòu)建四元數(shù)信號(hào)模型,并在此基礎(chǔ)上提出四元數(shù)域多重信號(hào)分類方法;另外,旋轉(zhuǎn)不變信號(hào)參數(shù)估計(jì)技術(shù)亦被推廣至四元數(shù)域[17]. 在自適應(yīng)波束形成方面,經(jīng)典的最小方差無畸變波束形成器在四元數(shù)框架下得以研究[18-19]. 隨后,利用兩路干擾及噪聲對(duì)消思想,文獻(xiàn)[20]中提出一種具有聯(lián)合結(jié)構(gòu)且能夠抑制單個(gè)強(qiáng)相干干擾的四元數(shù)域波束形成算法. 最近,最劣態(tài)最優(yōu)化波束形成器亦被推廣到四元數(shù)域[21-23].
本文研究基于主特征空間投影的四元數(shù)域魯棒自適應(yīng)波束形成算法,由于僅涉及樣本協(xié)方差矩陣的特征分解運(yùn)算,因而比上面提及的四元數(shù)域最劣態(tài)最優(yōu)化波束形成器更易于實(shí)現(xiàn).
考慮如圖1所示的由2N個(gè)拉伸三極子天線所構(gòu)成的雙平行陣列,對(duì)陣列進(jìn)行空域子陣劃分:子陣1包括所有位于y軸的偶極子,子陣2則包括所有位于y′軸的偶極子. 兩個(gè)子陣的輸出矢量可寫為
(1)
(2)
建立下述拉伸三極子雙平行陣列四元數(shù)信號(hào)模型:
(3)
利用K次獨(dú)立數(shù)據(jù)快拍,可得到四元數(shù)域陣列輸出樣本協(xié)方差矩陣為
(4)
(5)
利用拉格朗日乘數(shù)法,可得Q-Capon之最優(yōu)權(quán)矢量為
(6)
(7)
(8)
(9)
稱之為四元數(shù)域主特征空間投影魯棒自適應(yīng)波束形成器(QPEP). 與現(xiàn)有波束形成器相比,QPEP只需要進(jìn)行四元數(shù)特征分解,無需求解凸優(yōu)化問題,且不涉及用戶參數(shù)的選取.
采用由6個(gè)拉伸三極子構(gòu)成的雙平行陣列(即N=3),其中拉伸間隔以及每兩個(gè)拉伸三極子間的距離均設(shè)置為信號(hào)半波長. 假設(shè)有1個(gè)期望信號(hào)與2個(gè)非相干干擾從y-z平面入射至陣列,此時(shí)所有入射信號(hào)的方位角均為90°,而俯仰角分別為5°、30°和60°;信干比固定為-20 dB;蒙特卡羅獨(dú)立實(shí)驗(yàn)次數(shù)設(shè)置為100. 另外,在考慮導(dǎo)向矢量誤差的實(shí)驗(yàn)中,將各種模型誤差歸結(jié)為真實(shí)導(dǎo)向矢量和標(biāo)稱導(dǎo)向矢量之間的誤差矢量e,且其范數(shù)‖e‖為(0,2]區(qū)間里滿足均勻分布的隨機(jī)數(shù). 仿真實(shí)驗(yàn)共比較3種四元數(shù)域波束形成器的性能:本文提出的QPEP算法、Q-Capon算法[18]以及用戶參數(shù)ε=2的QWCCB算法[21-22],其中求解QWCCB算法最優(yōu)權(quán)矢量采用了SeDuMi工具包[25]與YALMIP求解器[26];此外,最優(yōu)輸出SINR曲線“OPT-SINR”亦作為性能基準(zhǔn)出現(xiàn)在仿真圖中.
3.1 波束方向圖
本實(shí)驗(yàn)旨在驗(yàn)證所提出的QPEP算法在面對(duì)模型失配誤差時(shí)的有效性. 為了繪制一維波束方向圖,假定入射信號(hào)的極化參數(shù)相同,僅存在俯仰角差異;本實(shí)驗(yàn)中,輸入SNR和快拍數(shù)分別設(shè)置為10 dB和50次. 圖2所示的仿真結(jié)果表明,QPEP算法可有效解決模型失配問題,不僅在兩個(gè)干擾處(30°和60°)形成零陷,還在期望信號(hào)俯仰角5°處形成主瓣;相比之下,Q-Capon算法則發(fā)生了期望信號(hào)相消問題:在期望信號(hào)5°處亦形成零陷. QPEP算法面對(duì)模型失配誤差時(shí)的魯棒性主要?dú)w因于基于四元數(shù)域的特征空間投影使得信號(hào)特征空間與噪聲特征空間具有更強(qiáng)的正交性. 除此之外,四元數(shù)域樣本協(xié)方差矩陣所隱含的數(shù)據(jù)平滑過程也是該法可應(yīng)對(duì)模型失配誤差的又一因素.
3.2 輸出信干噪比曲線
通過比較各種方法在存在導(dǎo)向矢量誤差時(shí)的輸出信干噪比性能,本實(shí)驗(yàn)驗(yàn)證了QPEP算法在同時(shí)面對(duì)導(dǎo)向矢量誤差和協(xié)方差矩陣有限采樣誤差時(shí)具備的更高魯棒性. 圖3(a)和圖3(b)所示的仿真結(jié)果顯示,QPEP算法在魯棒性和收斂速度方面均為最優(yōu),其優(yōu)勢(shì)在高信噪比和短快拍條件下尤為明顯. 相比而言,Q-Capon算法在高信噪比條件下性能較差,這是因?yàn)楫?dāng)期望信號(hào)導(dǎo)向矢量不能精確已知時(shí),Q-Capon算法會(huì)產(chǎn)生信號(hào)相消問題,隨著輸入信噪比的增加,信號(hào)相消問題越明顯,從而導(dǎo)致輸出信干噪比下降.
3.3 單次運(yùn)行時(shí)間
本實(shí)驗(yàn)旨在考察QPEP、QWCCB與Q-Capon 3種算法在相同硬件及軟件條件下(Intel i3雙核處理器,主頻3.30 GHz,內(nèi)存4 GB;Matlab仿真軟件)的單次運(yùn)行時(shí)間隨快拍數(shù)和傳感器個(gè)數(shù)變化的曲線. 圖4(a)顯示,當(dāng)采用10個(gè)拉伸三極子時(shí),QWCCB算法運(yùn)行1次需要近0.3 s,而QPEP和Q-Capon算法運(yùn)行1次則分別需要0.03 s和0.06 s;圖4(b)則說明,3種算法的計(jì)算復(fù)雜度主要取決于傳感器的個(gè)數(shù),幾乎不受快拍數(shù)的影響.
本文研究了基于拉伸三極子雙平行陣列的四元數(shù)域主特征空間投影魯棒自適應(yīng)波束形成方法. 首先,與此前基于極化匹配子陣劃分的建模方法不同,本文以空域子陣劃分的方式構(gòu)建新型四元數(shù)模型;所提出的四元數(shù)域主特征空間投影方法利用Q-Capon波束形成器權(quán)矢量屬于信號(hào)加干擾主特征空間的本征結(jié)構(gòu),對(duì)噪聲子空間泄漏現(xiàn)象進(jìn)行截?cái)嗵幚?,最終達(dá)到提升波束形成器魯棒性的目的;該算法為無需求解凸優(yōu)化問題與選取用戶參數(shù)的硬約束類方法,較現(xiàn)有軟約束類方法更易于實(shí)現(xiàn).
[1] Monzingo R A,Miller T W. Introduction to adaptive arrays[M]. New York: Wiley,1980.
[2] Johnson D H,Dudgeon D E. Array signal processing: concepts and techniques,signal processing series[M]. Englewood Cliffs,USA: Prentice Hall,1993.
[3] Van Trees H L. Optimum array processing[M]. New York: Wiley,2002.
[4] Zhang L,Liu W,Li J. Low-complexity distributed beamforming for relay networks with real-valued implementation[J]. IEEE Transactions on Signal Processing,2013,61(20):5039-5048.
[5] Wang Z S,Li J,Wu R B. Time-delay-and time-reversal-based robust capon beamformers for ultrasound imaging[J]. IEEE Transactions on Medical Imaging,2005,24(10):1308-1322.
[6] Compton R T. On the performance of a polarization sensitive adaptive array[J]. IEEE Transactions on Antennas and Propagation,1981,29(5):718-725.
[7] Compton R T. The tripole antenna: an adaptive array with full polarization flexibility[J]. IEEE Transactions on Antennas and Propagation,1981,29(6):944-952.
[8] Nehorai A,Ho K C,Tan B T G. Minimum-noise-variance beamformer with an electromagnetic vector sensor[J]. IEEE Transactions on Signal Processing,1999,47(3):601-618.
[9] Xu Y G,Liu T,Liu Z W. Output SINR of MV beamformer with one EM vector sensor of non-identical electric and magnetic noise power[C]∥IEEE International Conference on Signal Processing. Beijing, China: IEEE Press, 2004:419-422.
[10] Reed I S,Mallett J D,Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems,1974,AES-10(6):853-863.
[11] Chang L,Yeh C C. Performance of DMI and eigenspace-based beamformers[J]. IEEE Transactions on Antennas and Propagation,1992,40(11):1336-1347.
[12] Feldman D D,Griffiths L J. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing,1994,42(4):867-876.
[13] Li J,Stoica P. Robust adaptive beamforming[M]. Hoboken,New Jersey: Wiley,2005.
[14] Vorobyov S A,Gershman A B,Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing,2003,51(2):313-324.
[15] Miron S,Le Bihan N,Mars J I. High resolution vector-sensor array processing using quaternions[C]∥IEEE/SP 13th Workshop on Statistical Signal Processing. Bordeau,F(xiàn)rance: IEEE Press, 2005:918-923.
[16] Miron S,Le Bihan N,Mars J I. Quaternion-MUSIC for vector-sensor array processing[J]. IEEE Transactions on Signal Processing,2006,54(4):1218-1229.
[17] Gong X F,Xu Y G,Liu Z W. Quaternion ESPRIT for direction finding with a polarization sensitive array[C]∥IEEE International Conference on Signal Processing. Beijing, China: IEEE, 2008:378-381.
[18] Gou X M,Xu Y G,Liu Z W,et al. Quaternion-Capon beamformer using crossed-dipole arrays[C]∥IEEE International Symposium on Microwave,Antenna,Propagation,and EMC Technologies for Wireless Communications. Beijing, China: IEEE, 2011:34-37.
[19] Tao J W,Chang W X. The MVDR beamformer based on hypercomplex processes[C]∥IEEE International Conference on Computer Science and Electronics Engineering. Hangzhou, China: IEEE, 2012:273-277.
[20] Tao J W,Chang W X. A novel combined beamformer based on hypercomplex processes[J]. IEEE Transactions on Aerospace and Electronic Systems,2013,49(2):1276-1289.
[21] Zhang X R,Liu W,Xu Y G,et al. Quaternion-based worst case constrained beamformer based on electromagnetic vector-sensor arrays[C]∥IEEE International Conference on Acoustics,Speech,and Signal Processing. [S.l.]: IEEE, 2013:4149-4153.
[22] Zhang X R,Liu W,Xu Y G,et al. Quaternion-valued robust adaptive beamformer for electromagnetic vector-sensor arrays with worst-case constraint[J]. Signal Processing. Vancouver, Canada: IEEE, 2014,104:274-283.
[23] Zhang X R,Liu Z W,Liu W,et al. Quasi-vector-cross-product based direction finding algorithm with a spatially stretched tripole[C]∥IEEE Region 10 Conference (TENCON). Xi’an,China: IEEE,2013:1-4.
[24] Lee H C. Eigenvalues and canonical forms of matrices with quaternion coefficients[C]∥Proceedings of Royal Irish Academy. Ireland: Royal Zrish Acaderny, 1949(52):253-260.
[25] Sturm J F. Using SeDuMi 1.02,a MATLAB toolbox for optimization over symmetric cones[J]. Optimization Methods and Software,1998,11(1-4):625-653.
[26] Lofberg J. YALMIP: A toolbox for modeling and optimization in MATLAB [C]∥IEEE International Symposium on Computer Aided Control Systems Design. Taipei,China: IEEE, 2004:284-289.
(責(zé)任編輯:劉芳)
Quaternion-Valued Robust Adaptive Beamforming Based on Principal Eigenspace Projection
ZHANG Xi-rui,LIU Zhi-wen,WANG Ya-xin,XU You-gen
(School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)
Based on the principal eigenspace projection in the quaternion domain,a robust adaptive beamforming scheme was proposed with a dual-parallel array of spatially stretched tripole antennas,to tackle the performance degradation of quaternion-based adaptive beamformers in the presence of model mismatch errors. Compared with the quaternion-based worst-case constrained beamformer,the presented method does not need convex optimization and user-parameter selection. Numerical simulations show that the proposed method can tackle the signal self-nulling problem effectively,and significantly outperforms the quaternion-based worst-case constrained beamformer in the case of high SNRs and small sample sizes with reduced computational complexity.
robust adaptive beamforming; electromagnetic vector-sensor array; quaternion; principal eigenspace projection
2015-03-21
國家自然科學(xué)基金資助項(xiàng)目(61331019,61490691)
章希睿(1984—),男,博士生,E-mail:xrzhang@bit.edu.cn.
劉志文(1962—),男,教授,博士生導(dǎo)師,E-mail:zwliu@bit.edu.cn.
TN 971.1
A
1001-0645(2016)07-0755-05
10.15918/j.tbit1001-0645.2016.07.018