陳友明 姜長亮++陳霆英俊??
摘要:提出應(yīng)用Kriging模型對冷水機(jī)組進(jìn)行故障檢測與診斷(FDD),采用ASHRAE RP1043項(xiàng)目中無故障運(yùn)行數(shù)據(jù)建立并驗(yàn)證冷水機(jī)組Kriging模型.利用參數(shù)敏感性原理對比T統(tǒng)計方法和指數(shù)加權(quán)移動平均(EWMA)方法,對比結(jié)果表明,EWMA方法提高了參數(shù)敏感性.結(jié)合Kriging模型、EWMA方法和故障診斷規(guī)則表,用實(shí)測故障數(shù)據(jù)對冷水機(jī)組故障進(jìn)行檢測與診斷,檢測和診斷的故障包括冷凝器結(jié)垢、制冷劑充注過多、制冷劑泄漏、不凝性氣體、冷凍水流量減少和冷卻水流量減少6個故障.診斷結(jié)果表明,應(yīng)用Kriging模型能夠準(zhǔn)確有效地檢測與診斷冷水機(jī)組不同水平的故障.
關(guān)鍵詞:Kriging模型;冷水機(jī)組;故障檢測;故障診斷
中圖分類號:TU831.4 文獻(xiàn)標(biāo)識碼:A
冷水機(jī)組的運(yùn)行狀況,對室內(nèi)環(huán)境的舒適度,以及對空調(diào)系統(tǒng)能耗影響很大.2009年宏觀建筑全壽命周期能耗為12億噸標(biāo)準(zhǔn)煤,占全國能源消費(fèi)總量的39.5%,占全社會終端能源消費(fèi)的41.4%.暖通空調(diào)系統(tǒng)能耗占整個建筑能耗的65%,冷水機(jī)組的運(yùn)行能耗占該比例的40%~50%.因此,從能耗方面考慮,冷水機(jī)組無故障運(yùn)行意義重大.出現(xiàn)故障后,機(jī)組的運(yùn)行效率降低,所以國內(nèi)外許多學(xué)者致力于FDD方法的研究.Chen等[1]將主元分析法應(yīng)用到空氣源熱泵冷水機(jī)組/加熱器的故障檢測中.Zhou Qiang [2],梁志文[3]等提出了應(yīng)用模糊建模和人工神經(jīng)網(wǎng)絡(luò)的策略.趙云峰等[4]提出應(yīng)用回歸模型到離心式冷水機(jī)組FDD中.Yang Zhao等[5]提出EWMA方法結(jié)合支持向量回歸的FDD策略.冷水機(jī)組的FDD中,現(xiàn)有方法主要為多元線性回歸和神經(jīng)網(wǎng)絡(luò).多元線性回歸建模過程簡單易實(shí)現(xiàn),但是存在一定缺陷,它在處理高度非線性的多高維問題時,擬合精度受到限制,擬合結(jié)果不理想.神經(jīng)網(wǎng)絡(luò)模型是一種非參數(shù)化模型,建模過程對操作者來說是不可知的,是一種“黑箱”效應(yīng),這種“黑箱”效應(yīng)導(dǎo)致神經(jīng)網(wǎng)絡(luò)模型無法判斷各輸入因素的影響大小.Kim B S等[6]指出同回歸和Kriging比較,神經(jīng)網(wǎng)絡(luò)中的SVR和RBF計算結(jié)果的魯棒性較差.
為了提高FDD正確率,改善機(jī)組的運(yùn)行狀況,文章提出建立Kriging模型到冷水機(jī)組FDD中.Kriging模型是半?yún)?shù)化的模型,不需要建立一個特定的數(shù)學(xué)模型,相對于參數(shù)化模型,其應(yīng)用就更加的靈活和方便[7].其中Kriging模型未對未知函數(shù)形式做任何限制;能自適應(yīng)調(diào)整各樣本點(diǎn)權(quán)值的分配;考慮了回歸誤差項(xiàng)的空間相關(guān)性,近似面質(zhì)量非常高.Giunta和Watson[8]分別以1,5和10個變量對比了參數(shù)化多項(xiàng)式技術(shù)(RSM)和半?yún)?shù)化的插值Kriging技術(shù),通過對比,Kriging方法有更好的計算性能.本文利用敏感性參數(shù)比較T統(tǒng)計和EWMA方法,結(jié)合EWMA方法和Kriging模型,以及故障診斷規(guī)則表對冷水機(jī)組實(shí)測故障數(shù)據(jù)進(jìn)行故障的檢測與診斷.
4結(jié)論
1)本文采用無故障運(yùn)行數(shù)據(jù)建立冷水機(jī)組Kriging模型,根據(jù)參數(shù)敏感性原理,分別用T-統(tǒng)計方法和EWMA方法計算特性參數(shù)LMTDcd和εsc的敏感性,對比結(jié)果表明EWMA方法提高了特性參數(shù)敏感性.因此本文結(jié)合Kriging模型和EWMA方法檢測和診斷故障.
2)診斷結(jié)果為,冷凝器結(jié)垢四個故障的診斷正確率分別為23.3%,36.9%,94.9%,100%,診斷錯誤率分別為8.5%,0,0,0.制冷劑泄漏4個水平的診斷正確率分別為64.5%,57.4%,100%,100%,錯誤率分別為9.5%,0,0,0.就錯誤率而言,水平1大于水平2,因此,診斷效果水平2更好.制冷劑充注過多、不凝性氣體、冷凍水流量減少和冷卻水流量減少的四個故障水平診斷正確率均為100%.
3)從診斷結(jié)果中看出,隨著故障水平的增加,診斷效果越來越好,各水平的正確率較高,對于冷凝器結(jié)垢和制冷劑泄漏,水平1有較低的錯誤率.在各故障診斷的結(jié)果中,水平2、水平3和水平4的錯誤率均為0,進(jìn)而得出結(jié)論,應(yīng)用Kriging模型和EWMA方法到冷水機(jī)組FDD中,診斷結(jié)果更可靠,可以更準(zhǔn)確有效地檢測與診斷冷水機(jī)組的故障.
參考文獻(xiàn)
[1]CHEN Youming, LAN Lili. A fault detection technique for airsource heat pump water chiller/heaters[J]. Energy and Buildings, 2009,41(8):881-887.
[2]ZHOU Qiang,WANG Shengwei.A novel strategy for the fault detection and diagnosis of centrifugal chiller systems[J]. HVAC&R Research, 2009,15(1):57-75.
[3]梁志文,胡嚴(yán)思,楊金民.基于FTA與BAM神經(jīng)網(wǎng)絡(luò)融合的飛機(jī)故障診斷方法[J].湖南大學(xué)學(xué)報:自然科學(xué)版, 2013,40(5):61-64.
LIANG Zhiwen, HU Yansi, YANG Jinmin. An aircraft fault diagnosis scheme based on integration of FTA with BAM neutral networks [J]. Journal of Hunan University: Natural Sciences, 2013,40(5):61-64. (In Chinese)
[4]趙云峰,胡孟娣,陳友明.基于運(yùn)行數(shù)據(jù)的冷凝器結(jié)垢故障檢測與診斷研究[J].暖通空調(diào),2013,43(7):117-120.
ZHAO Yunfeng, HU Mengdi, CHEN Youming. Condenser scaling fault detection and diagnosis based on operating data[J]. Journal of HV&AC, 2013,43(7):117-120. (In Chinese)
[5]YANG Zhao, WANG Shengwei. A statistical fault detection and diagnosis method for centrifugal chillers based on exponentiallyweighted moving average control charts and support vector regression[J]. Applied Thermal Engineering, 2013,51(1/2):560-572.
[6]KIM B S, LEE Y B. Comparison study on the accuracy of metamodeling technique for nonconvex functions[J]. Mechanical Science & Technology, 2009, 23(4):1175-1181.
[7]高月華.基于Kriging代理模型的優(yōu)化設(shè)計方法及其在注塑成型中的應(yīng)用[D].大連:大連理工大學(xué)工程力學(xué)系, 2009:18-23.
GAO Yuehua. Optimization methods based on Kriging surrogate model and their application in injection molding[D]. Dalian:Deparment of Engineering Mechanics in Dalian University of Technology, 2009:18-23. (In Chinese)
[8]GIUNTA A A, WATSON L T. A comparison ofapproximation modeling techniques: polynomial versus interpolating models[C]// Proceedings of the 7th AIAA /USAF /NASA /ISSMO Symposium on Multi disciplinary Analysis and Design. Reston, VA.,USA: AIAA Inc., 1998:392-404.
[9]張維剛,劉暉.Kriging模型與優(yōu)化算法在汽車乘員約束系統(tǒng)仿真優(yōu)化中的應(yīng)用研究[J].湖南大學(xué)學(xué)報:自然科學(xué)版,2008,35(6):23-26.
ZHANG Weigang, LIU Hui. Occupant restraint system simulation design optimization based on Kriging model and optimization method[J]. Journal of Hunan University: Natural Sciences, 2008,35(6):23-26. (In Chinese)
[10]邱潤之.關(guān)于EWMA模型的參數(shù)研究[J]. 南京郵電學(xué)院學(xué)報,1998,9(4):102-105.
QIU Runzhi. A research of parameter of EWMA model[J]. Journal of Nanjing Institute of Posts and Telecommunications, 1998,9(4):102-105. (In Chinese)
[11]CUI Jingtan, WANG Shengwei. A modelbased online fault detection and diagnosis strategy for centrifugal chiller systems[J]. International Journal of Thermal Sciences,2005,44(10):986-999.
[12]FU Xiao. A fault detection and diagnosis strategy with enhanced sensitivity for centrifugal chillers[J].Applied Thermal Engineering, 2011,31(17):3963-3970.