国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

擬南芥ERF轉(zhuǎn)錄因子基因應(yīng)答非生物脅迫表達(dá)模式1)

2016-11-19 02:39:07趙金玲姚文靜姜廷波周博如
關(guān)鍵詞:擬南芥家族條件

趙金玲 姚文靜 姜廷波 周博如

(林木遺傳育種國家重點(diǎn)實(shí)驗(yàn)室(東北林業(yè)大學(xué)),哈爾濱,150040)

?

擬南芥ERF轉(zhuǎn)錄因子基因應(yīng)答非生物脅迫表達(dá)模式1)

趙金玲 姚文靜 姜廷波 周博如

(林木遺傳育種國家重點(diǎn)實(shí)驗(yàn)室(東北林業(yè)大學(xué)),哈爾濱,150040)

以122條擬南芥(Arabidopsisthaliana)ERF轉(zhuǎn)錄因子家族基因?yàn)檠芯繉?duì)象,用RT-qPCR檢測(cè)其應(yīng)答鹽脅迫情況,分析15個(gè)鹽脅迫敏感基因在鹽、干旱和ABA脅迫條件下的表達(dá)模式。在鹽脅迫條件下,有36個(gè)基因上調(diào)表達(dá),42個(gè)基因下調(diào)表達(dá),44個(gè)基因無明顯變化。其中,15個(gè)鹽脅迫敏感基因在不同脅迫條件下表現(xiàn)出不同的表達(dá)模式。在鹽脅迫條件下,15個(gè)ERF基因的表達(dá)水平隨脅迫時(shí)間的延長(zhǎng)均表現(xiàn)出明顯升高,在36和72 h兩個(gè)時(shí)間點(diǎn)達(dá)到極顯著水平。在ABA脅迫條件下,15個(gè)ERF基因中大多數(shù)表達(dá)水平提高。在干旱脅迫下,15個(gè)ERF基因表達(dá)水平均隨脅迫時(shí)間延長(zhǎng)有所提高,在48 h達(dá)到最高。AT1G06160、AT1G21910、AT2G35700、AT4G17490、AT4G39780和AT5G61890等6個(gè)基因在非生物脅迫條件下表達(dá)模式相似,表明其可能參與相似的基因調(diào)控途徑。其他9個(gè)ERF基因在非生物脅迫下表現(xiàn)出不同的表達(dá)模式,表明其可能參與不同基因調(diào)控途徑。

擬南芥;ERF基因家族;基因表達(dá);非生物脅迫

ERF亞家族是AP2/ERF超家族的一員,含有一個(gè)單一的AP2/ERF域,在植物的生命周期中發(fā)揮著重要作用[1]。ERF亞家族可以分為2個(gè)亞類:CBF/DREB亞類和ERF亞類[2]。CBF/DREB亞類成員可以識(shí)別干旱和冷誘導(dǎo)響應(yīng)元件(DRE/CRT,A/GCCGAC),在植物應(yīng)答非生物脅迫過程中起重要的作用[3-4]。ERF亞家族成員可以識(shí)別GCC-box(AGCCGCC),在植物應(yīng)答生物脅迫過程中發(fā)揮作用[5]。隨著人類經(jīng)濟(jì)活動(dòng)的日趨頻繁,土壤鹽漬化、干旱等現(xiàn)象日益嚴(yán)重,成為限制植物生長(zhǎng)發(fā)育的主要因素,嚴(yán)重制約了農(nóng)業(yè)生產(chǎn)。了解植物應(yīng)答各種非生物脅迫的機(jī)制,可以為人們改良植物抗逆性和培育植物新品種提供新思路。擬南芥是植物研究的重要模式植物,于2000年完成基因組測(cè)序。本研究以122條擬南芥ERF轉(zhuǎn)錄因子基因?yàn)檠芯繉?duì)象,分析其在NaCl、ABA、PEG 3種非生物脅迫下的表達(dá)模式。為今后研究擬南芥ERF家族基因的功能提供參考。

1 材料與方法

1.1 擬南芥ERF家族基因篩選與系統(tǒng)進(jìn)化

從植物轉(zhuǎn)錄因子數(shù)據(jù)庫PlantTFDB 3.0中得到122條擬南芥ERF轉(zhuǎn)錄因子家族基因序列,用NCBI(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)提供的ORF查找器鑒定基因的開放閱讀框。用MEGA5.0和neighbor-joining(NJ)方法[6]構(gòu)建系統(tǒng)發(fā)育樹。用ExPaSy提供的在線Protparam軟件(http://web.expasy.org/protparam/)進(jìn)行氨基酸數(shù)目、分子質(zhì)量、理論等電點(diǎn)、脂肪族氨基酸數(shù)和蛋白質(zhì)疏水性分析。

1.2 擬南芥培養(yǎng)與脅迫處理

擬南芥生態(tài)型為Columbia(Col-1)。擬南芥種子經(jīng)4 ℃春化24 h后,均勻地播種于營養(yǎng)土中,7 d后移栽到花盆中。培養(yǎng)條件為:溫度(22±2)℃,光照強(qiáng)度3.2×104lx,16 h光照/8 h黑暗,相對(duì)濕度65%~75%。30 d后將4組擬南芥分別施以ABA(100 μmol/L)、NaCl(150 mmol/L)、PEG(6000)(20%)和澆水(對(duì)照)處理,在0、6、12、24、36、48、72 h,7個(gè)時(shí)間點(diǎn)采集葉片置于液氮,然后放置于冰箱中-80 ℃保存,用于后續(xù)RNA提取及RT-qPCR分析。

1.3 RNA提取和RT-qPCR分析

用天澤基因柱式植物RNAout試劑盒提取RNA,用NanoDrop 1000(Thermo Scientific)分光光度計(jì)測(cè)定RNA濃度和質(zhì)量。用PrimeScriptTMRT reagent Kit(TaKaRa)合成cDNA。用SYBR○RPremix Ex TaqTMП(TaKaRa)進(jìn)行實(shí)時(shí)熒光定量PCR分析,3個(gè)技術(shù)和3個(gè)生物學(xué)重復(fù)。以ACTIN(JM986590)基因?yàn)閮?nèi)參設(shè)計(jì)引物(ACTF:5’-CCCAGTGTTGTTG GTAGGCCAAGAC-3’和ACTR:5’-CATAGCGGGAGAGTTAAAGGTCTC-3’)。根據(jù)擬南芥ERF基因序列設(shè)計(jì)各個(gè)基因特異性引物。用ABI 7500 Real-time PCR system(Applied Biosystems)進(jìn)行定量PCR。反應(yīng)總體積為20 μL,反應(yīng)體系為:10 μL的SYBR Premix Ex TaqTM II(TaKaRa),0.4 μL的ROX Reference Dye II(TaKaRa),正向和反向引物各0.4 μmol/L,2 μL的cDNA模板(相當(dāng)于20 ng的總RNA)。反應(yīng)程序?yàn)椋侯A(yù)變性95.0 ℃ 30 s,變性95.0 ℃ 5 s,退火/延伸60.0 ℃ 30 s,35個(gè)循環(huán)。從60~95 ℃的溫度逐漸增加的過程中記錄熒光值。根據(jù)△CT法計(jì)算基因相對(duì)表達(dá)水平[7-8]。

2 結(jié)果與分析

2.1 擬南芥應(yīng)答鹽脅迫ERF基因的篩選

RT-qPCR檢測(cè)結(jié)果表明,122個(gè)擬南芥ERF轉(zhuǎn)錄因子家族基因在鹽脅迫條件下,有36個(gè)(29.5%)基因上調(diào)表達(dá),42個(gè)(34.4%)基因下調(diào)表達(dá),44個(gè)(36.1%)基因表達(dá)無明顯變化。其中,14個(gè)基因(11.48%)上調(diào)2~4倍,10個(gè)基因(8.20%)上調(diào)4~8倍,7個(gè)基因(5.74%)上調(diào)8~16倍,3個(gè)基因(2.46%)上調(diào)16~32倍,2個(gè)基因(1.64%)上調(diào)32倍。

從78個(gè)應(yīng)答鹽脅迫的擬南芥ERF基因中選出對(duì)鹽脅迫高度敏感的基因,分別為F值在10倍以上的9個(gè)基因(AT1G21910、AT1G22985、AT1G43160、AT2G25820、AT2G38340、AT4G34410、AT5G05410、AT5G61890、AT5G64750)和F值在0.4倍以下的6個(gè)基因(AT1G06160、AT1G44830、AT1G49120、AT2G35700、AT4G17490、AT4G39780)。首先分析這15個(gè)鹽脅迫敏感基因所編碼蛋白的理化性質(zhì),發(fā)現(xiàn)這些蛋白的氨基酸數(shù)為159~391,分子質(zhì)量為17.54~42.81 ku,等電點(diǎn)在4.86~9.62,脂肪系數(shù)為42.94~71.21,蛋白質(zhì)的疏水性系數(shù)為-1.037~-0.439。用MEGA 5.2對(duì)這些蛋白的AP2/ERF結(jié)構(gòu)域進(jìn)行序列比對(duì),發(fā)現(xiàn)所有蛋白均含有保守的AP2/ERF結(jié)構(gòu)域(圖1)。

圖1 15個(gè)ERF轉(zhuǎn)錄因子基因多序列比對(duì)

2.2 ERF基因在不同脅迫下的表達(dá)模式

利用RT-qPCR分析15個(gè)鹽敏感ERF基因在鹽、干旱和ABA脅迫條件下的表達(dá)模式。發(fā)現(xiàn)15個(gè)ERF基因表達(dá)水平,總體上表現(xiàn)為對(duì)NaCl和ABA脅迫比較敏感,而對(duì)PEG脅迫的敏感性相對(duì)較低(圖2)。在NaCl脅迫條件下,這些基因表達(dá)水平從脅迫6 h開始升高,分別在36和72 h出現(xiàn)2個(gè)峰值,這15個(gè)基因的表達(dá)水平表現(xiàn)出晝夜波動(dòng)性較大的特點(diǎn)。在ABA脅迫條件下,這些基因表達(dá)水平先急劇升高達(dá)到峰值,然后在12~36 h逐漸降低,而后逐漸升高至72 h達(dá)到峰值。在PEG脅迫條件下,這些基因表達(dá)水平表現(xiàn)為升高趨勢(shì),但不同脅迫時(shí)間的差異不明顯。

根據(jù)15個(gè)鹽敏感ERF基因在0、6、12、24、36、48、72 h等7個(gè)時(shí)間點(diǎn)的表達(dá)水平繪制熱圖(圖3),可以將15個(gè)基因劃分為兩組:低表達(dá)組和高表達(dá)組,低表達(dá)組包括AT1G43160、AT1G06160、AT1G49120、AT5G61890、AT5G64750、AT2G25820、AT1G44830、AT1G22985、AT2G38340等9個(gè)基因,高表達(dá)組包括AT1G21910、AT4G34410、AT4G39780、AT4G17490、AT5G05410、AT2G35700等6個(gè)基因。在干旱和ABA脅迫條件下低表達(dá)組與高表達(dá)組的基因組成有所變化,其高表達(dá)組中基因數(shù)量減少,PEG脅迫條件下高表達(dá)的基因數(shù)量最少。但AT1G21910和AT5G61890在3種脅迫條件下表達(dá)水平均較高。

圖2 15個(gè)ERF家族基因在不同脅迫條件下表達(dá)水平

圖3 15個(gè)ERF家族基因在不同時(shí)間點(diǎn)的表達(dá)水平繪制熱圖

3 結(jié)論與討論

植物生長(zhǎng)在自然條件下,為適應(yīng)和抵御各種逆境,進(jìn)化出各種信號(hào)轉(zhuǎn)導(dǎo)通路及脅迫響應(yīng)途徑。植物轉(zhuǎn)錄因子與順式作用元件互作在植物響應(yīng)逆境脅迫的過程中起著非常重要的作用[9-11]。在WRKY家族[12]、MYB家族[13]、bZIP家族[14-15]和ERF家族[16-17]等轉(zhuǎn)錄因子基因中包含許多逆境脅迫相關(guān)基因。ERF家族是植物中最大的轉(zhuǎn)錄因子家族,在響應(yīng)環(huán)境脅迫和植物生長(zhǎng)的過程中均起重要作用[18]。本研究分析122個(gè)擬南芥ERF轉(zhuǎn)錄因子基因應(yīng)答鹽脅迫情況,發(fā)現(xiàn)有78個(gè)基因應(yīng)答鹽脅迫,44個(gè)基因?qū)}脅迫無明顯應(yīng)答。其中,15個(gè)鹽脅迫敏感ERF基因在NaCl脅迫條件下,基因表達(dá)水平隨時(shí)間的延長(zhǎng)均有明顯的升高,并在36和72 h兩個(gè)時(shí)間點(diǎn)達(dá)到極顯著水平。植物ERF家族基因中甘蔗(SaccharumL.)SodERF3[19]、水稻(OryzasativaL.)OsEREBP1和OsEREBP2[20]、大麥(HordeumvulgareL.)HvRAF[21]、甘薯(DioscoreaesculentaBurkill)IbERF1和IbERF2[22]等對(duì)鹽脅迫均有應(yīng)答反應(yīng),過量表達(dá)脅迫相關(guān)ERF基因可提高了植物的耐鹽性。但有些ERF基因雖已知能夠響應(yīng)鹽脅迫,例如水稻ERF基因EsE1在鹽脅迫下誘導(dǎo)表達(dá),但其作用機(jī)制尚不明確[23]。

ABA信號(hào)通路包括信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄因子[24-25],ABA在植物發(fā)育過程和適應(yīng)環(huán)境刺激中發(fā)揮關(guān)鍵作用。在ABA處理?xiàng)l件下,15個(gè)擬南芥ERF基因在6 h時(shí)表達(dá)量達(dá)到最大,而后逐漸降低,但相對(duì)于對(duì)照組仍然達(dá)到顯著水平,在處理72 h時(shí)表達(dá)量又升高到極顯著水平。基因在表達(dá)時(shí)間上的差異性可能與基因表達(dá)的途徑及調(diào)控機(jī)制有關(guān),在逆境脅迫條件下,通過調(diào)節(jié)ABA誘導(dǎo)基因,使其在合適的時(shí)間表達(dá),有效提高植物的抗逆性。15個(gè)ERF基因中的大多數(shù)在ABA誘導(dǎo)下表達(dá)水平提高,表明這些基因可能參與ABA依賴型應(yīng)激反應(yīng)。

在干旱脅迫下,15個(gè)ERF基因表達(dá)模式相似,都是隨時(shí)間延長(zhǎng)有所升高,并在48 h達(dá)到最高。研究表明ERF轉(zhuǎn)錄因子家族能夠增加植物的耐旱性,TSRF1蛋白通過調(diào)控增加效應(yīng)基因的表達(dá),增強(qiáng)水稻幼苗的滲透性和耐旱能力[26]。甘蔗的SodERF3蛋白,使煙草增強(qiáng)干旱脅迫耐受性[19]。在本研究中AT1G06160,AT1G21910,AT2G35700,AT4G17490,AT4G39780和AT5G61890等6個(gè)基因響應(yīng)非生物脅迫的表達(dá)模式相似,表明其可能參與相同的基因表達(dá)調(diào)控網(wǎng)絡(luò)。其他9個(gè)ERF家族基因在非生物脅迫下顯示不同的表達(dá)模式,表明其可能參與不同的基因調(diào)控途徑。

[1] NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology,2006,140(2):411-432.

[2] SAKUMA Y, LIU Q, DUBOUZET J G, et al. DNA-binding specificity of the ERF/AP2 domain of arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochemical & Biophysical Research Communications,2002,290(3):998-1009.

[3] YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell,2010,6(2):251-264.

[4] THOMASHOW M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Physiology & Plant Molecular Biology,1999,50(4):571-599.

[5] HAO D Y, OHME-TAKAGI M, SARAI A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant[J]. Journal of Biological Chemistry,1998,273(41):26857-26861.

[6] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology & Evolution,2011,28(10):2731-2739.

[7] ANTONOV J, GOLDSTEIN D A, BALTZER A, et al. Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization[J]. Laboratory Investigation,2005,85(8):1040-1050.

[8] PINELES B L, ROMERO R, MONTENEGRO D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia[J]. American Journal of Obstetrics & Gynecology,2007,196(3):1-6.

[9] DIETZ K J, VOGEL M O, VIEHHAUSER A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling[J]. Protoplasma,2010,245(1/2/3/4):3-14.

[10] SHINOZAKI K, YAMAGUCHI-SHINOZAKI K, SEKI M. Regulatory network of gene expression in the drought and cold stress responses[J]. Current Opinion in Plant Biology,2003,6(5):410-417.

[11] ZHANG H W, HUANG Z J, XIE B Y, et al. The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco[J]. Planta,2005,220(2):262-270.

[12] ZHOU Q Y, TIAN A G, ZOU H F, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal,2008,6(5):486-503.

[13] HIROSHT A, URAO T, ITO T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell,2003,15(1):63-78.

[14] HOBO T, KOWYAMA Y, HATTORI T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(26):15348-15353.

[15] KANG J Y, CHOI H I, IM M Y, et al. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling[J]. Plant Cell,2002,14(14):343-357.

[16] CHAKRAVARTHY S, TUORI R P, D’ASCENZO M D, et al. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements[J]. Plant Cell,2004,15(12):3033-3050.

[17] KIZIS D, LUMBRERAS V, PAGS M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress[J]. FEBS Letters,2001,498(2/3):187-189.

[18] RIECHMAN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science,2000,290:2105-2110.

[19] TRUJILLO L E, SOTOLONGO M, MENéNDEZ C, et al. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants[J]. Plant & Cell Physiology,2008,49(4):512-525.

[20] SERRA T S, FIGUEIREDO D D, CORDEIRO A M, et al. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors[J]. Plant Molecular Biology,2013,82(4/5):439-455.

[21] JUNG J, WON S Y, SUH S C, et al. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis[J]. Planta,2007,225(3):575-588.

[22] KIM Y H, JEONG J C, PARK S, et al. Molecular characterization of two ethylene response factor genes in sweetpotato that respond to stress and activate the expression of defense genes in tobacco leaves[J]. Journal of Plant Physiology,2012,169(11):1112-1120.

[23] ZHANG L, LI Z, QUAN R, et al. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis[J]. Plant Physiology,2011,157(2):854-865.

[24] FINKELSTEIN R R, GAMPALA S S, ROCK C D. Abscisic acid signaling in seeds and seedlings[J]. Plant Cell,2002,14(Suppl):15-45.

[25] HIMMELBACH A, YANG Y, GRILL E. Relay and control of abscisic acid signaling[J]. Current Opinion in Plant Biology,2003,6(5):470-479.

[26] QUAN R, HU S, ZHANG Z, et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance[J]. Plant Biotechnology Journal,2010,8(4):476-488.

Expression Pattern ofERFGene Family fromArabidopsisthalianain Response to Abiotic Stress//

Zhao Jinling, Yao Wenjing, Jiang Tingbo, Zhou Boru(State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P. R. China)//

Journal of Northeast Forestry University,2016,44(10):41-44.

The expression of 122 ArabidopsisERFtranscription factor genes under salt stress were detected by RT-qPCR, and the expression patterns of 15 salt-sensitive genes under salt, drought and ABA stress were analyzed. Under salt stress, 36 genes were up-regulated, 42 genes were down-regulated, and 44 genes had no significant change. Among them, 15 salt-sensitive genes showed different expression patterns under different abiotic stress. Under salt stress, the expression level of 15ERFgenes with the increasing of stress time was significantly increased, reaching a significant level at 36 h and 72 h. Under the ABA stress, expression level in most of 15ERFgene was increased. Under drought stress, expression levels of 15 ERF gene were increased with the stress time prolonged, reaching the highest point at 48 h.AT1G06160,AT1G21910,AT2G35700,AT4G17490,AT4G39780 andAT5G61890 genes were with the similar expression patterns under abiotic stresses, indicating that it may be involved in similar gene regulation pathways. The other 9ERFgenes under abiotic stress showed different expression patterns, indicating that it may be involved in different pathways of gene regulation.

Arabidopsisthaliana;ERFgene family; Gene expression; Abiotic stress

趙金玲,女,1989年11月生,林木遺傳育種國家重點(diǎn)實(shí)驗(yàn)室(東北林業(yè)大學(xué)),碩士研究生。E-mail:zhaojinling0943@163.com。

周博如,林木遺傳育種國家重點(diǎn)實(shí)驗(yàn)室(東北林業(yè)大學(xué)),副教授。E-mail:boruzhou@yahoo.com。

2016年3月7日。

Q78;S332.1

1)卓越農(nóng)林人才教育培養(yǎng)計(jì)劃改革試點(diǎn)項(xiàng)目;國家“863”課題(2013AA102701)。

責(zé)任編輯:潘 華。

猜你喜歡
擬南芥家族條件
擬南芥:活得粗糙,才讓我有了上太空的資格
排除多余的條件
選擇合適的條件
HK家族崛起
《小偷家族》
電影(2019年3期)2019-04-04 11:57:18
尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
皿字家族
家族中的十大至尊寶
兩種LED光源作為擬南芥生長(zhǎng)光源的應(yīng)用探究
擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
奉贤区| 平乐县| 津南区| 虎林市| 泽普县| 麻栗坡县| 龙口市| 丰镇市| 京山县| 富平县| 高青县| 舟曲县| 镇平县| 易门县| 历史| 兰溪市| 孝昌县| 莱州市| 巩义市| 辉县市| 栾川县| 江都市| 五莲县| 武定县| 衡东县| 井冈山市| 繁昌县| 博野县| 东莞市| 依安县| 南江县| 曲周县| 新邵县| 张掖市| 栖霞市| 旺苍县| 社会| 南开区| 定兴县| 威宁| 印江|