和君強(qiáng),李菊梅*,馬義兵,紀(jì)雄輝,趙會薇
(1.中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,農(nóng)業(yè)部作物營養(yǎng)與施肥重點(diǎn)實(shí)驗(yàn)室,北京100081;2.湖南省農(nóng)業(yè)科學(xué)院土壤肥料研究所,長沙410125;3.農(nóng)業(yè)部長江中游平原農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,長沙410125;4.國家半干旱農(nóng)業(yè)工程技術(shù)研究中心,石家莊050051)
四種材料對灌溉水中鎘凈化性能的比較
和君強(qiáng)1,李菊梅1*,馬義兵1,紀(jì)雄輝2,3,趙會薇4
(1.中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,農(nóng)業(yè)部作物營養(yǎng)與施肥重點(diǎn)實(shí)驗(yàn)室,北京100081;2.湖南省農(nóng)業(yè)科學(xué)院土壤肥料研究所,長沙410125;3.農(nóng)業(yè)部長江中游平原農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,長沙410125;4.國家半干旱農(nóng)業(yè)工程技術(shù)研究中心,石家莊050051)
基于前期篩選的4種材料——石灰石、沸石、赤泥粒和油菜秸稈,通過設(shè)計(jì)等溫吸附實(shí)驗(yàn)和動態(tài)模擬實(shí)驗(yàn),探討了材料對灌溉水中Cd的快速吸附能力,應(yīng)用Langmuir、Freundlich和Tempkin方程及BDST(Bed depth service time)模型分別對材料Cd等溫吸附和動態(tài)吸附性能進(jìn)行表征,旨在為材料進(jìn)一步應(yīng)用提供理論基礎(chǔ)。結(jié)果顯示,4種材料對Cd有不同吸附能力,平衡液Cd濃度10 μg·L-1時,材料Cd等溫吸附量Qv(EC=0.79 mS·cm-1)依次為石灰石175.7 g·m-3>沸石46.2 g·m-3>赤泥粒20.7 g·m-3>油菜秸稈3.7 g·m-3;對Cd動態(tài)吸附量N0為赤泥粒1776 g·m-3>石灰石1767 g·m-3>沸石1704 g·m-3>油菜秸稈837 g·m-3。材料對Cd吸附過程中提升溶液pH的能力表現(xiàn)為赤泥粒>>石灰石和沸石>油菜秸稈。溶液離子強(qiáng)度對石灰石和沸石對Cd吸附有顯著影響,并且隨平衡液Cd濃度增加影響擴(kuò)大,但是對油菜秸稈、赤泥粒對Cd吸附的影響較小。油菜秸稈對水中Cd吸附親和力很強(qiáng),但飽和吸附容量較低,吸附效率隨凈化時間延長衰減較明顯。
鎘;灌溉水;材料;凈化性能
Cd移動性較強(qiáng),易富集并通過食物鏈危害人體健康[1],風(fēng)險系數(shù)遠(yuǎn)高于其他重金屬[2]。我國地表水Cd生態(tài)風(fēng)險不容忽視,二次污染風(fēng)險較高[3]。據(jù)研究,全國七大水系大部分樣點(diǎn)表層沉積物Cd潛在生態(tài)危害系數(shù)分布于強(qiáng)(80~160)至極強(qiáng)(≥160),其中珠江、海河和淮河較嚴(yán)峻[4]。珠江河口斷面(N=32)水相Cd平均濃度12.80 μg·L-1[5];湘江總體水質(zhì)呈惡化態(tài)勢,干流及主要支流斷面(N= 36)Cd超標(biāo)比率達(dá)22%[6]。天然地表水為農(nóng)用灌溉水主要來源之一,據(jù)統(tǒng)計(jì),我國灌溉水每年攜帶約30 t Cd進(jìn)入農(nóng)田[7],土壤中Cd含量與灌溉水Cd濃度成正比[8-9],稻米Cd含量與土壤Cd含量呈顯著正相關(guān)[10],含Cd灌溉水大定額長期使用已造成稻田土壤Cd累積并引發(fā)了農(nóng)田生態(tài)系統(tǒng)環(huán)境風(fēng)險[11],污染灌溉水Cd快速凈化十分必要。
水體Cd污染應(yīng)急處置中常采用燒堿、石灰、聚合氯化鋁等物質(zhì)將Cd沉淀分離。常規(guī)水體Cd凈化技術(shù)主要有吸附法、絮凝/螯合法和生物法,其中吸附法由于環(huán)保高效、易操作而成為灌溉水Cd快速凈化首選方法之一,其關(guān)鍵在于低成本材料優(yōu)選[12]。近年來,研究較多的Cd吸附材料主要有天然礦物如沸石[13-16]、膨潤土[17-20]、累托石[21]等,工業(yè)廢棄物如赤泥[22-23]、油頁巖灰渣[24]等,農(nóng)業(yè)廢棄物如甘蔗渣[25]等。一方面,大多數(shù)材料水穩(wěn)定差、粒度較小,或因巰基等改性材料成本較高;另一方面,結(jié)合農(nóng)田灌溉水應(yīng)用實(shí)際,要求工藝簡便高效,且凈化過程中不對灌溉速度造成影響。這就要求濾材結(jié)構(gòu)粒徑大、透水性好,且在水中有一定穩(wěn)定性和機(jī)械強(qiáng)度,但當(dāng)前關(guān)于凈Cd材料的研究多集中于粉末狀材料Cd吸附特征及機(jī)理,難以契合應(yīng)用實(shí)際?;诖耍狙芯客ㄟ^等溫吸附實(shí)驗(yàn)和動態(tài)模擬實(shí)驗(yàn),初步探討了課題組前期篩選的4種特征材料對灌水Cd吸附性能,吸附過程中pH、電導(dǎo)率(EC)變化及吸附機(jī)理,旨在為材料進(jìn)一步應(yīng)用提供理論基礎(chǔ)。
表1 供試材料基本理化性質(zhì)和產(chǎn)地Table 1 The properties of selected materials and place of origin
1.1 供試材料和裝置
4種材料(石灰石、沸石、赤泥粒和油菜秸稈)基本性質(zhì)見表1,重金屬含量均低于農(nóng)田土壤環(huán)境質(zhì)量(GB 15618—2008)二級標(biāo)準(zhǔn)和有機(jī)肥料標(biāo)準(zhǔn)(NY 525—2011),具有低浸出毒性。赤泥主要化學(xué)性質(zhì)為:pH 13.1、含CaO 38.8%、SiO222.0%、Fe2O37.7%、Al2O34.7%、K2O 0.2%,石灰石和沸石主要化學(xué)組分均為CaCO3。赤泥粒制備方法:固體組分質(zhì)量配比為赤泥(60目)100~120份、硅藻土15~20份,粘結(jié)劑為體積百分濃度30%水性聚氨酯-丙烯酸酯(PUA)復(fù)合的乳液水溶液,固體組分與粘結(jié)劑比例100 g∶20 mL,混均并充分熟化,造粒并將胚體放于陰暗處穩(wěn)定2 h,110℃烘烤3 h,篩分備用。動態(tài)吸附采用裝置廂式(圖1)。
圖1 動態(tài)模擬試驗(yàn)裝置示意圖Figure 1 The device for dynamic test purifying Cd polluted water
1.2 試驗(yàn)設(shè)計(jì)
1.2.1 等溫吸附實(shí)驗(yàn)
為比較4種材料對灌溉水Cd及離子強(qiáng)度對材料Cd吸附性能的影響,本研究設(shè)兩個不同離子強(qiáng)度水平:正常(EC=0.79 mS·cm-1,離子組分及強(qiáng)度模擬自然河水[26])和5倍(EC=3.43 mS·cm-1,5倍自然河水離子強(qiáng)度),控制pH為6.0[27]。本試驗(yàn)側(cè)重探討平衡液Cd濃度區(qū)間0~100 μg·L-1的材料Cd吸附容量,根據(jù)預(yù)試驗(yàn)不同材料表現(xiàn),設(shè)7個Cd濃度梯度,其中石灰石、沸石吸附試驗(yàn)的Cd濃度梯度為0、10、20、30、45、60、75 mg·L-1,赤泥粒和油菜秸稈Cd濃度梯度為0、1.5、3.0、4.5、7.5、12.0、18.0 mg·L-1,共計(jì)56個處理,3次重復(fù)。具體操作方法[28]為:控制試驗(yàn)溫度25℃,根據(jù)材料容重?fù)Q算等體積(15 cm3)材料質(zhì)量,精確(0.001)稱取材料于100 mL離心管中,加入不同Cd濃度溶液50 mL,恒溫低速(60 r·min-1)振蕩48 h,3000 r·min-1高速離心25 min,上清液過0.45 mm濾膜,測定溶液pH、EC及Cd濃度。比較等體積不同材料Cd吸附性能,材料對Cd吸附量Qv(g·m-3)由Cd加入濃度(C',mg·L-1)與平衡液Cd濃度(C,μg·L-1)換算得到(公式1)。
應(yīng)用Langmuir、Freundlich和Tempkin方程分別表征材料Cd等溫吸附過程。表達(dá)式為C/Q=1/K1Qm+ C/Qm、Q=K2C1/n和Q=a+blnC,式中Q為材料對Cd吸附量,C為平衡液Cd濃度,K1為吸附平衡常數(shù),Qm為材料對Cd最大吸附量,K2、n、a和b均為系數(shù)。
1.2.2 動態(tài)吸附實(shí)驗(yàn)
為研究一定水流推進(jìn)速度下材料對水中微量Cd的動態(tài)吸附特征,于圖1所示凈化柱中分別填充長為20 cm的4種材料,調(diào)節(jié)過水量5.0 L·min-1,儲備容器中溶液Cd濃度60 μg·L-1,pH、EC和離子組分同1.2.1,凈化時長3 h,每10 min收集流出液并測定Cd濃度。應(yīng)用BDST模型表征材料Cd動態(tài)吸附特征,該模型普遍應(yīng)用于多孔介質(zhì)材料滲流吸附過程的表征,可預(yù)測一定滲流速度、填層長度、溶質(zhì)濃度等操作條件下吸附操作時間[7,29-30](公式2)。一定時間內(nèi)材料對Cd吸附量Mad可由穿透曲線與直線C=C0所圍成的積分面積推算(公式3)。
式中:C0為模擬溶液初始Cd濃度,mg·L-1;C為出水Cd濃度,mg·L-1;Kb為動態(tài)吸附速率常數(shù),其值越小表示材料越容易固持Cd離子,L·mg-1·h-1;N0為最大吸附容量,mg·dm-3;z為材料填充長度,cm;v為流速,cm·h-1;t為凈化時間,h;Q為進(jìn)水流量,L·h-1。
1.3 測定指標(biāo)及方法
材料重金屬含量采用微波消解(美國CEM Mars 5微波消解儀),其中Cr、Cu、Zn、Cd、Pb采用原子吸收光譜儀(AAS,德國耶拿ZEEnit 700P)測定,Hg、As采用雙道原子熒光光度計(jì)(AFS-920,北京吉天儀器有限公司)測定;溶液中Cd濃度采用ICP-MS 2000(江蘇天瑞儀器股份有限公司)測定;pH用酸度計(jì)法(PHS-3C,上??祪x儀器有限公司);EC用電導(dǎo)率儀(FE30,瑞士梅特勒托利多)測定;材料容重采用環(huán)刀法,有效孔隙度參照MT 41—1987;流體流量采用流量計(jì)(HY-LUGB,江蘇宏儀自動化儀表有限公司)測定。
1.4 數(shù)據(jù)分析
采用Excel和SAS進(jìn)行數(shù)據(jù)統(tǒng)計(jì),用單變量分析(ANOVA)LSD法檢測差異顯著性,用Origin8.5作圖。
2.1 4種材料對鎘等溫吸附曲線的比較
吸附材料與溶液Cd吸附達(dá)到平衡時,材料Cd吸附量均隨著平衡液Cd濃度增加而提高(圖2),但不同材料吸附量差異較大,且受離子強(qiáng)度影響顯著(圖3)。平衡液Cd濃度區(qū)間(0~100 μg·L-1)內(nèi),不同材料Cd吸附能力順序?yàn)椋菏沂痉惺境嗄嗔#居筒私斩?。離子強(qiáng)度對石灰石和沸石對Cd吸附有顯著影響,且影響隨平衡液濃度增加逐漸擴(kuò)大,但是離子強(qiáng)度對油菜秸稈、赤泥對Cd吸附的影響較小。平衡溶液Cd濃度為10 μg·L-1(農(nóng)用灌溉水質(zhì)標(biāo)準(zhǔn)GB 5084—2005)時,在背景離子強(qiáng)度EC=0.79 mS·cm-1(EC=3.43 mS·cm-1)溶液,材料對Cd吸附量依次為石
灰石175.7 g·m-3(66.5 g·m-3)>沸石46.2 g·m-3(22.3 g· m-3)>赤泥粒20.7 g·m-3(13.2 g·m-3)>油菜秸稈3.7 g· m-3(4.6 g·m-3)。吸附平衡溶液Cd濃度100 μg·L-1(污水綜合排放標(biāo)準(zhǔn)GB 8978—1996)時,正常離子強(qiáng)度下,石灰石、沸石、赤泥粒和油菜秸稈對Cd的吸附量分別為395.5、238.0、137.2、33.9 g·m-3;5倍離子強(qiáng)度下,石灰石和沸石Cd平衡吸附量分別為265.7、142.5 g·m-3,而赤泥粒和油菜秸稈Cd的吸附量分別為98.4、40.8 g·m-3。
圖2 兩種離子強(qiáng)度水平下不同材料Cd等溫吸附曲線Figure 2 Cd isotherm adsorption curves of selected materials at different ion levels
圖3 不同材料對溶液中低濃度Cd的等溫吸附容量比較Figure 3 Equilibrium adsorption capacity of selected materials for low concentration Cd in solution
圖4 不同材料等溫吸附過程中溶液pH和EC值變化Figure 4 Changes of pH and conductivity in the equilibrium adsorption process for selected materials
2.2 材料等溫吸附過程中pH和EC值變化
4種材料對Cd等溫吸附過程引起了溶液pH值和EC值的變化(圖4),特別是赤泥粒平均提升溶液pH值4.7個單位,提升溶液EC值17.2 mS·cm-1。石灰石、沸石和油菜秸稈對溶液pH和EC的影響顯著弱于赤泥粒,石灰石和沸石分別平均提升溶液pH值1.4、1.3個單位,二者對溶液EC值影響微弱,吸附過程中EC(≈0.21 mS·cm-1)變化不顯著。油菜秸稈平均提升溶液pH 0.86個單位和EC 3.6 mS·cm-1,且受離子強(qiáng)度影響不顯著。
2.3 三類等溫吸附方程及特征參數(shù)比較
等溫吸附方程的決定系數(shù)越大,表征的吸附過程就越占優(yōu)勢(表2)。除沸石外,兩種離子水平下均表現(xiàn)為R2>R3>R1,表明3種材料對水體中Cd的吸附以非均相表面多層吸附或化學(xué)吸附為主,其中油菜秸稈R1普遍較小,表面單層吸附不占優(yōu)勢。沸石3種機(jī)理都占優(yōu)勢,但隨著溶液離子強(qiáng)度增大R2減小,R1和R3增大,表面多層吸附逐漸趨于單層吸附和化學(xué)吸附。低離子水平下,Mv和m均表現(xiàn)為石灰石>沸石>赤泥粒>油菜秸稈,K1表現(xiàn)為油菜秸稈>石灰石>沸石>赤泥粒,n表現(xiàn)為石灰石>沸石>赤泥粒>油菜秸稈。離子強(qiáng)度擴(kuò)大5倍,石灰石、沸石和赤泥粒參數(shù)Mv、m、K1均不同程度降低,但油菜秸稈確發(fā)生小幅增加。Mv降低幅度為油菜秸稈-27.2 g·m-3<赤泥粒18.7 g·m-3<石灰石61.1 g·m-3<沸石86.4 g·m-3。
表2 兩種離子強(qiáng)度水平下不同材料對Cd等溫吸附方程及特征參數(shù)Table 2 Absorbing parameters for the Langmuir,F(xiàn)reundlich and Temkin of selected materials
2.4 不同材料對Cd動態(tài)吸附曲線的比較
實(shí)際凈化過程中材料對溶液中Cd的吸附是動態(tài)過程,在實(shí)驗(yàn)水頭和Cd初始濃度保持不變的情況下,不同材料對Cd動態(tài)吸附曲線顯示(圖5),凈化后溶液Cd濃度隨時間t的延長而增加。這表明材料凈化功能的衰減,但3 h凈化過程中水中Cd濃度始終<10 μg·L-1,溶液Cd凈化效率90.2%~93.8%。赤泥粒Cd凈化功能較等溫吸附顯著提升,下文將詳細(xì)闡釋;油菜秸稈前期Cd凈化效率較高,但隨凈化時間延長衰減速率遠(yuǎn)大于其他三類材料。4種材料對Cd動態(tài)吸附曲線BDST模型擬合均達(dá)到了95%置信區(qū)間(表3),材料Cd動態(tài)吸附速率常數(shù)Kb表現(xiàn)為油菜秸稈>赤泥粒>石灰石>沸石,Cd動態(tài)吸附容量N0表現(xiàn)為赤泥粒1776 g·m-3>石灰石1767 g·m-3>沸石1704 g·m-3>油菜秸稈837 g·m-3。
圖5 一定水流推進(jìn)速度下材料Cd動態(tài)吸附曲線Figure 5 The Cd dynamic adsorption curve at a certain velocity of flow
表3 材料BDST方程擬合及吸附特征參數(shù)比較Table 3 Comparative analysis for the BDST coefficients for selected materials
3.1 赤泥粒對水中Cd的吸附特征
赤泥作為吸附劑去除水體重金屬離子效果顯著[31],經(jīng)造粒仍保留了較強(qiáng)Cd快速吸附能力,主要機(jī)理是赤泥具有強(qiáng)堿性和較高比表面及荷質(zhì)比,可通過表面沉淀和物理化學(xué)吸附重金屬離子[32-34]。Cd在堿性條件下可形成高度穩(wěn)定的Cd(OH)2,有效沉淀pH范圍9.5~12.5[35],且pH=8.5時,Cd可與Fe(OH)2或Al(OH)3發(fā)生共沉淀;此外赤泥富含F(xiàn)e、Mn氧化物,可專性吸附重金屬。赤泥Cd吸附量隨離子強(qiáng)度增大趨于降低[36],與本研究等溫吸附過程一致;赤泥對Cd吸附包含外層和非專性吸附(約占65%)以及專性吸附(約35%)兩種不同的吸附過程[37],也可解釋本研究中平衡吸
附R2>R3>R1,且不同離子強(qiáng)度下ΔMv相對較小。赤泥粒Cd動態(tài)吸附性能顯著優(yōu)于等溫吸附,可能由于等溫吸附過程中溶液pH及EC大幅增加,對赤泥Cd外層和非專性吸附過程產(chǎn)生影響,使Cd吸附速率和容量減低,而動態(tài)吸附過程中溶液組分變化較小。
3.2 油菜秸稈對水中Cd的吸附特征
一些十字花科植物秸稈如油菜秸稈中巰基化合物含量豐富,能與Cd發(fā)生螯合作用[38-41],常作為土壤重金屬Cd鈍化劑[36,42]。等溫和動態(tài)吸附結(jié)果均顯示,油菜秸稈對水中Cd有較強(qiáng)的吸附作用力,但Cd吸附容量顯著低于其他材料,Cd動態(tài)吸附效率隨著凈化時間的延長衰減明顯。油菜秸稈Cd吸附機(jī)理趨于非均相表面多層吸附或化學(xué)吸附,Cd吸附量受溶液離子強(qiáng)度影響較小,固持的Cd不易解離。
3.3 石灰石、沸石對水中Cd的吸附特征
石灰常與燒堿、聚合氯化鋁一起作為Cd污染水應(yīng)急處置試劑。重金屬Cd可與碳酸鈣發(fā)生共沉淀降低土壤中重金屬的移動性[43]。沸石是堿金屬或堿土金屬的水化鋁硅酸鹽晶體,含有大量的三維晶體結(jié)構(gòu)、很強(qiáng)的離子交換能力及獨(dú)特的分子結(jié)構(gòu)(具有骨架狀的特殊構(gòu)造),可通過離子交換吸附和專性吸附降低土壤中重金屬的有效性。平衡吸附實(shí)驗(yàn)結(jié)果顯示,石灰石對溶液中Cd的吸附過程涵蓋表面單層吸附、多分子層吸附和化學(xué)吸附,Cd吸附容量較大且吸附相對穩(wěn)固。較低離子水平下沸石以多分子層吸附和化學(xué)吸附為主,隨著離子強(qiáng)度增加非均相表面多層吸附過程減弱,逐漸趨于單層吸附和化學(xué)吸附。
3.4 4種材料經(jīng)濟(jì)及環(huán)境效益評價
赤泥是以鋁土礦為原料生產(chǎn)氧化鋁過程中產(chǎn)生的極細(xì)顆粒強(qiáng)堿性固體尾渣,每生產(chǎn)1 t氧化鋁,大約產(chǎn)生赤泥0.8~1.5 t,我國赤泥儲量豐富且屬買方市場。水性聚氨酯-丙烯酸酯乳液是以水替代有機(jī)溶劑作為分散介質(zhì)的改性高分子材料,具有硬度高、耐磨損及使用安全、無毒、無環(huán)境污染等優(yōu)點(diǎn)。油菜秸稈為農(nóng)業(yè)廢棄物,來源廣、成本相對較低。石灰石、沸石為兩種常見的天然、無機(jī)微孔礦物,本研究原材料來自采石場或建筑行業(yè)廢棄的碎石尾料,實(shí)現(xiàn)了工農(nóng)業(yè)等廢置物的資源化利用。本研究探討了4種大粒徑水穩(wěn)性材料在單一重金屬Cd污染體系中對水中較低濃度Cd的平衡和動態(tài)凈化能力,擬篩選并應(yīng)用于農(nóng)田Cd污染灌溉水的應(yīng)急處理。本研究未對4種材料對Cd的吸附達(dá)到飽和點(diǎn)時做重復(fù)利用和無害化處理研究,后續(xù)將做深入探討。
(1)4種材料均對灌溉水中Cd有一定凈化能力。等溫吸附過程中材料Cd吸附量表現(xiàn)為石灰石>沸石>赤泥粒>油菜秸稈;Cd動態(tài)吸附容量則為赤泥粒>石灰石>沸石>油菜秸稈。材料對Cd吸附過程中提升溶液pH能力表現(xiàn)為赤泥粒>>石灰石和沸石>油菜秸稈。
(2)溶液離子強(qiáng)度對石灰石和沸石對Cd吸附有顯著影響,且隨平衡液Cd濃度增加影響擴(kuò)大,但是離子強(qiáng)度對油菜秸稈、赤泥粒對Cd吸附的影響較小。油菜秸稈對水中Cd吸附作用力強(qiáng),但吸附容量相對較低,Cd動態(tài)凈化效率隨時間衰減顯著。
[1]McLaughlin M J,Singh B R E.Cadmium in soils and plants[M].Dordrecht:Kluwer Academic,1999.
[2]魏俊峰,吳大清,彭金蓮,等.污染沉積物中重金屬的釋放及其動力學(xué)[J].生態(tài)環(huán)境,2003,12(2):127-130.
WEI Jun-feng,WU Da-qing,PENG Jin-lian,et al.Release and kinetics of heavy metals from the contaminated sediments[J].Ecology and Environment Sciences,2003,12(2):127-130.
[3]Segura R,Arancibia V,Zuniga M C,et al.Distribution of copper,zinc,lead and cadmium concentrations in stream sedimentsfromthe Mapocho River in Santiago,Chile[J].Journal of Geochemical Exploration,2006,91(1-3):71-80.
[4]朱青青,王中良.中國主要水系沉積物中重金屬分布特征及來源分析[J].地球與環(huán)境,2012,40(3):305-313.
ZHU Qing-qing,WANG Zhong-liang.Distribution characteristics and source analysis of heavy metals in sediments of the main river systems in China[J].Earth and Environment,2012,40(3):305-313.
[5]胡錫永,賴子尼,趙元鳳,等.珠江河口重金屬鎘的含量與分布的季節(jié)特征[J].中國水產(chǎn)科學(xué),2011,18(3):629-635.
HU Xi-yong,LAI Zi-ni,ZHAO Yuan-feng,et al.Seasonal characteristics of cadmium content and distribution in Pearl River estuary[J].Journal of Fishery Sciences of China,2011,18(3):629-635.
[6]劉耀馳,高栗,李志光,等.湘江重金屬污染現(xiàn)狀、污染原因分析與對策探討[J].環(huán)境保護(hù)科學(xué),2010,36(4):26-29.
LIU Yao-chi,GAO Li,LI Zhi-guang,et al.Analysis on heavy metals pollution status and reasons in Xiangjiang River and discussion on its countermeasures[J].Environ Protect Sci,2010,36(4):26-29.
[7]Luo L,Ma C Y,Ma Y B,et al.New insights into the sorption mechanism of cadmium on red mud[J].Environmental Pollution,2011,159(5):1108-1113.
[8]李玉清,周雪梅,姜國輝,等.含鎘水灌溉對水稻產(chǎn)量和品質(zhì)的影響[J].灌溉排水學(xué)報,2012,31(4):120-123.
LI Yu-qing,ZHOU Xue-mei,JIANG Guo-hui,et al.Influence of irrigation with different concentrations of cadmium solution on rice yield andquality[J].JournalofIrrigationandDrainage,2012,31(4):120-123.
[9]劉韜,郭淑滿.污水灌溉對沈陽市農(nóng)田土壤中重金屬含量的影響[J].環(huán)境保護(hù)科學(xué),2003,29(117):51-52.
LIU Tao,GUO Shu-man.Effect of waste irrigation on heavy metal content in farm soil in Shenyang[J].Environmental Protection Science,2003,29(117):51-52.
[10]彭華,戴金鵬,紀(jì)雄輝,等.稻田土壤與稻米中的鎘含量關(guān)系初探[J].湖南農(nóng)業(yè)科學(xué),2013(7):68-72.
PENG Hua,DAI Jin-peng,JI Xiong-hui,et al.Correlation between cadmium content in paddy soil and in rice[J].Hunan Agricultural Sciences,2013(7):68-72.
[11]陳濤,常慶瑞,劉京,等.長期污灌農(nóng)田土壤重金屬污染及潛在環(huán)境風(fēng)險評價[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2012,31(11):2152-2159.
CHEN Tao,CHANG Qing-rui,LIU Jing,et al.Pollution and potential environment risk assessment of soil heavy metals in sewage irrigation area.[J].Journal of Agro-Environment Science,2012,31(11):2152-2159.
[12]Altundogan H S,Altundogan S,Tumen F,et al.Arsenic adsorption from aqueous solutions by activated red mud[J].Waste Management,2002,22(3):357-363.
[13]胡克偉,賈冬艷,顏麗,等.鹽飽和沸石對Cd2+的吸附特性研究[J].土壤通報,2013,44(6):1418-1422.
HU Ke-wei,JIA Dong-yan,YAN Li,et al.Effect of zeolite saturated with salt on the adsorption of Cd2+[J].Chinese Journal of Soil Science,2013,44(6):1418-1422.
[14]郝碩碩,朱家亮,黃慧,等.改性沸石對Cd(Ⅱ)的吸附平衡及動力學(xué)[J].環(huán)境工程學(xué)報,2012,6(8):2693-2697.
HAO Shuo-shuo,ZHU Jia-liang,HUANG Hui,et al.Cd(Ⅱ)adsorption equilibrium and kinetics by modified zeolites[J].Chinese Journal of Environmental Engineering,2012,6(8):2693-2697.
[15]Gutiérrez-Segura E,Solache-Ríos M,Colín-Cruz A,et al.Adsorption of cadmium by Na and Fe modified zeolitic tuffs and carbonaceous material from pyrolyzed sewage sludge[J].Journal of Environmental Management,2012,97:6-13.
[16]謝華林,李立波.改性沸石對重金屬離子吸附性能的試驗(yàn)研究[J].非金屬礦,2005,28(1):47-49.
XIE Hua-lin,LI Li-bo.Experimental study on adsorption capability about the heavy metal ions from water using modified clinoptilolite[J]. Non-Metallic Mines,2005,28(1):47-49.
[17]莫曉余,黃珂,程培夏,等.兩種改性膨潤土對Cd2+和Pb2+吸附性能的比較[J].湘潭大學(xué)自然科學(xué)學(xué)報,2012,34(4):89-94.
MO Xiao-yu,HUANG Ke,CHENG Pei-xia,et al.The comparison of sorptive capacity for two modified bentonite in removal of Cd2+and Pb2+[J].Natural Science Journal of Xiangtan University,2012,34(4):89-94.
[18]周建兵,吳平霄,朱能武,等.十二烷基磺酸鈉(SDS)改性蒙脫石對Cu2+、Cd2+的吸附研究[J].環(huán)境科學(xué)學(xué)報,2010,30(1):88-96.
ZHOU Jian-bing,WU Ping-xiao,ZHU Neng-wu,et al.Adsorption of Cu2+and Cd2+by SDS-modified montmorillonite[J].Acta Scientiae Circumstantiae,2010,30(1):88-96.
[19]孫洪良,朱利中.十六烷基三甲基季銨鹽-乙硫醇銨鹽復(fù)合改性膨潤土吸附性能研究[J].環(huán)境科學(xué)學(xué)報,2010,30(5):1037-1042.
SUN Hong-liang,ZHU Li-zhong.The performance of the HDTMAAET modified bentonite as a sorbent for Cd and p-nitrophenol[J].Acta Scientiae Circumstantiae,2010,30(5):1037-1042.
[20]李敏,朱潤良,葛飛,等.磷酸根和鎘離子在羥基鐵改性膨潤土表面的協(xié)同吸附機(jī)制研究[J].環(huán)境科學(xué)學(xué)報,2013,33(12):3205-3210.
LI Min,ZHU Run-liang,GE Fei,et al.Synergistic adsorption of cadmium and phosphate on hydroxyl-Fe-bentonite complex[J].Acta Scientiae Circumstantiae,2013,33(12):3205-3210.
[21]鄧書平.累托石負(fù)載陽離子吸附處理含Cd(Ⅱ)廢水實(shí)驗(yàn)研究[J].長春理工大學(xué)學(xué)報(自然科學(xué)版),2011,34(1):164-166.
DENG Shu-ping.Study on adsorption treatment of wastewater containing cadmium(Ⅱ)with cation-modified rectorite[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2011,34(1):164-166.
[22]王林江,文小年,謝襄漓.赤泥處理含鎘廢水的影響因素[J].桂林工學(xué)院學(xué)報,2006,26(4):543-546.
WANG Lin-jiang,WEN Xiao-nian,XIE Xiang-li.Influence factors of cadmium waste water disposal with red mud[J].Journal of Guilin University of Technology,2006,26(4):543-546.
[23]王艷秋,霍維周.顆粒赤泥吸附劑對重金屬離子的吸附性能研究[J].工業(yè)用水與廢水,2008,39(6):82-85.
WANG Yan-qiu,HUO Wei-zhou.Adsorption property of granular red mud adsorbent on heavy metal ions[J].Industrial Water&Wastewater,2008,39(6):82-85.
[24]金蘭淑,劉洋,高湘騏,等.改性油頁巖灰渣對水中鎘離子的吸附性能[J].環(huán)境工程學(xué)報,2012,6(6):1941-1946.
JIN Lan-shu,LIU Yang,GAO Xiang-qi,et al.Cd2+adsorption in water by modified oil shale ash[J].Chinese Journal of Environmental Engineering,2012,6(6):1941-1946.
[25]何正艷,齊亞鳳,余軍霞,等.改性甘蔗渣對Pb2+、Cd2+的吸附行為研究[J].環(huán)境科學(xué)與技術(shù),2012,35(10):58-61.
HE Zheng-yan,QI Ya-feng,YU Jun-xia,et al.Modified sugarcane bagasse for adsorption of Pb2+and Cd2+[J].Environmental Science& Technology,2012,35(10):58-61.
[26]Homagai P L,Ghimire K N,Inoue K.Adsorption behavior of heavy metalsontochemicallymodifiedsugarcanebagasse[J].BioresourceTechnology,2010,101(6):2067-2069;
[27]張洪濤,李波,劉繼芳,等.西紅柿鎳毒害的土壤主控因子和預(yù)測模型研究[J].生態(tài)毒理學(xué)報,2009,4(4):569-576.
ZHANG Hong-tao,LI Bo,LIU Ji-fang,et al.Major soil factors controlling nickel toxicity to tomato in a wide range of Chinese soils and the predictable models.[J].Asian Joural of Ecotoxicology,2009,4(4):569-576.
[28]張心昱,孫曉敏,袁國富,等.中國生態(tài)系統(tǒng)研究網(wǎng)絡(luò)水體pH和礦化度監(jiān)測數(shù)據(jù)初步分析[J].地球科學(xué)進(jìn)展,2009,24(9):1042-1050.
ZHANG Xin-yu,SUN Xiao-min,YUAN Guo-fu,et al.Primary analysis of water pH and salinity monitoring data on Chinese Ecosystem Research Network(CERN)[J].Advances in Earth Science,2009,24(9):1042-1050.
[29]Rao K S,Anand S,Venkateswarlu P.Modeling the kinetics of Cd(Ⅱ)adsorption on Syzygiumcumini L.leaf powder in a fixed bed mini column[J].Journal of Industrial and Engineering Chemistry,2011,17(2):174-181.
[30]Gupta S,Babu B V.Modeling,simulation,and experimental validation for continuous Cr(Ⅵ)removal from aqueous solutions using sawdust as an adsorbent[J].Bioresource Technology,2009,100(23):5633-5640.
[31]Kaewsarn P,Yu Q M.Cadmium(Ⅱ)removal from aqueous solutions by pre-treated biomass of marine alga Padina sp.[J].Environmental Pollution,2001,112(2):209-213.
[32]Lapez E,Soto B,Arias M,et al.Adsorbent properties of red mud and its use for wastewater treatment[J].Water Research,1998,32(4):1314-1322.
[33]Altundogan H S,Tümen F.As(Ⅴ)removal from aqueous solutions by coagulation with liquid phase of red mud[J].Journal of Environmental Science and Health,2003,38(7):1247-1258.
[34]Brunori C,Cremisini C,D′Annibale L,et al.A kinetic study of trace element leach ability from abandoned-mine-polluted soil treated with SS-MSW compost and red mud:Comparison with results from sequential extraction[J].Analytical and Bioanalytical Chemistry,2005,381(7):1347-1354.
[35]Lin C,Maddocks G,Lin J,et al.Acid neutralizing capacity of two different bauxite residues(red mud)and their potential applications for treating acid sulfate water and soils[J].Soil Research,2004,42(6):649-657.
[36]張同勝.含重金屬離子廢水處理過程中pH值的設(shè)定[J].硫酸工業(yè),2005(4):27-30.
ZHANG Tong-sheng.Setting pH value for treatment of wastewater containing heavy metal ions[J].Sulphuric Acid Industry,2005(4):27-30.
[37]王立群.鎘污染土壤原位修復(fù)劑及其機(jī)理研究[D].北京:首都師范大學(xué),2009.
WANG Li-qun.Study on in-situ amendments on cadmium polluted soil and the mechanism[D].Beijing:Capital Normal University,2009.
[38]Yi L,Hong Y T,Wang D J,et al.Effect of red mud on the mobility of heavy metals in mining-contaminated soils[J].Chinese Journal of Geochemistry,2010,29(2):191-196.
[39]Crini G.Non-conventional low-cost adsorbents for dye removal:A review[J].Bioresource Technology,2006,97(9):1061-1085.
[40]Mishra S,Tripathi R D,Srivastava S,et al.Thiol metabolism play significant role during cadmium detoxification by Ceratophyllumdemersum L.[J].Bioresource Technology,2009,100(7):2155-2161.
[41]Freeman J L,Persans M W,Nieman K,et al.Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators[J].The Plant Cell,2004,16(8):2176-2191.
[42]Hrustioger S C.Phytochelatins and their roles in heavy metal detoxification[J].Plant Physiology,2000,123(3):825-832.
[43]丁瓊,楊俊興,華珞,等.不同鈍化劑配施硫酸鋅對石灰性土壤中鎘生物有效性的影響研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2012,31(2):312-317.
DING Qiong,YANG Jun-xing,HUA Luo,et al.Cadmium phytoavailability to cowpea decreased by rape straw with zinc sulphate in a calcareous soil[J].Journal of Agro-Environment Science,2012,31(2):312-317.
Performance of selected materials for the Purification of cadmium contaminated irrigation water
HE Jun-qiang1,LI Ju-mei1*,MA Yi-bing1,JI Xiong-hui2,3,ZHAO Hui-wei4
(1.Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization,Agricultural Resources and Regional Planning Institute of Chinese Academy of Agricultural Sciences,Beijing 100081,China;2.Institute of Soil and Fertilizer,Hunan Academy of Agricultural Sciences,Changsha 410125,China;3.Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River,Changsha 410125,China;4.The Semi-arid Agriculture Science and Technology Research Center of China,Shijiazhuang 050051,China)
Irrigation with Cd contaminated water is one of important sources to lead to high risk for safety of agricultural products and human health risk in paddy soil.The key to rapid purification of Cd contaminated irrigation water is the selection of cost effective large-size porous adsorbent.Anisothermal adsorption and dynamic simulation experiment was designed,three isothermal adsorptions equations(Langmuir,F(xiàn)reundlich and Tempkin)and the BDST(bed depth service time)model were applied to characterize the Cd adsorption performance of four materials that were red mud particles,limestone,zeolite and rape straw,aiming to provide theoretical basis for the practical applications of the materials.When the Cd concentration of equilibrium solution was 10 μg·L-1,the amount of adsorbed Cd in water with electric conductivity of 0.79 mS·cm-1was in the order as limestone 175.7 g·m-3>zeolite 46.2 g·m-3>red mud particle 20.7 g·m-3>rape straw 3.7 g·m-3;the amount of adsorbed Cd in the dynamic experiment was in the order as red mud particle 1776 g·m-3>limestone 1767 m-3>zeolite 1704 g·m-3>rape straw 837 g·m-3.In purification process,all four materials are able to raise the pH of irrigation water and are in the order as red mud>limestone and zeolite>rape straw.The Cd adsorption by limestone and zeolite from irrigation water is affected by ionic strength which increases with the increase of Cd concentration in balance solution.Compared with limestone and zeolite,the ionic strength in simulated solution has little influence on the purification performance of rape straw and red mud particle.The Cd adsorption affinity of rape straw in irrigation water was significantly higher than that of other three materials.However,the Cd adsorption capacity of rape straw is relatively small. And,the Cd dynamic purification efficiency of rape straw on Cd contaminated irrigation watershowed obvious attenuation trend with the prolonging of the purification time.
cadmium;irrigation water;materials;adsorption characteristics
X52
A
1672-2043(2016)10-1984-08
10.11654/jaes.2016-0363
和君強(qiáng),李菊梅,馬義兵,等.四種材料對灌溉水中鎘凈化性能的比較[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2016,35(10):1984-1991.
HE Jun-qiang,LI Ju-mei,MA Yi-bing,et al.Performance of selected materials for the purification of Cadmium contaminated irrigation water[J].Journal of Agro-Environment Science,2016,35(10):1984-1991.
2016-03-19
河北省科技計(jì)劃項(xiàng)目(15274008D);公益性行業(yè)(環(huán)保)科研專項(xiàng)(201509032);國家科技支撐項(xiàng)目(2015BAD05B01)
和君強(qiáng)(1991—),男,山西孝義人,碩士研究生,從事環(huán)境修復(fù)研究。E-mail:zi2hejunqiang@163.com
*通信作者:李菊梅E-mail:lijumei@caas.cn