劉志國,王華林,王麗梅,劉烈炬
(武漢輕工大學(xué)生物與制藥工程學(xué)院,湖北 武漢 430023)
多不飽和脂肪酸對神經(jīng)細(xì)胞保護(hù)作用的研究進(jìn)展
劉志國,王華林,王麗梅,劉烈炬*
(武漢輕工大學(xué)生物與制藥工程學(xué)院,湖北 武漢 430023)
本文從細(xì)胞生物學(xué)的角度綜述多不飽和脂肪酸(polyunsaturated fatty acids,PUFAs)改善大腦功能的作用機(jī)理,包括PUFAs促進(jìn)神經(jīng)細(xì)胞生成(neurogenesis)、維持神經(jīng)細(xì)胞形態(tài)和功能、促進(jìn)神經(jīng)突生長、防止神經(jīng)細(xì)胞變性(neurodegeneration)、抑制神經(jīng)細(xì)胞凋亡(apoptosis),以及調(diào)節(jié)神經(jīng)細(xì)胞膜流動性和可塑性(plasticity)、端粒(telomere)活性等作用機(jī)制,為PUFAs的營養(yǎng)干預(yù)研究應(yīng)用,特別是應(yīng)用于保護(hù)大腦正常功能,防止生理性衰老和疾病性腦功能障礙(如阿爾茲海默氏癥和帕金森癥)所致的腦功能障礙提供參考。
多不飽和脂肪酸;神經(jīng)變性;神經(jīng)細(xì)胞;神經(jīng)發(fā)生;大腦功能
神經(jīng)細(xì)胞(也稱神經(jīng)元)是腦組織的主要功能細(xì)胞,其正常的生長分化及功能健全是維持大腦功能的基礎(chǔ)。多不飽和脂肪酸(polyunsaturated fatty acids,PUFAs)是一類在腦組織中含量豐富的脂肪酸,對維護(hù)神經(jīng)細(xì)胞的正常結(jié)構(gòu)和功能發(fā)揮著至關(guān)重要的作用[1-4],尤其n-3 PUFAs具有促進(jìn)神經(jīng)細(xì)胞增殖、維持神經(jīng)細(xì)胞正常形態(tài)及促進(jìn)神經(jīng)突觸生長、防止神經(jīng)細(xì)胞變性與凋亡等功能作用,對促進(jìn)胎兒和嬰幼兒大腦的正常生長發(fā)育,防止老年期大腦功能的衰退具有重要作用[5-6]。本課題組前期探討了PUFAs對不同齡人群學(xué)習(xí)記憶功能的影響和對大腦功能的保護(hù)作用。同時(shí),近年來國內(nèi)外也大量開展PUFAs增強(qiáng)大腦學(xué)習(xí)記憶等大腦功能的細(xì)胞學(xué)機(jī)制研究,取得了一些重要的進(jìn)展,包括PUFAs對大腦神經(jīng)細(xì)胞的形態(tài)和亞細(xì)胞結(jié)構(gòu)影響,對神經(jīng)細(xì)胞生成和神經(jīng)細(xì)胞變性及細(xì)胞凋亡的影響,以及對神經(jīng)細(xì)胞膜流動性、可塑性、端粒活性的調(diào)節(jié)作用等方面[3-5]。因此,細(xì)胞學(xué)機(jī)制研究已成為PUFAs增強(qiáng)大腦功能研究的重要內(nèi)容,并為進(jìn)一步闡明PUFAs的營養(yǎng)干預(yù)機(jī)制,拓寬其應(yīng)用領(lǐng)域提供了理論依據(jù)和重要參考。
神經(jīng)細(xì)胞生成(或神經(jīng)發(fā)生)是神經(jīng)干細(xì)胞增殖、分裂成為定向祖細(xì)胞,并逐漸定向遷移、分化成為功能神經(jīng)細(xì)胞,構(gòu)成神經(jīng)系統(tǒng)的過程。腦組織中,通過神經(jīng)細(xì)胞生成作用,可增加大腦神經(jīng)元的數(shù)量,維護(hù)大腦的正常功能,而神經(jīng)細(xì)胞的生成與神經(jīng)干細(xì)胞(neural stem cell,NSC)的增殖、分化及遷移過程密不可分。神經(jīng)干細(xì)胞首先從成年小鼠側(cè)腦室膜下區(qū)分離獲得,隨后陸續(xù)在中樞神經(jīng)系統(tǒng)的多個(gè)部位(包括:大腦海馬區(qū)、大腦皮層和紋狀體等)分離獲得。例如,與大腦空間記憶功能有關(guān)的海馬神經(jīng)細(xì)胞,是由位于海馬顆粒細(xì)胞層和齒狀回門之間顆粒下層的海馬神經(jīng)干細(xì)胞經(jīng)歷增殖、分化,遷移至海馬CA1和CA3區(qū)形成[7]。盡管觀察到大腦的神經(jīng)生成能力可以持續(xù)到老年階段,但中年以后其生成能力急劇下降[8]。大量體內(nèi)和體外實(shí)驗(yàn)均表明PUFAs可促進(jìn)神經(jīng)細(xì)胞的生成,并能顯著延緩神經(jīng)細(xì)胞生成能力的衰退。例如,動物胚胎神經(jīng)發(fā)育期補(bǔ)充n-3 PUFAs可促進(jìn)神經(jīng)細(xì)胞的生成,增加神經(jīng)干細(xì)胞的增殖、分化成熟,但是n-6 PUFAs無此作用[9-12]。Fat1轉(zhuǎn)基因小鼠(可將n-6 PUFAs轉(zhuǎn)化為n-3 PUFAs的轉(zhuǎn)基因鼠),由于二十二碳六烯酸(docosahexaenoic acid,DHA)合成的大量增加,增加了神經(jīng)細(xì)胞生成的能力,并伴隨實(shí)驗(yàn)動物學(xué)習(xí)記憶能力的增強(qiáng)[13]。而且也發(fā)現(xiàn),即使是老年實(shí)驗(yàn)動物,DHA仍具有促進(jìn)神經(jīng)干細(xì)胞分化的功能[14],可通過促進(jìn)神經(jīng)干細(xì)胞的增殖和成熟,對老年大腦功能發(fā)揮保護(hù)作用。盡管在動物實(shí)驗(yàn)中觀察到n-3和n-6 PUFAs在保護(hù)大腦功能方面的顯著差異,但體外細(xì)胞培養(yǎng)實(shí)驗(yàn)顯示:n-3 PUFAs中的DHA或n-6 PUFAs中的花生四烯酸(arachidonic acid,AA)都可以促進(jìn)神經(jīng)干細(xì)胞的增殖[11,15]。這種體內(nèi)外作用的差異提示體內(nèi)微環(huán)境也是影響神經(jīng)細(xì)胞生成的重要因素。而且也有實(shí)驗(yàn)觀察到n-3 PUFAs缺乏的大鼠,腦源性神經(jīng)營養(yǎng)因子(brain-drived neurotrophic factor,BDNF)合成減少,神經(jīng)細(xì)胞生成受到抑制的現(xiàn)象[16]。到目前為止,PUFAs影響神經(jīng)細(xì)胞生成的機(jī)制并不十分清楚,綜合來看,其機(jī)制主要涉及:1)神經(jīng)干細(xì)胞的磷脂脂肪酸組成及其影響的細(xì)胞膜功能和膜蛋白定位是重要影響因素[17];2)n-3 PUFAs及其活性衍生物通過相應(yīng)的信號轉(zhuǎn)導(dǎo)系統(tǒng)、膜相關(guān)途徑、核受體途徑等影響神經(jīng)細(xì)胞的功能[18]。
PUFAs可以影響神經(jīng)細(xì)胞的形態(tài),如增加細(xì)胞體積、促進(jìn)突觸的生長等[19]。神經(jīng)細(xì)胞體積的增加,常伴隨著神經(jīng)原纖維合成的增加以及神經(jīng)元功能的改變,還通常伴隨著神經(jīng)末梢和突觸結(jié)數(shù)量的增加[19-20]。神經(jīng)元核周質(zhì)的體積與神經(jīng)末梢密度,與大腦學(xué)習(xí)記憶功能之間表現(xiàn)為明顯的正相關(guān)的關(guān)系[21]。n-3 PUFAs作為神經(jīng)細(xì)胞膜的重要組成部分,可對細(xì)胞膜形成某種外凸壓力,促進(jìn)神經(jīng)細(xì)胞樹突棘形成,有助于神經(jīng)突起的生長和神經(jīng)突觸的生成[22]。神經(jīng)元形態(tài)變化,包括體積大小、神經(jīng)末梢分布以及突觸數(shù)量的改變是影響大腦神經(jīng)回路的關(guān)鍵因素,與大腦功能密切相關(guān)。如海馬神經(jīng)回路與大腦的學(xué)習(xí)記憶功能有著密切的聯(lián)系[23]。研究顯示,n-3 PUFAs中DHA的缺乏可導(dǎo)致海馬CA1區(qū)神經(jīng)元的萎縮,補(bǔ)充ɑ-亞麻酸(ɑ-linolenic acid,ALA)和DHA后,海馬CA1和CA3神經(jīng)元的體積增加[24]。其機(jī)制涉及蛋白激酶C(protein kinase C,PKC)的活化和海馬突觸小泡蛋白的表達(dá)增加[25-26]。
由于神經(jīng)突起和神經(jīng)細(xì)胞體積的變化往往聯(lián)系在一起,因此,當(dāng)神經(jīng)突生長時(shí),總是首先表現(xiàn)為細(xì)胞體積和膜表面積的增加[27]。反過來也是這樣,當(dāng)海馬和下丘腦神經(jīng)元體積減小的同時(shí),可以觀察到神經(jīng)元樹突分支的明顯減少[24]。研究表明DHA具有促進(jìn)海馬組織和大腦皮質(zhì)神經(jīng)元神經(jīng)突生長的作用[28]。在胚胎發(fā)育期,n-3 PUFAs的缺乏可導(dǎo)致神經(jīng)細(xì)胞突起的發(fā)育不良(突起少而短),而補(bǔ)充DHA可使細(xì)胞的突起的長度增加、數(shù)量增多,并伴隨著突觸蛋白含量的增加[29];但n-6 PUFAs的AA在體內(nèi)沒有促進(jìn)神經(jīng)突生長的作用[30]。然而在體外培養(yǎng)細(xì)胞中觀察到,不管是n-6 PUFAs的亞油酸(linoleic acid,LA)、AA,還是n-3 PUFAs的ALA和DHA等,都可以促進(jìn)神經(jīng)突生長,只是飽和脂肪酸和單不飽和脂肪酸則無此作用[31-32]。這同樣提示,PUFAs對神經(jīng)突起和神經(jīng)細(xì)胞體積的影響與體內(nèi)微環(huán)境及代謝機(jī)制密切相關(guān)。有研究顯示DHA可能通過其代謝物N-二十二碳六烯乙醇胺(N-docosahexaenoylethanolamide,DEA)發(fā)揮作用,并通過G-蛋白受體促進(jìn)神經(jīng)干細(xì)胞分化和神經(jīng)突起生長[33-34]。另外,PUFAs可能作用于神經(jīng)生長因子(nerve growth factor,NGF)[35],從而促進(jìn)神經(jīng)細(xì)胞生長發(fā)育[24,36]。大腦n-3 PUFAs的缺乏,可導(dǎo)致海馬組織NGF含量顯著的下降。在NGF的刺激下,通過磷脂酶A2(phospholipase A2,PLA2)的作用,可導(dǎo)致AA和DHA從細(xì)胞膜的釋放。被釋放的AA和DHA可與突觸融合蛋白3結(jié)合,在可溶性N-乙?;R來酰亞胺敏感因子結(jié)合蛋白受體(soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor,SNAREs)的協(xié)助下,導(dǎo)致膜磷脂雙層結(jié)構(gòu)的融合,促進(jìn)神經(jīng)突的生長。
雖然單獨(dú)補(bǔ)充DHA可增加神經(jīng)元樹突棘和突觸的數(shù)量[37]。但實(shí)驗(yàn)觀察到DHA與尿苷、膽堿聯(lián)合干預(yù)具有明顯的協(xié)同效應(yīng),可顯著增加DHA對神經(jīng)細(xì)胞生長分化的作用[38]。由于尿苷、膽堿和PUFAs是合成磷脂的主要成分。因此,三者的合并使用可進(jìn)一步促進(jìn)大腦磷脂,以及多種突觸蛋白的合成。實(shí)驗(yàn)顯示:在沙鼠的飼料中進(jìn)行尿苷、膽堿和DHA的聯(lián)合干預(yù),可使突觸小泡突觸蛋白-1(synapsin-1)含量增加41%,突觸后蛋白質(zhì)psd-95增加38%,突觸的神經(jīng)纖維蛋白-M(neurofibrillar protein-M,NF-M)和神經(jīng)纖維蛋白-70(neurofibrillar protein-70,NF-70)分別增加48%和102%[38]。上述結(jié)果表明:尿苷、膽堿、AA和DHA的聯(lián)合干預(yù)是增加PUFAs功能的有效途徑。尿苷的食物來源常見的有:番茄和西蘭花。富含膽堿的食物包括:雞蛋、鱈魚、小麥胚芽、花椰菜、菠菜、藜麥等。母乳含有豐富的尿苷、膽堿、AA和DHA等成分[39],是嬰兒智力發(fā)育最好的食物來源。
神經(jīng)變性(neurodegeneration)和壞死(necrosis)是造成神經(jīng)細(xì)胞數(shù)量減少的重要原因之一。PUFAs可通過抗神經(jīng)變性的作用,防止神經(jīng)細(xì)胞數(shù)量減少,維護(hù)正常的大腦學(xué)習(xí)記憶功能。影響神經(jīng)變性的因素眾多,主要包括常見的環(huán)境因素和機(jī)體自身的生理、病理性因素。前者包括化學(xué)(如酒精和環(huán)境污染)、物理(機(jī)械損傷、電離輻射和噪音等)、生物(病毒和細(xì)菌感染等)等因素;后者主要有衰老、精神因素(緊張和抑郁等)和神經(jīng)變性疾病或稱神經(jīng)退行性疾病等。在防范有害的環(huán)境因素基礎(chǔ)上,營養(yǎng)干預(yù)延緩生理或病理性神經(jīng)變性損傷對維護(hù)大腦功能尤為重要。大量研究表明[2-3,40-43]:PUFAs,特別是長鏈(long chain,LC)-PUFAs,在防止神經(jīng)細(xì)胞變性的過程中,發(fā)揮著重要的作用。
3.1 PUFAs防止衰老導(dǎo)致的神經(jīng)細(xì)胞變性
在生理特征上,衰老表現(xiàn)為感官、運(yùn)動和認(rèn)知功能的下降,是導(dǎo)致神經(jīng)變性重要生理因素[44]。隨著機(jī)體的衰老,血漿中n-3 PUFAs的含量逐漸下降,n-3 PUFAs含量的下降反過來又進(jìn)一步促進(jìn)機(jī)體的衰老[41]。研究發(fā)現(xiàn)大腦中的總脂質(zhì)的含量,特別是DHA的含量,與大腦的功能和神經(jīng)變性密切相關(guān)。在生命的開始20 a里,大腦脂質(zhì)的含量呈逐漸增加的趨勢,隨后保持基本的穩(wěn)定,老年后脂質(zhì)的含量快速下降[45]。衰老造成大腦功能損傷有兩個(gè)常見的原因:一是神經(jīng)細(xì)胞的喪失(包括神經(jīng)細(xì)胞的凋亡和壞死);二是神經(jīng)細(xì)胞結(jié)構(gòu)和功能的變化,即神經(jīng)變性。研究表明[46-47],在大腦衰老過程中實(shí)際死亡神經(jīng)細(xì)胞的數(shù)量并不多,造成大腦功能衰退的主要原因是由于年齡增長導(dǎo)致的神經(jīng)細(xì)胞結(jié)構(gòu)和功能的改變,表現(xiàn)為神經(jīng)遞質(zhì)釋放的減少和傳遞功能的下降等。而腦內(nèi)氧化物的增加,細(xì)胞解毒功能的下降是導(dǎo)致神經(jīng)變性的重要原因[48]。PUFAs則可以保護(hù)和防止這一過程,通過增加機(jī)體抗氧化能力,阻止活性氧(reactive oxygen species,ROS)的增加,促進(jìn)樹突重塑,防止大腦興奮性中毒所致的大腦功能紊亂[45],從而對抗神經(jīng)變性,增加大腦學(xué)習(xí)記憶的能力[49-50]。進(jìn)一步研究發(fā)現(xiàn)[51-52]:食物中的二十碳五烯酸(eicosapentaenoic acid,EPA)和DHA可以緩解衰老過程中大腦中PUFAs含量的下降,提高年齡相關(guān)的谷氨酸受體中的N-甲基-D-天冬氨酸受體2B(N-methyl-D-aspartate receptor 2B,NR2B)亞單位和α-氨基-3-羧基-5-甲基異唑-4-丙酸(alpha-amino-3-hydoxy-5-methyl-4-isoxazolepropionate,AMPA)受體的谷氨酸受體2(glutamate receptor 2,GluR2)亞單位的表達(dá),并增加大腦的學(xué)習(xí)記憶功能。這些受體在神經(jīng)變性的過程中起著重要的作用,除直接參與突觸的傳遞功能外,GluR2還在促進(jìn)樹突增長和維持樹突棘穩(wěn)定中扮演著重要的角色[53]。
3.2 PUFAs改善細(xì)胞膜的功能,防止神經(jīng)變性
突觸的可塑性被廣泛認(rèn)為是大腦功能最重要的細(xì)胞結(jié)構(gòu)基礎(chǔ)[45]。許多研究探討了與年齡相關(guān)的突觸可塑性變化和大腦認(rèn)知功能障礙之間的相關(guān)性,研究發(fā)現(xiàn)影響記憶形成的主要因素可能是突觸可塑性的變化,而影響記憶喪失(遺忘)的主要因素是突觸功能衰退[54-55]。年齡的增長可導(dǎo)致記憶形成的閾值增加,記憶喪失的閾值減小[56]。AA和DHA是神經(jīng)細(xì)胞質(zhì)膜(包括細(xì)胞膜、線粒體膜、蘘泡膜等)的重要組成部分,在突觸部位其含量可達(dá)摩爾水平[18]。AA和DHA在神經(jīng)細(xì)胞質(zhì)膜水平的改變可直接影響到細(xì)胞膜的特性(包括膜的流動性、曲率和脂質(zhì)筏的形成等),進(jìn)一步影響鑲嵌在脂質(zhì)雙層中蛋白質(zhì)的功能(包括受體、通道和酶類等),因此PUFAs在維持突觸可塑性中發(fā)揮了關(guān)鍵的作用。食物中的PUFAs,有利于緩解由衰老導(dǎo)致的大腦AA和DHA水平的下降,對抗由衰老導(dǎo)致的神經(jīng)細(xì)胞結(jié)構(gòu)和功能的變化,增強(qiáng)大腦學(xué)習(xí)記憶的功能[57]。
膜的流動性受多方面因素的影響。飲食習(xí)慣可以直接影響神經(jīng)元膜脂肪酸組成。實(shí)驗(yàn)證明通過補(bǔ)充PUFAs可以改善膜流動性,進(jìn)而影響突觸的可塑性,神經(jīng)傳遞和突觸生成,增強(qiáng)學(xué)習(xí)記憶的能力[55,57]。膜流動性也受到年齡和神經(jīng)變性疾病的影響,如阿爾茨海默?。ˋlzheimer’s disease,AD)和帕金森?。≒arknson’s disease,PD)。影響膜流動性的其他原因包括:膽固醇和活性氧含量的增加[58]?;钚匝蹩蓪?dǎo)致膜蛋白和脂質(zhì)化學(xué)交聯(lián),減少細(xì)胞膜的不飽和性。這除了可降低膜流動性外,還可導(dǎo)致膜中酶、離子通道和受體的抑制[59]。增加PUFAs的攝入量可以部分對抗ROS的作用,但大劑量的使用仍然值得注意[58]。n-3 PUFAs結(jié)合入神經(jīng)膜,可降低細(xì)胞膜膽固醇的含量、改善神經(jīng)細(xì)胞膜的特性,例如流動性、滲透性和黏度等,同時(shí)改善神經(jīng)傳遞、突觸可塑性、學(xué)習(xí)記憶及其他復(fù)雜的認(rèn)知過程[2,6,40]。
PUFAs影響膜流動性的機(jī)制之一,是通過抑制脂質(zhì)筏(膜質(zhì)雙層含中由特殊的脂質(zhì)和蛋白質(zhì)組成的微區(qū),該區(qū)域結(jié)構(gòu)致密,屬抗去垢劑的膜組分[60],富含膽固醇、鞘磷脂、糖脂,是蛋白質(zhì)停泊的平臺,與膜的信號轉(zhuǎn)導(dǎo)、蛋白質(zhì)的分選有關(guān)系密切)的形成和跨膜受體蛋白的定位和表達(dá)來完成的。脂質(zhì)雙層的磷脂中DHA的含量增加,導(dǎo)致脂質(zhì)雙層更加松散,更多的流動性和可壓縮性以及更強(qiáng)的滲透性。此外DHA還具有排斥膽固醇的作用。DHA取代膜內(nèi)的飽和脂肪酸后,造成該區(qū)域內(nèi)膽固醇的濃度降低,從而干擾脂筏的形成[61]。實(shí)驗(yàn)證明膳食中補(bǔ)充ALA并不能改變膜磷脂分布,然而補(bǔ)充DHA可以明顯提高細(xì)胞膜磷脂的水平[62]。雖然DHA可迅速結(jié)合入脂質(zhì)雙層結(jié)構(gòu)中的磷脂,但在各類磷脂之間分布是不均勻的。DHA優(yōu)先結(jié)合入sn-2位置磷脂酰乙醇胺(phosphatidylethanolamine,PE)以及少量的磷脂酰膽堿(phosphatidyl choline,PC)或磷脂酰絲氨酸(phosphatidylserine,PS)[63-65]。在大腦,DHA結(jié)合在磷脂酰絲氨酸磷脂中可促進(jìn)信號轉(zhuǎn)導(dǎo)分子蛋白激酶B(protein kinase B,PKB)(也稱AKT)向細(xì)胞核的易位,調(diào)節(jié)凋亡基因的轉(zhuǎn)錄[66]。另外,PUFAs還可調(diào)節(jié)細(xì)胞膜的硬度,導(dǎo)致巨噬細(xì)胞黏度增加和對凋亡細(xì)胞的吞噬作用的下降[62,67]。
3.3 PUFAs調(diào)節(jié)端粒的長度,延緩大腦功能衰退
神經(jīng)細(xì)胞的衰老死亡可導(dǎo)致神經(jīng)元的數(shù)量減少,影響大腦的功能。關(guān)于細(xì)胞的衰老目前有多種學(xué)說,最重要是內(nèi)置時(shí)鐘說、氧化應(yīng)激說和端粒學(xué)說[45]。端粒學(xué)說提出細(xì)胞的衰老源于端??s短。端粒是真核細(xì)胞染色體兩臂末端由5′TTAGGG-3′重復(fù)序列構(gòu)成的結(jié)構(gòu),具有保護(hù)染色體末端,維持染色體結(jié)構(gòu)的穩(wěn)定和完整、避免其發(fā)生融合、降解、重組等功能。端粒的長度與衰老、認(rèn)知能力(包括學(xué)習(xí)記憶能力)、以及老年性疾病的發(fā)生(如癡呆和神經(jīng)退行性疾?。┯兄芮械年P(guān)系[68-69],并受多種因素的影響,如:炎性反應(yīng)和氧化應(yīng)激反應(yīng)等[70-72]。體育鍛煉、他汀類藥物(用于治療高膽固醇血癥)、補(bǔ)充n-3 PUFAs等可增加端粒的長度,延緩衰老,其機(jī)制可能與端粒酶的活性變化有關(guān)[73]。
端粒的長度受到飲食中脂肪酸組成的影響。最近一項(xiàng)研究將實(shí)驗(yàn)分為飽和脂肪酸組、低脂高糖組和地中海飲食組(富含單不飽和脂肪酸)三組,通過隨機(jī)交叉分析發(fā)現(xiàn)地中海飲食組細(xì)胞內(nèi)活性氧的水平、細(xì)胞凋亡數(shù)和端粒的縮短都明顯低于脂肪酸組和低脂高糖組[71]。PUFAs對端粒的長度也有影響,且發(fā)現(xiàn)n-6和n-3 PUFAs對端粒的作用是不同的。n-3 PUFAs可延緩端??s短,而n-6 PUFAs可能會加速端粒的縮短,因此在實(shí)驗(yàn)中應(yīng)區(qū)分n-3和n-6脂肪酸的作用[74]。最近采用前瞻性隊(duì)列研究對冠狀動脈疾病的患者追蹤調(diào)查后發(fā)現(xiàn),血液中n-3 PUFAs的含量與端??s短的速率成負(fù)相關(guān)的關(guān)系[75]。O’Callaghan等[68]在對輕度認(rèn)知障礙(mild cognitive impairment,MCI)老年人補(bǔ)充n-3 PUFAs時(shí)發(fā)現(xiàn),雖然干預(yù)與治療組端粒長度沒有顯著的變化,但血液中的紅細(xì)胞DHA的水平與端??s短密切相關(guān),即紅細(xì)胞DHA含量增加端??s短的速率降低,提示n-3 PUFAs可能延緩端粒的縮短,且n-3脂肪酸對端粒的影響與n-6/n-3的比例有關(guān)。Kiecolt-glaser等[72]研究采用隨機(jī)對照實(shí)驗(yàn)探討了n-3 PUFAs的干預(yù),與白細(xì)胞端粒長度、促炎細(xì)胞因子和氧化應(yīng)激的關(guān)系,發(fā)現(xiàn)n-3 PUFAs可降低血液中促炎細(xì)胞因子的濃度和氧化應(yīng)激的水平,降低n-6/n-3 PUFAs的比值可導(dǎo)致端粒長度增加,提示飲食中n-6/n-3 PUFAs比值對延緩大腦功能衰退的重要作用,表明n-3 PUFAs與n-6 PUFAs對炎性應(yīng)激和氧化應(yīng)激存在作用差異,從而對端粒長度的影響不一致。雖然PUFAs對端粒的作用以及與大腦功能的關(guān)系目前仍缺乏足夠的資料,但為PUFAs的功能作用與機(jī)理研究提供了新的方向[76]。
3.4 PUFAs干預(yù)疾病所致的神經(jīng)變性
神經(jīng)變性疾病是影響神經(jīng)變性的重要的病理因素。神經(jīng)變性疾病是一組原因不明的,以神經(jīng)細(xì)胞變性為主要的病理特征的中樞神經(jīng)系統(tǒng)疾病,典型的如AD和PD[41]。
AD是以進(jìn)行性癡呆為主要臨床表現(xiàn)的大腦變性疾病,俗稱老年癡呆癥。研究發(fā)現(xiàn)AD的發(fā)病與腦內(nèi)β淀粉樣蛋白(Aβ)異常沉淀有關(guān)。Aβ的前體是前β淀粉樣蛋白,由于三級結(jié)構(gòu)中的β折疊,形成了不可溶的特性。研究發(fā)現(xiàn)Aβ對周圍的突觸和神經(jīng)元具有毒性作用,可導(dǎo)致神經(jīng)細(xì)胞變性死亡[77]。隨著神經(jīng)元的變性死亡,導(dǎo)致腦內(nèi)相應(yīng)的神經(jīng)遞質(zhì)水平下降,其中最重要的是乙酰膽堿。由于AD患者中腦內(nèi)的乙酰膽堿的水平下降得最早和最為明顯,因此產(chǎn)生了AD的膽堿能學(xué)說:即AD患者乙酰膽堿的缺乏是導(dǎo)致認(rèn)知功能障礙的主要因素。增加腦內(nèi)乙酰膽堿的水平是目前AD藥物治療的重要手段。例如,采用膽堿酯酶抑制劑,通過抑制乙酰膽堿的酶解,增加膽堿能神經(jīng)元的傳遞功能。但這些擬膽堿類藥物,雖然能緩解患者認(rèn)知能力的下降,但并不能延緩AD的病程的發(fā)展。
研究表明[78-80],AD的發(fā)病與機(jī)體能量代謝失衡有關(guān),且氧化應(yīng)激和線粒體功能障礙在AD的發(fā)病機(jī)制中扮演著重要的角色,是藥物治療AD新的潛在的靶標(biāo)。線粒體功能障礙是導(dǎo)致β樣淀粉樣變的重要病因[81-84]。DHA可抑制前淀粉樣蛋白轉(zhuǎn)化為Aβ,并阻止Aβ的累積[85-86]。DHA可對抗Aβ引起的神經(jīng)毒性反應(yīng),對大腦產(chǎn)生保護(hù)作用[87]。在人胚腎-淀粉酶前體蛋白(human embryonic kidney-amyloid precursor protein,HEK-APP)細(xì)胞,DHA可顯著提高膜流動性、增加可溶性淀粉酶前體蛋白α(soluble amyloid precursor protein α,sAPPα)的分泌。后者具有對線粒體的保護(hù)作用以及抗凋亡的功能[88]。動物實(shí)驗(yàn)表明[86,89-90]:富含DHA的飲食可以減少老年癡呆癥小鼠模型中Aβ的含量。對老年3hTg-AD小鼠(大腦中含有大量Aβ的模型鼠)補(bǔ)充DHA,可導(dǎo)致膜磷脂內(nèi)DHA水平增加、AA含量降低以及心磷脂水平增加;并明顯改善大腦的認(rèn)知能力和內(nèi)嗅皮層神經(jīng)元的功能障礙[91-92]。大量研究顯示[85],減少n-3 PUFAs的攝入量或魚類食品的消費(fèi),可增加與年齡相關(guān)的認(rèn)知能力的下降或患呆癡癥的風(fēng)險(xiǎn)。
PD又稱為振顫麻痹癥,是一種與年齡相關(guān)的慢性和進(jìn)行性的神經(jīng)變性疾病。主要的臨床特征是運(yùn)動障礙,伴隨著大腦認(rèn)知能力的下降和精神癥狀,病理特征為大腦黑質(zhì)致密部(substantia nigra pars compacta,SNPC)多巴胺能神經(jīng)元的廣泛的變性死亡[93]。在尸檢報(bào)告中,大腦SNPC勻漿DHA水平明顯下降[94]。尸檢結(jié)果還表明PD患者額葉皮層脂質(zhì)筏的分離體中DHA和AA的含量大幅下降[95]。氧化應(yīng)激是PD重要的發(fā)病機(jī)制。在PD腦內(nèi)發(fā)現(xiàn),脂質(zhì)過氧化物水平,黑質(zhì)和紋狀體中8-OHdG(8-羥脫氧鳥苷,DNA氧化損傷的標(biāo)志物)的含量以及亞硝?;偷鞍踪|(zhì)碳酰基水平均明顯的增加。進(jìn)一步可導(dǎo)致線粒體功能障礙,誘導(dǎo)細(xì)胞變性和凋亡,最終導(dǎo)致多巴胺能神經(jīng)元的死亡。
攝入DHA膠囊可選擇性地增加小鼠額葉皮層DHA的水平,阻斷由1-甲基-4-苯基吡啶離子(1-methyl-4-phenyl-pyridinium,MPP+)導(dǎo)致黑質(zhì)細(xì)胞數(shù)量的下降以及核受體相關(guān)因子1(nuclear receptor-related factor 1,Nurr1)mRNA和多巴胺轉(zhuǎn)運(yùn)體mRNA水平的下降[96]。Nurr1是多巴胺能神經(jīng)元重要轉(zhuǎn)錄因子[97]。飲食中的DHA可對抗由MPP+導(dǎo)致的紋狀體多巴胺及其代謝物二羥基苯乙酸(dihydroxyphenylacetic acid)含量的下降[96]。在MPP+誘導(dǎo)的PD模型中,DHA治療可緩解PD部分神經(jīng)癥狀[98-99]。采用MPP+PD模型,實(shí)驗(yàn)探討了LC-PUFAs對左旋多巴(levodopa,LD)誘導(dǎo)運(yùn)動障礙的影響,DHA可對抗LD誘導(dǎo)運(yùn)動障礙或延遲運(yùn)動障礙的發(fā)展[100]。在1-甲基-4-苯基-1,2,3,6-四氫吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)-丙磺舒(probenecid)PD小鼠的模型中,飲食補(bǔ)充乙基-EPA后,可預(yù)防運(yùn)動功能減退和記憶力的改善,但不能阻止黑質(zhì)紋狀體多巴胺的下降[101]。在小鼠和大鼠PD模型中,腦室注射6-羥多巴胺(6-hydroxydopamine,6-OHDA)可引起紋狀體病變,包括多巴胺的水平下降[102-103]??诜﨑HA可對抗6-OHDA的作用,部分恢復(fù)多巴胺能神經(jīng)傳遞功能[103]。老鼠腹腔內(nèi)注射乙基-DNA,也可對抗6-OHDA導(dǎo)致小鼠紋狀體多巴胺的水平下降[102]。大量文獻(xiàn)均表明高n-3 LC-PUFAs的飲食對預(yù)防或緩解PD具有顯著作用[96,98,100,104]。
PUFAs對細(xì)胞凋亡的影響是目前營養(yǎng)生物學(xué)研究的重要領(lǐng)域[22,88,105-106]。PUFAs的抗凋亡功能與n-3 PUFAs的抗炎、抗氧化有關(guān),并對大腦具有保護(hù)作用,包括嬰幼兒大腦的發(fā)育、老年大腦的衰老以及神經(jīng)變性疾病等[22,106]。n-3 PUFAs可通過抗凋亡的作用,保持一定神經(jīng)元的數(shù)量,維持神經(jīng)系統(tǒng)的正常功能。
PUFAs的抗凋亡功能目前已有許多文獻(xiàn)的報(bào)道。最新研究表明孕婦和產(chǎn)婦飲食中的DHA有助于預(yù)防由產(chǎn)前精神壓力導(dǎo)致新生兒記憶功能的障礙,氧化標(biāo)記物含量的增加,線粒體代謝功能紊亂以及海馬細(xì)胞的凋亡[107]。同時(shí),產(chǎn)前n-3 PUFAs的干預(yù)可對抗高氧血癥誘導(dǎo)大鼠大腦細(xì)胞的凋亡[108]。懷孕期間食用富含DHA的食物,可以通過抑制氧化應(yīng)激和細(xì)胞的凋亡,減少新生兒大腦的損傷[109]。新生兒的高血膽紅素血癥所致的血清未結(jié)合膽紅素(unconjugated bilirubin,UCB)水平升高,可對中樞神經(jīng)系統(tǒng)造成各種副作用。DHA的干預(yù)可對抗UCB導(dǎo)致的超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶以及谷胱甘肽過氧化物酶(glutathione peroxidase,GPX)活性下降;以及UCB誘導(dǎo)的星形細(xì)胞的凋亡,表明DHA可通過抑制細(xì)胞的凋亡和增加抗氧化酶的活性,對大腦細(xì)胞產(chǎn)生保護(hù)作用[110]。在大腦的生長發(fā)育期間,充足的n-3 PUFAs也可以通過抑制感光細(xì)胞凋亡和視網(wǎng)膜的變性,對視網(wǎng)膜產(chǎn)生保護(hù)作用[111-113]。氧化損傷和線粒體功能失調(diào)是導(dǎo)致神經(jīng)細(xì)胞凋亡的重要因素,DHA可激活細(xì)胞內(nèi)多種調(diào)節(jié)機(jī)制、抑制氧化應(yīng)激反應(yīng)、維護(hù)線粒體的功能、提高抗凋亡蛋白-B淋巴細(xì)胞瘤-2(B-cell lymphoma-2,Bcl-2)的含量,保護(hù)神經(jīng)細(xì)胞免受到傷害[111-112]。
PUFAs的抗凋亡作用是一個(gè)復(fù)雜的過程,多種信號轉(zhuǎn)導(dǎo)系統(tǒng)參與了PUFAs的抗凋亡過程,如細(xì)胞內(nèi)Ca2+信號系統(tǒng)、磷脂酰肌醇(-3)激酶/蛋白激酶B(phosphatidylinositol (-3) kinase/protein kinase B,PI3K/Akt)途徑、細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)/絲裂原活化蛋白激酶(mitogenactivated protein kinases,MAPKs)途徑和P38蛋白激酶(mitogen-activated protein kinases p38,P38MAPKs)途徑等。機(jī)理涉及docosanoid類脂質(zhì)信號分子的作用、線粒體在抗凋亡過程中的作用以及表觀遺傳學(xué)效應(yīng)等。
綜上所述,近年來開展的PUFAs對神經(jīng)細(xì)胞保護(hù)作用研究取得了很多成果,并注意到不同類型PUFAs對神經(jīng)細(xì)胞結(jié)構(gòu)與功能影響存在差異。其中n-3 PUFAs展現(xiàn)了較為全面的有益作用和獨(dú)特的細(xì)胞學(xué)機(jī)制,歸納起來包括:通過促進(jìn)神經(jīng)細(xì)胞增殖分化、增加神經(jīng)細(xì)胞的數(shù)量;通過抗氧化、抗凋亡及阻止端??s短等機(jī)制防止生理或病理?xiàng)l件下的神經(jīng)細(xì)胞變性;以及通過影響神經(jīng)細(xì)胞的膜可塑性和突觸功能,維護(hù)神經(jīng)細(xì)胞的正常結(jié)構(gòu)與功能,實(shí)現(xiàn)對大腦的保護(hù)作用(圖1)。這些機(jī)制研究為PUFAs尤其是其中的n-3 PUFAs保護(hù)大腦功能的營養(yǎng)干預(yù)奠定了重要的細(xì)胞生物學(xué)基礎(chǔ)。
圖1 PUFAs保護(hù)大腦功能的細(xì)胞生物學(xué)機(jī)制示意圖Fig.1 Schematic diagram of the mechanism of action of PUFAs in protecting brain function
近年來,有關(guān)PUFAs對大腦功能的保護(hù)作用研究已取得了豐碩成果,發(fā)現(xiàn)PUFAs不僅可以通過抗炎、抗氧化、維護(hù)心腦血管功能等全身性功能,改善大腦的微環(huán)境而發(fā)揮對大腦的保護(hù)作用;而且揭示了其直接作用于神經(jīng)細(xì)胞,促進(jìn)神經(jīng)細(xì)胞生長和突觸的形成,以及通過調(diào)節(jié)細(xì)胞膜流動性和可塑性,保護(hù)神經(jīng)細(xì)胞正常功能。展望未來,研究將不斷深入到細(xì)胞與分子水平,從細(xì)胞生物學(xué)與分子生物學(xué)角度揭示其對神經(jīng)細(xì)胞作用的分子機(jī)制。特別是關(guān)于PUFAs及其活性代謝物調(diào)節(jié)細(xì)胞信號轉(zhuǎn)導(dǎo)系統(tǒng)、膜相關(guān)途徑、核受體途徑,促進(jìn)神經(jīng)細(xì)胞生成、突觸生長,阻止細(xì)胞變性和凋亡的細(xì)胞內(nèi)途徑與作用機(jī)制,從而發(fā)揮其延緩大腦功能衰退與神經(jīng)變性類疾病發(fā)展的有益作用,為PUFAs的營養(yǎng)功能及其對大腦功能的保護(hù)作用研究奠定基礎(chǔ)。
[1] DENIS I, POTIER B, VANCASSEL S, et al. Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms[J]. Ageing Research Reviews, 2013, 12(2): 579-594. DOI:10.1016/j.arr.2013.01.007.
[2] LUCHTMAN D W, SONG C. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies[J]. Neuropharmacology, 2013, 64: 550-565. DOI:10.1016/j.neuropharm.2012.07.019.
[3] JANSSEN C I, KILIAAN A J. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration[J]. Progress in Lipid Research, 2014, 53: 1-17. DOI:10.1016/j.plipres.2013.10.002.
[4] SWANSON D, BLOCK R, MOUSA S A. Omega-3 fatty acids EPA and DHA: health benefits throughout life[J]. Advance Nutrition, 2012,3(1): 1-7. DOI:10.3945/an.111.000893.
[5] HENNEBELLE M, CHAMPEIL-POTOKAR G, LAVIALLE M, et al. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus[J]. Nutrition Reviews, 2014, 72(2): 99-112. DOI:10.1111/nure.12088.
[6] ROGERS L K, VALENTINE C J, KEIM S A. DHA supplementation: current implications in pregnancy and childhood[J]. Pharmacological Research, 2013, 70(1): 13-19. DOI:10.1016/j.phrs.2012.12.003.
[7] TROUCHE S, BONTEMPI B, ROULLET P, et al. Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5919-5924. DOI:10.1073/ pnas.0811054106.
[8] LEUNER B, YEVGENIA K, CHARLES G G, et al. Diminished adult neurogenesis in the marmoset brain precedes old age[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(43): 17169-17173. DOI:10.1073/pnas.0708228104.
[9] COTII B P, O’KUSKY J R, INNIS S M. Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain[J]. Journal of Nutrition, 2006, 136(6): 1570-1575. DOI:10.1111/j.1471-4159.2005.03513.x.
[10] YAVIN E, HIMOVICHI E, EILAM R. Delayed cell migration in the developing rat brain following maternal omega-3 alpha linolenic acid dietary deficiency[J]. Neuroscience, 2009, 162(4): 1011-1022. DOI:10.1016/j.neuroscience.2009.05.012.
[11] KAWAKITA E, HASHIMOTO M, SHIDO O. Docosahexaenoic acid promotes neurogenesis in vitro and in vivo[J]. Neuroscience, 2006, 139(3): 991-997. DOI:10.1016/j.neuroscience.2006.01.021.
[12] DYALL S C, MICHAEL G J, MICHAEL-TITUS A T. Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats[J]. Journal of Neuroscience Research, 2010, 88(10): 2091-2102. DOI:10.1002/jnr.22390.
[13] HE C W, QU X Y, CUI L B, et al. Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid[J]. Proceedings of theNational Academy of Sciences of the United States of America, 2009, 106(27): 11370-111375. DOI:10.1073/pnas.0904835106.
[14] ROBSON L G, DYALL S, SIDLOFF D, et al. Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals[J]. Neurobiol Aging, 2010, 31(4): 678-687. DOI:10.1016/ j.neurobiolaging.2008.05.027.
[15] KAN I, MELAMED E, OFFEN D, et al. Docosahexaenoic acid and arachidonic acid are fundamental supplements for the induction of neuronal differentiation[J]. Journal of Lipid Research, 2007, 48(3): 513-517. DOI:10.1194/jlr.C600022-JLR200.
[16] RAO J S, HYUN J L, STALEY I. Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex[J]. Molecular Psychiatry, 2007, 12(2): 151-157. DOI:10.1038/sj.mp.4001887.
[17] LANGELIER B, LINARD A, BORDAT C, et al. Long chainpolyunsaturated fatty acids modulate membrane phospholipid composition and protein localization in lipid rafts of neural stem cell cultures[J]. Journal of Cellular Biochemistry, 2010, 110(6): 1356-1364. DOI:10.1002/jcb.22652.
[18] PIOMELLI D, ASTARITA G, RAPAKA R. A neuroscientist’s guide to lipidomics[J]. Nature Reviews Neuroscience, 2007, 8(10): 743-754. DOI:10.1002/jcb.22652.
[19] HAJJAR T, GOH Y M, RAJION M A, et al. Alterations in neuronal morphology and synaptophysin expression in the rat brain as a result of changes in dietary n-6: n-3 fatty acid ratios[J]. Lipids in Health and Disease, 2013, 12: 113. DOI:10.1186/1476-511X-12-113.
[20] PURVES D, SNIDER W D, VOYYODIC J T. Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system[J]. Nature, 1988, 336: 123-128. DOI:10.1038/336123a0.
[21] GUSTILO M C, MARKOWSKA A L, BRECKLER S J, et al. Evidence that nerve growth factor influences recent memory through structural changes in septohippocampal cholinergic neurons[J]. Journal of Comparative Neurology, 1999, 405(4): 491-507. DOI:10.1002/ (SICI)1096-9861(19990322)405:4<491::AID-CNE4>3.0.CO;2-N.
[22] SU H M. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance[J]. Journal of Nutrition Biochemistry, 2010, 21(5): 364-373. DOI:10.1016/ j.jnutbio.2009.11.003.
[23] SMITH T D, ADAMS M M, GALLAGHER M, et al. Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats[J]. Journal Neuroscience, 2000, 20(17): 6587-6593.
[24] AHMAD A, MORIGUCHI T, SALEM N. Decrease in neuron size in docosahexaenoic acid-deficient brain[J]. Pediatric Neurology, 2002, 26(3): 210-218. DOI:10.1016/S0887-8994(01)00383-6.
[25] VENNA V R, DEPLANQUE D, ALLET C, et al. PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus[J]. Psychoneuroendocrinology, 2009, 34(2): 199-211. DOI:10.1016/j.psyneuen.2008.08.025.
[26] HAMA H, HARA C, MIYAWAKI A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes[J]. Neuron, 2004, 41(3): 405-415. DOI:10.1016/S0896-6273(04)00007-8.
[27] FUTERMAN A H, Banker G A. The economics of neurite outgrowth-the addition of new membrane to growing axons[J]. Trends in Neuroscience, 1996, 19(4): 144-149. DOI:10.1016/S0166-2236(96)80025-7.
[28] CAO D H, XU J F, XUE R H, et al. Protective effect of chronic ethyl docosahexaenoate administration on brain injury in ischemic gerbils[J]. Pharmacology, Biochemistry and Behavior, 2004, 79(4): 651-659. DOI:10.1016/j.pbb.2004.09.016.
[29] CAO D H, KEVALA K, KIM J, et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function[J]. Journal of Neurochemistry, 2009, 111(2): 510-521. DOI:10.1111/j.1471-4159.2009.06335.x.
[30] CANSEV M, WURTMAN R J. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils[J]. Neuroscience, 2007, 148(2): 421-431. DOI:10.1016/j.neuroscience.2007.06.016.
[31] DARIOS F, DAVLETOV B. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3[J]. Nature, 2006, 440(7085): 813-817. DOI:10.1038/nature04598.
[32] HAAG M. Essential fatty acids and the brain[J]. The Canadian Journal of Psychiatry, 2003, 48(3): 195-203.
[33] MA D, ZHANG M, LARSEN C P, et al. DHA promotes the neuronal differentiation of rat neural stem cells transfected with GPR40 gene[J]. Brain Research, 2010, 1330: 1-8. DOI:10.1016/j.brainres.2010.03.002. [34] IKEMOTO A, ATSUMI N, FURUKAWA S, et al. Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus[J]. Neuroscience Letter, 2000, 285(2): 99-102. DOI:10.1016/S0304-3940(00)01035-1.
[35] YAMASHIMA T. A putative link of PUFA, GPR40 and adult-born hippocampal neurons for memory[J]. Progress in Neurobiology, 2008, 84(2): 105-115. DOI:10.1016/j.pneurobio.2007.11.002.
[36] KIM H Y, MOON H S, CAO D H, et al. N-Docosahexaenoylethanolamide promotes development of hippocampal neurons[J]. Biochemical Journal, 2011, 435(2): 327-336. DOI:10.1042/BJ20102118.
[37] SALAMOTO T, CANSEV M, WURTMAN R J. Oral supplementation with docosahexaenoic acid and uridine-5’-monophosphate increases dendritic spine density in adult gerbil hippocampus[J]. Brain Research, 2007, 1182: 50-59. DOI:10.1016/j.brainres.2007.08.089.
[38] WURTMAN R J, ULUS I H, CANSEV M, et al. Synaptic proteins and phospholipids are increased in gerbil brain by administering uridine plus docosahexaenoic acid orally[J]. Brain Research, 2006, 1088(1): 83-92. DOI:10.1016/j.brainres.2006.03.019.
[39] THORELL L, SJOBERG L B, HEMELL O. Nucleotides in human milk: sources and metabolism by the newborn infant[J]. Pediatric Research, 1996, 40(6): 845-852. DOI:10.1203/00006450-199612000-00012.
[40] PARLETTA N, MILTE C M, MEYER B J. Nutritional modulation of cognitive function and mental health[J]. Journal of Nutrition Biochemisty, 2013, 24(5): 725-743. DOI:10.1016/ j.jnutbio.2013.01.002.
[41] ECKERT G P, LIPKA U, MULLER W E. Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria[J]. Prostaglandins Leukot Essent Fatty Acids, 2013, 88(1): 105-114. DOI:10.1016/ j.plefa.2012.05.006.
[42] BORRE Y E, PANAGAKI T, KOELINK P J, et al. Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression[J]. Neuropharmacology, 2014, 79: 738-749. DOI:10.1016/ j.neuropharm.2013.11.009.
[43] TORRES M, PRICE S L, FIOL-DEROQUE M A, et al. Membrane lipid modifications and therapeutic effects mediated by hydroxydocosahexaenoic acid on Alzheimer’s disease[J]. Biochimica Et Biophysica Acta, 2014, 1838(6): 1680-1692. DOI:10.1016/ j.bbamem.2013.12.016.
[44] MATTSON M P, MAGNUS T. Ageing and neuronal vulnerability[J]. Nature Reviews Neuroscience, 2006, 7(4): 278-294. DOI:10.1038/ nrn1886.
[45] LEDESMA M D, MARTIN M G, DOTTI C G. Lipid changes in the aged brain: effect on synaptic function and neuronal survival[J]. Progress in Lipid Research, 2012, 51(1): 23-35. DOI:10.1016/ j.plipres.2011.11.004.
[46] MORRISON J H, HOF P R. Life and death of neurons in the aging brain[J]. Science, 1997, 278: 412-419. DOI:10.1126/ science.278.5337.412.
[47] APRIKYAN G V, GEKCHYAN K G. Release of neurotransmitter amino acids from rat brain synaptosomes and its regulation in aging[J]. Gerontology, 1988, 34(1/2): 35-40. DOI:10.1159/000212928.
[48] MCEEEN B S. Physiology and neurobiology of stress and adaptation: central role of the brain[J]. Physiological Reviews, 2007, 87(3): 873-904. DOI:10.1152/physrev.00041.2006.
[49] LEE L K, SHAHAR S, RAJAB N F, et al. The role of long chain omega-3 polyunsaturated fatty acids in reducing lipid peroxidation among elderly patients with mild cognitive impairment: a case-control study[J]. Journal of Nutrition Biochemistry, 2013, 24(5): 803-808. DOI:10.1016/j.jnutbio.2012.04.014.
[50] GIORDANO E, VISIOLI F. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions[J]. Prostaglandins Leukot Essential Fatty Acids, 2014, 90(1): 1-4. DOI:10.1016/ j.plefa.2013.11.002.
[51] FOSTER T C, KUMAR A. Calcium dysregulation in the aging brain[J]. Neuroscientist, 2002, 8(4): 297-301. DOI:10.1177/107385840200800404.
[52] DYALL S C, MICHAEL G J, WHEIPTON R, et al. Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain[J]. Neurobiol Aging, 2007, 28(3): 424-439. DOI:10.1016/j.neurobiolaging.2006.01.002.
[53] PASSAFARO M, NAKAGAWA T, SALA C, et al. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2[J]. Nature, 2003, 424: 677-681. DOI:10.1038/nature01781.
[54] BARNES C A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat[J]. Journal of Comparative and Physiological, 1979, 93(1): 74-104. DOI:10.1037/ h0077579.
[55] ROSENZWEIG E S, BARNES C A. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition[J]. Progress in Neurobiology, 2003, 69(3): 143-179. DOI:10.1016/S0301-0082(02)00126-0.
[56] BARNES C A, MCNAUGHTON B L. Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence[J]. The Journal of Physiology, 1980, 309: 473-485. DOI:10.1113/jphysiol.1980.sp013521.
[57] MCGAHON B M, MARTIN D S D, HORROBIN D F, et al. Agerelated changes in synaptic function: analysis of the effect of dietary supplementation with omega-3 fatty acids[J]. Neuroscience, 1999, 94(1): 305-314. DOI:10.1016/S0306-4522(99)00219-5.
[58] YEHUDA S, RABINOVITZ S, CARASSO R, et al. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane[J]. Neurobiol Aging, 2002, 23(5): 843-853. DOI:10.1016/ S0197-4580(02)00074-X.
[59] FRISARDI V, PANZA F, SERIPA D, et al. Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer’s disease pathology[J]. Progress in Lipid Research, 2011, 50(4): 313-330. DOI:10.1016/j.plipres.2011.06.001.
[60] SIMONS K, IKONEN E. Functional rafts in cell membranes[J]. Nature, 1997, 387: 569-572. DOI:10.1038/42408.
[61] HUBER T, RAJAMOORTHI K, KURZE V F, et al. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by (2)H NMR and molecular dynamics simulations[J]. Journal of the American Chemical Society, 2002, 124(2): 298-309. DOI:10.1021/ ja011383j.
[62] KEW S, BANERJEE T, MINIHANE A M, et al. Relation between the fatty acid composition of peripheral blood mononuclear cells and measures of immune cell function in healthy, free-living subjects aged 25-72 y[J]. The American Journal of Clinical Nutrition, 2003, 77(5): 1278-1286.
[63] WASSALL S R, STILLWELL W. Polyunsaturated fatty acidcholesterol interactions: domain formation in membranes[J]. Biochim Biochimica Et Biophysica Acta, 2009, 1788(1): 24-32. DOI:10.1016/ j.bbamem.2008.10.011.
[64] VANKUIJK F J, BUCK P. Fatty acid composition of the human macula and peripheral retina[J]. Investigative Ophthalmology & Visual Science, 1992, 33(13): 3493-3496.
[65] KISHIMOTO Y, AGRANOFF B W, RADIN N S, et al. Comparison of the fatty acids of lipids of subcellular brain fractions[J]. Journal of Neurochemistry, 1969, 16(3): 397-404. DOI:10.1111/j.1471-4159.1969.tb10380.x.
[66] AKBAR M, CALDERON F, WEN Z, et al. Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 10858-10863. DOI:10.1073/ pnas.0502903102.
[67] CALDER P C, BOND J A, HARVEY D J, et al. Uptake and incorporation of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis[J]. Biochemical Journal, 1990, 269(3): 807-814. DOI:10.1042/bj2690807.
[68] O’CALLAGHAN N, PARLETTA N, MILTE C M, et al. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with omega-3 fatty acid supplementation: a randomized controlled pilot study[J]. Nutrition, 2014, 30(4): 489-491. DOI:10.1016/j.nut.2013.09.013.
[69] MARTIN-RUIZ C, DICKINSON H O, KEYS B, et al. Telomere length predicts poststroke mortality, dementia, and cognitive decline[J]. Annals of Neurology, 2006, 60(2): 174-180. DOI:10.1002/ ana.20869.
[70] VANADAL M, ALATA W, TREMBLAY C, et al. Reduction in DHA transport to the brain of mice expressing human APOE4 compared to APOE2[J]. Journal of Neurochemistry, 2014, 129(3): 516-526. DOI:10.1111/jnc.12640.
[71] MARIN C, DELQADO-LISTA J, RAMIREZ R, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells[J]. Age, 2012, 34(6): 1309-1316. DOI:10.1007/s11357-011-9305-6.
[72] KIECOLT-GLASER J K, EPEL E S, BELURY M A, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial[J]. Brain Behavior and Immunity, 2013, 28: 16-24. DOI:10.1016/j.bbi.2012.09.004.
[73] GLEIHMANN U, GLEICHMANN U S, GLEICHMANN S. From cardiovascular prevention to anti-aging medicine: influence on telomere and cell aging[J]. Deutsche Medizinische Wochenschrift, 2011, 136(38): 1913-1916. DOI:10.1055/s-0031-1286363.
[74] KANG J X. Differential effects of omega-6 and omega-3 fatty acids on telomere length[J]. The American Journal of Clinical Nutrition, 2010, 92(5): 1276-1277. DOI:10.3945/ajcn.110.000463.
[75] FARZANEH-FAR R, LIIN J, EPEL E S, et al. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease[J]. The Japan Automobile Manufacturers Association, 2010, 303(3): 250-257. DOI:10.1001/jama.2009.2008.
[76] LAYE S. What do you eat dietary omega 3 can help to slow the aging process[J]. Brain, Behavior, and Immunity, 2013, 28: 14-15. DOI:10.1016/j.bbi.2012.11.002.
[77] VALLA J, BERMDT J D, GONZALEZ-LIMA F. Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration[J]. The Journal of Neuroscience, 2001, 21(13): 4923-4930.
[78] SCHIOTH H B, CRAFT S, BROOK S J, et al. Brain insulin signaling and Alzheimer’s disease: current evidence and future directions[J]. Molecular Neurobiology, 2012, 46(1): 4-10. DOI:10.1007/s12035-011-8229-6.
[79] MATTSON M P, GLEICHMANN M, CHENG A. Mitochondria in neuroplasticity and neurological disorders[J]. Neuron, 2008, 60(5): 748-766. DOI:10.1016/j.neuron.2008.10.010.
[80] ECKERT G P, RENNER K, ECKERT S H, et al. Mitochondrial dysfunction-a pharmacological target in Alzheimer’s disease[J]. Molecular Neurobiology, 2012, 46(1): 136-150. DOI:10.1007/s12035-012-8271-z.
[81] DU H, GUO L, YAN S Q, et al. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43): 18670-18675. DOI:10.1073/pnas.1006586107.
[82] BORGER E. Mitochondrial beta-amyloid in Alzheimer’s disease[J]. Biochemical Society Transactions, 2011, 39(4): 868-873. DOI:10.1042/BST0390868.
[83] PAVLOV P F, WIEHAGER B, SAKAI J, et al. Mitochondrial gammasecretase participates in the metabolism of mitochondria-associated amyloid precursor protein[J]. The FASEB Journal, 2011, 25(1): 78-88. DOI:10.1096/fj.10-157230.
[84] LEUNER K, SCHUTT T, KURZ C, et al. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation[J]. Antioxidants and Redox Signaling, 2012, 16(12): 1421-1433. DOI:10.1089/ars.2011.4173.
[85] COLE G M, MA Q L, FRAUTSCHY S A. Omega-3 fatty acids and dementia[J]. Prostaglandins Leukot Essent Fatty Acids, 2009, 81(2/3): 213-221. DOI:10.1016/j.plefa.2009.05.015.
[86] GREEN K N, MARTINEZ-CORIA H, KHASHWJI H, et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloidbeta and tau pathology via a mechanism involving presenilin 1 levels[J]. The Journal of Neuroscience, 2007, 27(16): 4385-4495. DOI:10.1523/JNEUROSCI.0055-07.2007.
[87] GRIMM M O, CHENBECKER J, GROSQEN S, et al. Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms[J]. Journal of Biological Chemistry, 2011, 286(16): 14028-14039. DOI:10.1074/jbc.M110.182329.
[88] ECKERT G P, CHANG S, ECKMANN J, et al. Liposomeincorporated DHA increases neuronal survival by enhancing nonamyloidogenic APP processing[J]. Biochimica Et Biophysica Acta, 2011, 1808(1): 236-243. DOI:10.1016/j.bbamem.2010.10.014.
[89] PEREZ S E, BERG B M, MOORE K A, et al. DHA diet reduces AD pathology in young APPswe/PS1 Delta E9 transgenic mice: possible gender effects[J]. Journal of Neuroscience Research, 2010, 88(5): 1026-1040. DOI:10.1002/jnr.22266.
[90] OSTER T, PILLOT T. Docosahexaenoic acid and synaptic protection in Alzheimer’s disease mice[J]. Biochimica Et Biophysica Acta, 2010, 1801(8): 791-798. DOI:10.1016/j.bbalip.2010.02.011.
[91] ARSENAULT D, JULIEN C, TREMBLAY C, et al. DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice[J]. PLoS One, 2011, 6(2): 17397. DOI:10.1371/ journal.pone.0017397.
[92] STANLEY W C, KHAIRALLAH R J, DABKOWSKI E R. Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15(2): 122-126. DOI:10.1097/ MCO.0b013e32834fdaf7.
[93] KONES R. Parkinson’s disease: mitochondrial molecular pathology, inflammation, statins, and therapeutic neuroprotective nutrition[J]. Nutrition in Clinical Practice, 2010, 25(4): 371-389. DOI:10.1177/0884533610373932.
[94] DALFO E, PORTERO-OTIN M, AYALA V, et al. Evidence of oxidative stress in the neocortex in incidental Lewy body disease[J]. The Journal of Neuropathology & Experimental Neurology, 2005, 64(9): 816-830. DOI:10.1097/01.jnen.0000179050.54522.5a.
[95] FABELO N, MARTIN V, SANTPERE G, et al. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease[J]. Molecular Medicine, 2011, 17(9/10): 1107-1118. DOI:10.2119/molmed.2011.00119.
[96] BOUSQUET M, SAINT-PIERRE M, JULIEN C, et al. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease[J]. The Faseb Journal, 2008, 22(4): 1213-1225. DOI:10.1096/fj.07-9677com.
[97] HERMANSON E, PERLMANN T, OLSON L E, et al. Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells[J]. Experimental Cell Research, 2003, 288(2): 324-334. DOI:10.1016/ S0014-4827(03)00216-7.
[98] OZSOY O, SEVAL-CELIK Y, HACIOGLU G, et al. The influence and the mechanism of docosahexaenoic acid on a mouse model of Parkinson’s disease[J]. Neurochemistry International, 2011, 59(5): 664-670. DOI:10.1016/j.neuint.2011.06.012.
[99] TANRIOVER G, SEVAL-CELIK Y, OZSOY O, et al. The effects of docosahexaenoic acid on glial derived neurotrophic factor and neurturin in bilateral rat model of Parkinson’s disease[J]. Folia Histochemica et Cytobiologica, 2010, 48(3): 434-441. DOI:10.2478/ v10042-010-0047-6.
[100] SAMADI P, GREQOIRE L, ROUILLARD C, et al. Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys[J]. Annals of Neurology, 2006, 59(2): 282-288. DOI:10.1002/ana.20738.
[101] LUCHTMAN D W, MENG Q, SONG C. Ethyl-eicosapentaenoate(E-EPA) attenuates motor impairments and inflammation in the MPTP-probenecid mouse model of Parkinson’s disease[J]. Behavioural Brain Research, 2012, 226(2): 386-396. DOI:10.1016/j.bbr.2011.09.033.
[102] KABUTO H, AMAKAWA M, MANKURA M, et al. Docosahexaenoic acid ethyl ester enhances 6-hydroxydopamineinduced neuronal damage by induction of lipid peroxidation in mouse striatum[J]. Neurochemical Research, 2009, 34(7): 1299-1303. DOI:10.1007/s11064-008-9909-0.
[103] CANSEV M, ULUS I H, WANG L, et al. Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson’s disease[J].Neuroscience Research, 2008, 62(3): 206-209. DOI:10.1016/ j.neures.2008.07.005.
[104] BOUSQUET M, GUE K, EMOND V, et al. Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson’s disease[J]. Journal of Lipid Research, 2011, 52(2): 263-271. DOI:10.1194/jlr.M011692.
[105] LUKIW W J, BAZAN N G. Inflammatory, apoptotic, and survival gene signaling in Alzheimer’s disease: a review on the bioactivity of neuroprotectin D1 and apoptosis[J]. Molecular Neurobiology, 2010, 42(1): 10-16. DOI:10.1007/s12035-010-8126-4.
[106] MAYURASAKORM K, WILLIAMS J J, TEN V S, et al. Docosahexaenoic acid: brain accretion and roles in neuroprotection after brain hypoxia and ischemia[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14(2): 158-167. DOI:10.1097/ MCO.0b013e328342cba5.
[107] FENG Z H, ZOU, X, JIA H Q, et al. Maternal docosahexaenoic acid feeding protects against impairment of learning and memory and oxidative stress in prenatally stressed rats: possible role of neuronal mitochondria metabolism[J]. Antioxidants & Redox Signaling, 2012, 16(3): 275-289. DOI:10.1089/ars.2010.3750.
[108] TUZUN F, KUMRAL A, OZBAL S, et al. Maternal prenatal omega-3 fatty acid supplementation attenuates hyperoxia-induced apoptosis in the developing rat brain[J]. International Journal of Developmental Neuroscience, 2012, 30(4): 315-523. DOI:10.1016/ j.ijdevneu.2012.01.007.
[109] SUGANUMA H, ARAI Y, KITAMURA Y, et al. Maternal docosahexaenoic acid-enriched diet prevents neonatal brain injury[J]. Neuropathology, 2010, 30(6): 597-605. DOI:10.1111/j.1440-1789.2010.01114.x.
[110] BECERIR C, KILICI I, SAHIN O, et al. The protective effect of docosahexaenoic acid on the bilirubin neurotoxicity[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28(4): 801-807. DOI:10.3109/14756366.2012.684053.
[111] ROTSEIN N P, AVELDANO M, FRANCISCO B J, et al. Apoptosis of retinal photoreceptors during development in vitro: protective effect of docosahexaenoic acid[J]. Journal of Neurochemistry, 1997, 69(2): 504-513. DOI:10.1046/j.1471-4159.1997.69020504.x.
[112] ROTSEIN N P, POLITI L E, GERMAN O L, et al. Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors[J]. Investigative Ophthalmology & Visual Science, 2003, 44(5): 2252-2259. DOI:10.1167/iovs.02-0901.
[113] YOSHIZAWA K, SASAKI T, KURO M, et al. Arachidonic acid supplementation during gestational, lactational and post-weaning periods prevents retinal degeneration induced in a rodent model[J]. The British Journal of Nutrition, 2013, 109(8): 1424-1432. DOI:10.1017/ S0007114512003327.
Advances in Research on Neuron-Protective Role of Polyunsaturated Fatty Acids
LIU Zhiguo, WANG Hualin, WANG Limei, LIU Lieju*
(School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China)
The protective effects of polyunsaturated fatty acids (PUFAs) on brain function and the nervous system have attracted a lot of attention. Numerous studies have illustrated the anti-inflammation, anti-oxidative and cardiovascular protective effects of PUFAs, as well as the protective effects on brain function, particularly nerve cells. In this article, we review the mechanisms of brain-protective effects of PUFAs in following fields: how PUFAs promote neurogenesis,maintain nerve cell morphology and function, improve neurite growth; prevent neurodegeneration, depress nerve cell apoptosis and regulate membrane fluidity, plasticity and telomere activity in neurons. This review provides a prospective insight on nutritional studies of PUFAs against aging and/or diseases (such as Alzheimer’s disease and Parkinson’s disease) inducing brain disorders.
polyunsaturated fatty acid; neurodegeneration; nerve cells; neurogenesis; brain function
10.7506/spkx1002-6630-201607043
TS201.4
A
1002-6630(2016)07-0239-10
劉志國, 王華林, 王麗梅, 等. 多不飽和脂肪酸對神經(jīng)細(xì)胞保護(hù)作用的研究進(jìn)展[J]. 食品科學(xué), 2016, 37(7): 239-248. DOI:10.7506/spkx1002-6630-201607043. http://www.spkx.net.cn
LIU Zhiguo, WANG Hualin, WANG Limei, et al. Advances in research on neuron-protective role of polyunsaturated fatty acids[J]. Food Science, 2016, 37(7): 239-248. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201607043. http://www.spkx.net.cn
2015-03-26
國家自然科學(xué)基金面上項(xiàng)目(31271855);國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(31000772);湖北省自然科學(xué)基金項(xiàng)目(2014CFB887);湖北省教育廳科技計(jì)劃項(xiàng)目(D20141705)
劉志國(1963—),男,教授,博士,研究方向?yàn)闋I養(yǎng)與食品安全。E-mail:zhiguo_l@126.com
*通信作者:劉烈炬(1952—),男,教授,碩士,研究方向?yàn)闋I養(yǎng)生物學(xué)。E-mail:liulieju@qq.com