国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

柑橘衰退病毒基因p23 RNAi載體的構(gòu)建及轉(zhuǎn)化

2016-11-17 08:14鄧子牛李大志戴素明
關(guān)鍵詞:甜橙柑橘抗性

李 芳,鄧子牛,趙 亞,李大志,戴素明

(湖南農(nóng)業(yè)大學(xué)園藝園林學(xué)院/國(guó)家柑橘改良中心長(zhǎng)沙分中心,長(zhǎng)沙 410128)

柑橘衰退病毒基因p23 RNAi載體的構(gòu)建及轉(zhuǎn)化

李 芳,鄧子牛,趙 亞,李大志,戴素明

(湖南農(nóng)業(yè)大學(xué)園藝園林學(xué)院/國(guó)家柑橘改良中心長(zhǎng)沙分中心,長(zhǎng)沙 410128)

【目的】構(gòu)建柑橘衰退病毒(Citrus tristeza virus,CTV)含p23的RNAi載體,以獲得具有抗性的柑橘轉(zhuǎn)基因植株。【方法】基于轉(zhuǎn)化病毒基因介導(dǎo)抗性,根據(jù)NCBI公布的CTV基因組序列,查找p23保守序列,設(shè)計(jì)并克隆兩條不同長(zhǎng)度的片段。對(duì)兩條片段和植物表達(dá)載體pBI 121進(jìn)行雙酶切和連接來(lái)構(gòu)建RNAi載體。初步預(yù)測(cè)所構(gòu)建的載體發(fā)生RNAi抗病毒的可行性。利用農(nóng)桿菌介導(dǎo)的瞬時(shí)表達(dá)技術(shù)將含RNAi載體的農(nóng)桿菌注射入CTV指示植物墨西哥萊蒙的葉片,利用GUS組織化學(xué)染色法觀察葉片中載體發(fā)生瞬時(shí)表達(dá)的情況。發(fā)生瞬時(shí)表達(dá)的葉片接種CTV T36基因型,利用酶聯(lián)免疫反應(yīng)(ELISA)檢測(cè)病毒含量。同時(shí),提取葉片的RNA并反轉(zhuǎn)錄為cDNA,利用實(shí)時(shí)熒光定量PCR(q-PCR)檢測(cè)CTV p20,通過(guò)該基因的表達(dá)量反映葉片中的病毒含量。通過(guò)農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化將RNAi載體轉(zhuǎn)入大紅甜橙實(shí)生苗上胚軸節(jié)間莖段,抗生素篩選得到的芽嫁接至枳橙實(shí)生試管苗。提取大紅甜橙葉片的DNA,通過(guò)PCR擴(kuò)增確定其是否為轉(zhuǎn)基因陽(yáng)性;目的基因檢測(cè)為陽(yáng)性的植株二次嫁接至溫室保存的酸橙實(shí)生苗;根據(jù)插入的p23基因序列設(shè)計(jì)q-PCR引物,檢測(cè)轉(zhuǎn)基因植株中p23的表達(dá)情況。取 CTV T36基因型寄主的帶皮芽,用腹接法接種大紅甜橙轉(zhuǎn)基因植株。取接種后新萌發(fā)枝梢上的葉片,用檢測(cè)瞬時(shí)表達(dá)葉片同樣的方法分析植株的抗病性。對(duì)于第1次接種后未檢測(cè)出病毒感染的植株,進(jìn)行第2次接種并檢測(cè)分析。【結(jié)果】克隆得到CTV p23 513 bp的長(zhǎng)片段和291 bp的短片段,與載體pBI121連接后成功構(gòu)建含發(fā)夾結(jié)構(gòu)的來(lái)自病原且能靶向目的基因的RNAi載體,命名為p23-RNAi。注射p23-RNAi的墨西哥萊蒙葉片經(jīng)GUS染色后能夠產(chǎn)生藍(lán)色斑點(diǎn),表明農(nóng)桿菌p23-RNAi可以在葉片中發(fā)生瞬時(shí)表達(dá);接種CTV后第15和30天,瞬時(shí)表達(dá)p23-RNAi的墨西哥萊蒙葉片ELISA檢測(cè)結(jié)果均為陰性,同時(shí)q-PCR檢測(cè)結(jié)果顯示其CTV p20的積累水平和增加速度明顯低于對(duì)照植株,表明瞬時(shí)表達(dá)的p23-RNAi在一定時(shí)間內(nèi)可以對(duì)CTV的侵染產(chǎn)生抑制。p23-RNAi經(jīng)農(nóng)桿菌介導(dǎo)遺傳轉(zhuǎn)化大紅甜橙獲得抗性芽,通過(guò)普通PCR的擴(kuò)增結(jié)果證明得到7個(gè)轉(zhuǎn)基因植株;q-PCR檢測(cè)結(jié)果進(jìn)一步表明7個(gè)轉(zhuǎn)基因植株間p23的含量呈現(xiàn)一定差異,植株E的含量最高,其次是C、F、H、A、B和G。接種CTV后,p20的表達(dá)量在7個(gè)轉(zhuǎn)基因植株間也表現(xiàn)出一定差異,表達(dá)量最高的是植株A,其次是G、F、E、B、H、C,且與對(duì)照植株相比,呈現(xiàn)不同程度的抗病性。轉(zhuǎn)基因植株對(duì)病毒的抗性與外源基因的表達(dá)水平?jīng)]有相關(guān)性,外源基因表達(dá)水平最高的植株E并沒有表現(xiàn)強(qiáng)的CTV抗性。經(jīng)過(guò)兩次病毒接種,轉(zhuǎn)基因植株C在接種后具有完全抗性?!窘Y(jié)論】p23-RNAi載體能引起植物抗柑橘衰退病毒;瞬時(shí)表達(dá)技術(shù)可快速鑒定RNAi載體的抗病性,有利于篩選高效率的RNAi載體。

柑橘衰退病毒;p23;RNAi;大紅甜橙;瞬時(shí)表達(dá);遺傳轉(zhuǎn)化

0 引言

【研究意義】由柑橘衰退病毒(Citrus tristeza virus,CTV)引起的柑橘衰退病嚴(yán)重影響柑橘產(chǎn)業(yè)發(fā)展。目前為止,該病害難以防治。田間種植柑橘無(wú)病毒苗木受蟲媒傳播影響,很難做到持久性的無(wú)毒化。弱毒株交叉保護(hù)作用(MSCP)受到株系?;?、寄主、環(huán)境等因素的影響[1],而在柑橘生產(chǎn)應(yīng)用中受到限制。因此,尋找高效的CTV防治方法對(duì)于柑橘產(chǎn)業(yè)健康發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】RNA interference(RNAi)系統(tǒng)是植物天然的病毒防御系統(tǒng)。利用RNAi賦予植物對(duì)病毒抗性的原理,可人為將與病毒同源的dsRNA導(dǎo)入植物體內(nèi),使其引發(fā)植物體內(nèi)的RNAi機(jī)制,阻止病毒的復(fù)制擴(kuò)散。這種抗性途徑具有抗病性強(qiáng)、抗性持久、生物安全性高等特點(diǎn),已成為植物抗病毒基因工程研究中的一種高效抗性手段[2]。SOLER等[3]將CTV的p23、p20和p25基因片段串聯(lián)構(gòu)建發(fā)夾結(jié)構(gòu)RNAi載體,獲得抗CTV的轉(zhuǎn)基因柑橘植株;CHENG等[4]通過(guò)兩個(gè)不同長(zhǎng)度的p20基因片段構(gòu)建發(fā)夾結(jié)構(gòu)RNAi載體,也獲得抗CTV的轉(zhuǎn)基因柑橘植株。與SOLER等[3]構(gòu)建的RNAi載體不同,CHENG等[4]選擇病原序列作為內(nèi)含子。VOINNET等[5]報(bào)道來(lái)自病原的內(nèi)含子序列能提高RNAi效率。【本研究切入點(diǎn)】已獲得的轉(zhuǎn)基因柑橘植株均未達(dá)到完全抗性,利用RNAi獲得柑橘對(duì)CTV的抗性有待挖掘更高效的RNAi載體。p23是柑橘衰退病毒的沉默抑制子之一[6-7],是重要的致病因子[8-9],目前,以p23兩個(gè)不同長(zhǎng)度的片段構(gòu)建發(fā)夾結(jié)構(gòu)RNAi載體尚為空白。RNAi載體產(chǎn)生的抗CTV作用依賴柑橘穩(wěn)定遺傳轉(zhuǎn)化方法進(jìn)行鑒定,而該方法存在效率低、周期長(zhǎng)等困難[10],使得高效率RNAi載體的篩選很難進(jìn)行?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)選擇合適的插入載體和酶切位點(diǎn),構(gòu)建以兩個(gè)不同長(zhǎng)度的p23基因片段形成發(fā)夾結(jié)構(gòu)的RNAi載體。對(duì)所構(gòu)建的載體通過(guò)瞬時(shí)表達(dá)技術(shù)和穩(wěn)定遺傳轉(zhuǎn)化技術(shù)鑒定其抗病作用,為篩選高效率RNAi載體提供參考。

1 材料與方法

試驗(yàn)于2009—2014年在國(guó)家柑橘改良中心長(zhǎng)沙分中心完成。

1.1 試驗(yàn)材料

供試材料包括大紅甜橙 [Citrus sinensis (L.) Osb.]和枳橙 [C. sinensis (L.) Osb.×Poncirus trifoliate (L.)Raf] 種子,1年生酸橙(C. aurantium L.)實(shí)生苗,2年生墨西哥萊蒙[C. aurantifolia (Christm.) Swingle;CTV指示植物],CTV毒源為感病3年的冰糖橙(基因型為T36)植株。所有材料均由國(guó)家柑橘改良中心長(zhǎng)沙分中心提供并保存于溫室。

植物表達(dá)載體pBI 121,轉(zhuǎn)化所用的農(nóng)桿菌菌株EHA 105由國(guó)家柑橘改良中心長(zhǎng)沙分中心提供,載體pGM-T購(gòu)自天根生化科技(北京)有限公司,所用引物合成及測(cè)序均由上海生工生物工程有限公司完成。

1.2 試驗(yàn)方法

1.2.1 柑橘衰退病p23 RNAi載體的構(gòu)建 根據(jù)GenBank公布的CTV基因組的序列,設(shè)計(jì)用于p23 RNAi載體構(gòu)建的長(zhǎng)片段和短片段的上、下游引物(表1)。以感染CTV的冰糖橙葉片提取的核酸為模板,進(jìn)行RT-PCR擴(kuò)增。將擴(kuò)增產(chǎn)物純化回收,連接克隆載體pGM-T,測(cè)序確認(rèn)后分別命名為pGM-L和pGM-S。提取兩個(gè)載體的質(zhì)粒,用內(nèi)切酶Bam HI 和Xba I雙酶切pGM-L和植物表達(dá)載體pBI 121,溫度為37℃,回收后用T-4 DNA連接酶連接得到中間載體命名為pBI-L。用內(nèi)切酶Bam HI和Sma I雙酶切pBI-L和pGM-S,溫度為30℃,回收后連接得到RNAi載體,長(zhǎng)片段L和短片段S置于CaMV 35 s啟動(dòng)子的下游,gus基因的上游(圖1)。長(zhǎng)片段L為反向插入載體,短片段S為正向插入載體,在轉(zhuǎn)錄后兩者有部分序列可以發(fā)生堿基互補(bǔ)配對(duì),形成發(fā)夾結(jié)構(gòu)的臂,不能發(fā)生互補(bǔ)的長(zhǎng)片段的部分序列片段則形成發(fā)夾結(jié)構(gòu)的環(huán),充當(dāng)內(nèi)含子結(jié)構(gòu)。為檢測(cè)p23的長(zhǎng)片段和短片段是否正確插入目的載體,提取質(zhì)粒并純化,分別用限制性內(nèi)切酶酶切鑒定,并且進(jìn)行測(cè)序驗(yàn)證,得到RNAi載體p23-RNAi。用熱激法將p23-RNAi導(dǎo)入農(nóng)桿菌EHA105。

表1 用于RNAi載體構(gòu)建的長(zhǎng)片段L和短片段S引物Table1 The primers of segments L and S used for RNAi vector construction

圖1 CTV p23片段連接入p23-RNAiFig. 1 p23 fragments of CTV ligated into plasmid p23-RNAi

1.2.2 p23-RNAi的瞬時(shí)表達(dá) 以農(nóng)桿菌EHA105為陰性對(duì)照,按照瞬時(shí)表達(dá)體系(暫未公布)將p23-RNAi用注射緩沖液重懸后在28℃培養(yǎng)基靜置培養(yǎng)2 h,用1 mL無(wú)菌注射器注射入墨西哥萊蒙的葉片。葉片用GUS組織化學(xué)染色法[11]染色觀察。

1.2.3 轉(zhuǎn)基因植株的獲得 p23-RNAi轉(zhuǎn)化大紅甜橙參照敖小平等[12]的方法獲得抗性芽,抗性芽嫁接至試管中25 d苗齡的枳橙實(shí)生苗。按照CTAB法提取葉片的DNA為模板,用載體上長(zhǎng)片段L的引物進(jìn)行PCR擴(kuò)增,篩選的轉(zhuǎn)基因植株嫁接在酸橙實(shí)生苗。根據(jù)載體的發(fā)夾結(jié)構(gòu)的環(huán)狀部分設(shè)計(jì)引物q-s23-h(F:CACACTCCTATTATTCTCG;R:ATGAATCCCTCGTTATCG),以CsEF1α(F:TTGGACAAGCTCAAGGC TGAACG;R:ATGGCCAGGAGCATCAATGACAGT)為內(nèi)參基因,用q-PCR鑒定轉(zhuǎn)基因植株。

1.2.4 病毒接種 為檢測(cè)瞬時(shí)表達(dá)的p23-RNAi對(duì)病毒的抗性反應(yīng),摘取感染CTV的冰糖橙葉片用打孔器打出帶有主脈的圓片,瞬時(shí)表達(dá)p23-RNAi的墨西哥萊蒙葉片打出的圓片丟棄,帶毒圓片與墨西哥萊蒙葉片的主脈對(duì)合后在葉片兩面用膠帶粘好[13]。瞬時(shí)表達(dá)農(nóng)桿菌EHA105的墨西哥萊蒙葉片為對(duì)照。

待轉(zhuǎn)基因大紅甜橙長(zhǎng)至30 cm左右時(shí)接種CTV。取感染CTV冰糖橙的帶皮芽用腹接法接種至大紅甜橙枝條,每株接種3個(gè)芽且全部成活以保證接種成功。以非轉(zhuǎn)基因大紅甜橙同時(shí)接種為陽(yáng)性對(duì)照,未接種的為陰性對(duì)照。第1次接種后,對(duì)于未檢測(cè)出病毒感染的轉(zhuǎn)基因植株,同樣的方法進(jìn)行第2次接種CTV。

1.2.5 抗病性鑒定 取接種CTV后的轉(zhuǎn)基因大紅甜橙新萌發(fā)枝條上的成熟葉片,用酶聯(lián)免疫法和q-PCR兩種方法進(jìn)行抗病性鑒定。酶聯(lián)免疫法按照試劑盒說(shuō)明書(ACD VS216-K1)操作;提取葉片的RNA,反轉(zhuǎn)錄后的cDNA為模板,用q-PCR檢測(cè)CTV p20[14]的表達(dá)量,內(nèi)參基因?yàn)閚ad5[15]。

2 結(jié)果

2.1 RNAi載體的獲得

按照?qǐng)D1,將p23基因擴(kuò)增得到的兩個(gè)片段插入植物表達(dá)載體pBI121,獲得RNAi載體(p23-RNAi)。該載體分別用3組雙酶切反應(yīng)(Bam HI-Xba I、Bam HI-Sma I、Xba I-Sma I)進(jìn)行分析,發(fā)現(xiàn)酶切片段分別為500、300和800 bp左右,與插入片段大小一致(圖2)。通過(guò)對(duì)載體插入片段進(jìn)行測(cè)序(結(jié)果未顯示),進(jìn)一步說(shuō)明載體構(gòu)建成功。

2.2 RNAi載體瞬時(shí)表達(dá)的有效性分析

利用農(nóng)桿菌介導(dǎo)的瞬時(shí)表達(dá)技術(shù),將p23-RNAi載體快速導(dǎo)入葉片。該載體的gus位于插入的發(fā)夾結(jié)構(gòu)下游,共同受CaMV 35S啟動(dòng)子控制。通過(guò)GUS染色,結(jié)果顯示注射p23-RNAi的葉片出現(xiàn)藍(lán)色斑點(diǎn)(圖3),說(shuō)明瞬時(shí)表達(dá)技術(shù)能引起RNAi載體在墨西哥萊蒙葉片中的表達(dá)。

進(jìn)一步對(duì)p23-RNAi瞬時(shí)表達(dá)所產(chǎn)生的抗病性進(jìn)行分析,q-PCR結(jié)果顯示所有接種CTV的植株均檢測(cè)有病毒感染,并且p20的表達(dá)量隨著接種后時(shí)間的延長(zhǎng)而增加(表2)。但是,在p23-RNAi瞬時(shí)表達(dá)的葉片中,p20基因積累水平和增加速度明顯低于對(duì)照。同時(shí),ELISA檢測(cè)顯示,p23-RNAi瞬時(shí)表達(dá)的葉片均顯示陰性。由此說(shuō)明,p23-RNAi能在柑橘中干擾CTV侵染。

圖2 Xba I、Bam HI、Sma I組合雙酶切p23-RNAiFig. 2 Double digestion of p23-RNAi with Bam HI, Xba I or Sac I

圖3 GUS染色檢測(cè)p23-RNAi載體的瞬時(shí)表達(dá)Fig. 3 Transient gus expression were observed with Mexican lime leaves by histochemical GUS staining

2.3 轉(zhuǎn)基因大紅甜橙的獲得

通過(guò)農(nóng)桿菌遺傳轉(zhuǎn)化,將p23-RNAi穩(wěn)定轉(zhuǎn)入大紅甜橙實(shí)生苗。將獲得轉(zhuǎn)基因植株進(jìn)行PCR鑒定,結(jié)果顯示,7個(gè)轉(zhuǎn)基因植株A、B、C、E、F、G、H(D二次嫁接時(shí)未成活)均擴(kuò)增得到特異條帶,大小為513 bp(圖4)。進(jìn)一步用q-PCR對(duì)轉(zhuǎn)基因植株進(jìn)行內(nèi)含子結(jié)構(gòu)表達(dá)分析,發(fā)現(xiàn)7個(gè)轉(zhuǎn)基因植株均產(chǎn)生內(nèi)含子結(jié)構(gòu)的表達(dá),且各個(gè)植株之間表達(dá)量存在顯著差異。其中,轉(zhuǎn)基因植株E表達(dá)的內(nèi)含子結(jié)構(gòu)含量最高,其次是C、F、H、A、B和G(圖5)。

表2 p23-RNAi瞬時(shí)表達(dá)對(duì)CTV的抗性反應(yīng)Table2 Resistance to CTV with p23-RNAi transient expression

圖4 轉(zhuǎn)基因大紅甜橙的PCR檢測(cè)Fig 4 PCR analysis of transgenic ‘Da Hong’ sweet orange

圖5 q-PCR檢測(cè)轉(zhuǎn)基因植株的△Ct值Fig. 5 △Ct value of transgenic plants with q-PCR

2.4 轉(zhuǎn)基因植株對(duì)柑橘衰退病的抗性分析

對(duì)轉(zhuǎn)基因大紅甜橙植株兩次接種病毒所產(chǎn)生的抗性進(jìn)行分析,q-PCR結(jié)果顯示,除C外,所有接種CTV的植株均檢測(cè)到病毒感染,p20的表達(dá)量在不同的植株間表現(xiàn)出差異,植株B和E的表達(dá)量較低,但是C幾乎檢測(cè)不到基因表達(dá)(圖6)。ELISA檢測(cè)顯示,C的葉片和未接種的葉片均為陰性。由此說(shuō)明,轉(zhuǎn)基因植株C對(duì)柑橘衰退病毒強(qiáng)毒株系具有完全抗性。

圖6 轉(zhuǎn)基因植株接種后p20相對(duì)表達(dá)量Fig. 6 p20 relative expression of transgenic plants inoculated with CTV

3 討論

病毒基因介導(dǎo)的抗性是將病毒的一段序列構(gòu)建成RNAi載體,產(chǎn)生的dsRNA在植物內(nèi)與病毒基因發(fā)生沉默產(chǎn)生抗性,在多種植物的抗病毒中已有報(bào)道[16-18]。CHENG等[4]曾經(jīng)試圖用柑橘衰退病毒p23的長(zhǎng)片段和短片段相連的方式構(gòu)建RNAi載體以用于獲得具有抗性的轉(zhuǎn)基因酸橙,但是p23發(fā)夾結(jié)構(gòu)存在限制性內(nèi)切酶酶切位點(diǎn)Sac I,與植物表達(dá)量載體pCAMBIA 2301的酶切位點(diǎn)沖突,使得載體構(gòu)建中止。本研究選用的p23保守區(qū)段,與CHENG等[4]的序列部分片段相同,所設(shè)計(jì)RNAi載體的長(zhǎng)片段和同源的短片段與植物表達(dá)載體pBI 121沒有沖突的酶切位點(diǎn),使得載體構(gòu)建成功,可以用于p23-RNAi的抗病性檢測(cè)。

柑橘的遺傳轉(zhuǎn)化受到多種因素限制,如轉(zhuǎn)化效率低,成本費(fèi)用高等[19-20],并且長(zhǎng)時(shí)間的遺傳轉(zhuǎn)化后不一定能獲得具有優(yōu)異性狀的轉(zhuǎn)基因植株[21]。農(nóng)桿菌介導(dǎo)的瞬時(shí)表達(dá)具有操作簡(jiǎn)單、省時(shí)、轉(zhuǎn)化效率高等優(yōu)點(diǎn),可以用于高效、快速的分析基因功能[22-25]。將載體p23-RNAi注射入墨西哥萊蒙葉片,目的基因在進(jìn)入細(xì)胞核后的短時(shí)間內(nèi)可以表達(dá),并且持續(xù)一定的時(shí)間[26-27]。筆者課題組前期的研究證明,柑橘葉片在注射農(nóng)桿菌后15 d仍然能夠檢測(cè)到目的基因。本研究采用先注射p23-RNAi載體然后接種CTV的方式,使得在病毒入侵前就能夠產(chǎn)生特異的siRNA,能夠產(chǎn)生對(duì)CTV的抗性[3]。在此筆者發(fā)現(xiàn)瞬時(shí)表達(dá)技術(shù)能夠檢測(cè)p23-RNAi對(duì)CTV的抗性,結(jié)果與轉(zhuǎn)基因植株一致,成功預(yù)測(cè)了載體的可行性,目前已有多個(gè)RNAi載體用于轉(zhuǎn)化病毒基因介導(dǎo)抗性,此方法更有利于篩選優(yōu)質(zhì)載體,避免盲目的遺傳轉(zhuǎn)化,獲得有效的RNAi載體和轉(zhuǎn)基因植株。

轉(zhuǎn)基因植株的抗病性與寄主和病毒沉默抑制子之間的相互作用程度,以及植株的遺傳背景、外界的環(huán)境和植物自身的生長(zhǎng)狀態(tài)[28-29]相關(guān),與目的基因的拷貝數(shù)沒有關(guān)聯(lián)[3,22]。本研究通過(guò)遺傳轉(zhuǎn)化p23-RNAi載體獲得7個(gè)大紅甜橙轉(zhuǎn)基因植株,不同轉(zhuǎn)基因植株間RNAi載體發(fā)夾結(jié)構(gòu)部分的表達(dá)量存在差異,這種差異可能與外源基因在轉(zhuǎn)基因植株中的表達(dá)量不同有關(guān)。接種病毒后,轉(zhuǎn)基因植株表現(xiàn)出不同的抗病性,這種抗病性的趨勢(shì)與外源基因表達(dá)量的差異趨勢(shì)沒有相關(guān)性。p23表達(dá)量最高的轉(zhuǎn)基因植株E并沒有表現(xiàn)出最強(qiáng)的CTV抗性,而表達(dá)量稍低的植株C兩次接種后仍然具有完全抗性;同時(shí),轉(zhuǎn)基因植株F的p23表達(dá)量與植株C相同,對(duì)病毒的抗性結(jié)果卻有較大的差異。這些研究結(jié)果進(jìn)一步表明,轉(zhuǎn)基因抗性與外源基因的拷貝數(shù)沒有關(guān)聯(lián),與前人研究結(jié)果相符。

4 結(jié)論

成功構(gòu)建了柑橘衰退病的RNAi載體,瞬時(shí)表達(dá)技術(shù)檢測(cè)載體p23-RNAi對(duì)柑橘衰退病毒(CTV)具有抗病性。遺傳轉(zhuǎn)化大紅甜橙獲得的7株轉(zhuǎn)基因植株中,植株C對(duì)CTV具有完全抗性,為柑橘衰退病的防治提供了資源。

[1] 周彥, 周常勇, 李中安, 王雪峰, 劉科宏. 利用弱毒株交叉保護(hù)技術(shù)防治甜橙莖陷點(diǎn)型衰退病. 中國(guó)農(nóng)業(yè)科學(xué), 2008, 41(12): 4085-4091.

ZHOU Y, ZHOU C Y, LI Z A, WANG X F, LIU K H. Mild strains cross protection against stem-pitting tristeza of sweet orange. Scientia Agricultura Sinica, 2008, 41(12): 4085-4091. (in Chinese)

[2] KREUZE J F, KLEIN I S, LáZARO M U, CHUQUIYURI W C,MORGAN G L, MEJíA P G C, GHISLAIN M, VALKONEN J P. RNA silencing-mediated resistance to a crinivirus (Closteroviridae) in cultivated sweetpotato (Ipomoea batatas L.) and development of sweet potato virus disease following co-infection with a potyvirus. Molecular Plant Pathology, 2008, 9(5): 589-598.

[3] SOLER N, PLOMER M, FAGOAGA C, MORENO P, NAVARRO L,F(xiàn)LORES R, PE?A L. Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnology Journal, 2012, 10: 597-608.

[4] CHENG C Z, YANG J W, YAN H B, BEI X J, ZHANG Y Y, LU Z M,ZHONG G Y. Expressing p20 hairpin RNA of Citrus tristeza virus confers Citrus aurantium with tolerance/resistance against stem pitting and seedling yellow CTV strains. Journal of Integrative Agriculture, 2015, 14(9): 1767-1777.

[5] VOINNET O, LEDERER C, BAULCOMBE D C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 2000, 103: 157-167.

[6] LU R, FOLIMONOV A, SHINTAKU M, LI W X, FALK B W,DAWSON W O, DING S W. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(44): 15742-15747.

[7] COSTA ?, MARQUES N, NOLASCO G. Citrus tristeza virus p23 may suppress systemic silencing but is not related to the kind of viral syndrome. Physiological & Molecular Plant Pathology, 2014, 87: 69-75.

[8] GHORBEL R, LóPEZ C, FAGOAGA C, MORENO P, NAVARRO L,F(xiàn)LORES R, PE?A L. Transgenic citrus plants expressing the Citrus tristeza virus p23 protein exhibit viral like symptoms. Molecular Plant Pathology, 2001, 2(1): 27-36.

[9] FAGOAGA C, LóPEZ C, MORENO P, NAVARRO L, FLORES R,PE?A L. Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus-specific and do not correlate with the pathogenicity of the virus strain. Molecular Plant-Microbe Interactions, 2005, 18(5): 435-445.

[10] JONES H D, DOHERTY A, SPARKS C A. Transient transformation of plants. Methods in Molecular Biology, Plant Genomics, 2009, 513: 131-152.

[11] 王關(guān)林, 方宏筠. 植物基因工程. 2版. 北京: 科學(xué)出版社, 2002: 831-834. WANG G L, FANG H Y. Plant Genetic Engineering. 2nd ed. Beijing: Science Press, 2002: 831-834. (in Chinese)

[12] 敖小平, 胡新喜, 郭琛, 焦徠, 鄧子牛, 熊興耀. 用rol B基因轉(zhuǎn)化大紅甜橙的初步研究. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào) (自然科學(xué)版), 2005,31(6): 623-626.

AO X P, HU X X, GUO C, JIAO L, DENG Z N, XIONG X Y. Genetic transformation of ‘Dahong’ sweet orange with rol B gene. Journal of Hunan Agricultural University (Natural Sciences), 2005,31(6): 623-626. (in Chinese)

[13] BLUE R L, ROISTACHER C N, CARTIA G, CALAVAN E C. Leaf-disc grafting-a rapid indexing method for detection of some citrus viruses//Proceedings of the Seventh IOCV Conference. University of California, Riverside, 1976: 207-212.

[14] 劉紅光, 王中康, 曹月青, 夏玉先, 殷幼平. 應(yīng)用常規(guī)RT-PCR和熒光定量RT-PCR 檢測(cè)柑桔衰退病毒. 植物病理學(xué)報(bào), 2008, 38(1): 24-30.

LIU H G, WANG Z K, CAO Y E, XIA Y X, YIN Y P. Detection of Citrus tristeza virus using conventional and fluorescence quantitative RT-PCR assays. Acta Phytopathologica Sinica, 2008, 38(1): 24-30. (in Chinese)

[15] MENZEL W, JELKMANN W, MAISS E. Detection of four apple viruses by multiplex RT-PCR analysis assays with coamplification of plant mRNA as internal control. Journal of Virological Methods, 2002,99: 81-92.

[16] YADAV J S, OGWOK E, WAGABA H, L. PATIL B, BAGEWADI B,ALICAI T, GAITAN-SOLIS E, TAYLOR N J, FAUQUET C M. RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava. Molecular Plant Pathology, 2011, 12(7): 677-687.

[17] PATIL B L, OGWOL E, WAGABA H, MOHAMMED I U, YADAV, J S, BAGEWADI B, TAYLOR N J, KREUZE J F, MARUTHI M N,ALICAI T, FAUQUET C M. RNAi-mediated resistance to diverse isolates belonging to two virus species involved in cassava brown streak disease. Molecular Plant Pathology, 2011, 12(1): 31-41.

[18] FAGOAGA C, LóPEZ C, MENDOZA A H D, MORENO P,NAVARRO L, FLORES R, PE?A L. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Molecular Biology, 2006, 60: 153-165.

[19] KAPILA J, RYCKE R D, MONTAGU M V, ANGENON G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science, 1997, 122(1): 101-108.

[20] ALMEIDA W A B, MOUR?O FILHO F A A, PINO L E,BOSCARIOL R L, RODRIGUEZ A P M, MENDES B M J. Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Science, 2003, 164: 203-211.

[21] LóPEZ C, CERVERA M, FAGOAGA C, MORENO P, NAVARRO L,F(xiàn)LORES R, PE?A L. Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Molecular Plant Pathology, 2010,11(1): 33-41.

[22] BHASKAR P B, VENKATESHWARAN M, WU L, ANé J M,JIANG J M. Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS ONE,2009, 4(6): e5812.

[23] LLAVE C, KASSCHAU K D, CARRINGTON J C. Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13401-13406.[24] XU K D, HUANG X H, WU M M, WANG Y, CHANG Y X, LIU K,ZHANG JU, ZHANG Y, ZHANG F L, YI L M, LI T T, WANG R Y,TAN G X, LI C W. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS ONE, 2014, 9(1): e83556.

[25] SENDIN L N, FILIPPONE M P, ORCE I G, RIGANO L, ENRIQUE R, PE?A L, VOJNOV A A, MARANO M R, CASTAGNARO A P. Transient expression of pepper Bs2 gene in Citrus limon as an approach to evaluate its utility for management of citrus canker disease. Plant Pathology, 2012, 61: 648-657.

[26] WYDRO M, KOZUBEK E, LEHMANN P. Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochimica Polonica, 2006, 53(2): 289-298.

[27] KIM M J, BAEK K, PARK C M. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Reports, 2009, 28: 1159-1167.

[28] PANG S Z, JAN F J, CARNEY K, STOUT J, TRICOLI D M,QUEMADA H D, GONSALVES D. Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. The Plant Journal, 1996, 9(6): 899-909.

[29] KALANTIDIS K, PSARADAKIS S, TABLER M, TSAGRIS M. The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Molecular Plant-Microbe Interactions, 2002,15(8): 826-833.

(責(zé)任編輯 岳梅)

Construction and Transformation of RNAi Vector for Citrus tristeza virus Gene p23

LI Fang, DENG Zi-niu, ZHAO Ya, LI Da-zhi, DAI Su-ming
(Horticulture and Landscape College, Hunan Agricultural University/National Center for Citrus Improvement (Changsha),Changsha 410128)

【Objective】 The objective of this study is to construct RNAi vector containing p23 gene of Citrus tristeza virus(CTV), and obtain transgenic orange plants with virus resistance. 【Method】 Based on the pathogen-derived resistance and the CTV genome sequences published by NCBI, two specific conserved fragments of p23 with different lengths were cloned. Two segments and vector pBI 121 were double-digested and connected for RNAi construction. Subsequently, to initially estimate the antiviral feasibility, the Mexican lime (CTV indicator plant) leaves were injected with Agrobacterium contained the RNAi vector for transient expression, and observed using GUS histochemical staining method. The leaves were inoculated with CTV T36 isolate, and detected by enzyme-linked immunosorbent assay (ELISA). The RNA of leaves was also extracted and reverse transcript to cDNA. Quantitative real-time PCR (q-PCR) was performed to observe the CTV p20 gene expression which could reflect the virus in hosts. The RNAi vector was also transferred into the epicotyl stem of ‘DA HONG’ sweet orange seedlings via Agrobacterium-mediated transformation. Resistant buds were engrafted onto Carrizo Citrange in vitro seedlings. DNA extracted from the ‘DA HONG’ sweet orange leaves was used as the PCR template to identify the transgenic plants. Plants containing the target gene were re-engrafted onto sour orange seedlings and stored in the greenhouse. The expression of the p23 within the transgenic plants was evaluated by q-PCR. The skin buds of CTV T36 isolate hosts were collected and inoculated onto the transgenic sweet orange. The leaves from the sprouted branch tips were collected and analyzed the pathogen resistance capability with the same method that the transient expression leaves detected. Plants without detectable virus infection after the first inoculation were also inspected and analyzed by the same manner in the second round. 【Result】 Long (513 bp) and short (291 bp) fragments of the p23 were cloned. These p23 fragments are then cloned into the pBI121 vector, named p23-RNAi. This p23-RNAi vector was then delivered in the Mexican lime leaves using the Agrobacterium-mediated transient expression assay. The leaves were identified based on the presence of blue stains after GUS staining, indicating that the Agrobacterium contained vector p23-RNAi may induce transient expression in Mexican lime leaves. On the 15th and 30th day after the CTV inoculation, the ELISA detection results for the transgenic Mexican lime leaves in p23-RNAi plants were all negative, whereas the q-PCR detection results showed that the accumulation level of p20 expression was significantly lower than that of the control plants. It indicated that the transient expression of p23-RNAi may, in a defined period,inhibit the CTV infection. Introduction of p23-RNAi via Agrobacterium-mediated genetic transformation led to the production of resistant buds for the ‘DA HONG’ sweet orange, and PCR amplification confirmed a total of seven transgenic plants. The expression of the p23 in all seven transgenic plants was further confirmed by q-PCR amplification, and the gene expression level exhibited a certain degree of difference, with expression level in plant E being the highest, followed by C, F, H, A, B, and G. After inoculation with CTV, the level of expression of p20 varied among these seven transgenic plants, with plant A having the highest level of p20 expression, followed by G, F, E, B, H and C. The transgenic plants showed higher pathogen resistance, albeit to different degrees,when compared to the control plants. However, the virus resistance degrees in the transgenic plants were not closely related to the expression levels of the exogenous gene. For example, plant E, which had the highest expression level of the exogenous gene, did not exhibit powerful CTV resistance. By contrast, the transgenic plant C displayed complete resistance after the two rounds of virus inoculation. 【Conclusion】The p23-RNAi construct that generated confers plant disease resistance to CTV. Transient expression assay can be applied for the high efficiency identification of resistance and screening for high efficiency RNAi vectors.

Citrus tristeza virus (CTV); p23; RNAi; ‘DA HONG’ sweet orange; transient expression; genetic transformation

2016-04-15;接受日期:2016-08-19

國(guó)家自然科學(xué)基金(30900972,3157211)、國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201203076-06)、湖南省研究生科研創(chuàng)新項(xiàng)目(CX2013B290)

聯(lián)系方式:李芳,E-mail:lifang200709@126.com。通信作者戴素明,Tel:0713-84635302;E-mail:dsm531@126.com

猜你喜歡
甜橙柑橘抗性
南非:甜橙產(chǎn)量預(yù)計(jì)增長(zhǎng)6%
吃柑橘何來(lái)黃疸——認(rèn)識(shí)橘黃病
一個(gè)控制超強(qiáng)電離輻射抗性開關(guān)基因的研究進(jìn)展
秘魯:甜橙出口增長(zhǎng)
甲基對(duì)硫磷抗性菌的篩選及特性研究
柑橘大實(shí)蠅綜合治理
“五及時(shí)”柑橘凍害恢復(fù)技術(shù)
甜玉米常見病害的抗性鑒定及防治
用于黃瓜白粉病抗性鑒定的InDel標(biāo)記
柑橘實(shí)蠅防治一法
兰坪| 杭州市| 万源市| 泸定县| 阳春市| 从化市| 扬州市| 平谷区| 商水县| 荥经县| 新巴尔虎左旗| 阿鲁科尔沁旗| 黔江区| 彝良县| 西乌珠穆沁旗| 陆丰市| 大荔县| 丹巴县| 改则县| 灌南县| 邵阳县| 常德市| 新安县| 江都市| 秦安县| 鹤庆县| 贺州市| 天长市| 油尖旺区| 英吉沙县| 始兴县| 原平市| 新津县| 栾城县| 苍南县| 大渡口区| 民勤县| 昂仁县| 永德县| 万山特区| 永川市|