王曉燕,彭禮瓊,金則新,*
1 臺州學院生態(tài)研究所,臺州 318000 2 浙江省植物進化生態(tài)學與保護重點實驗室,臺州 318000 3 湖州市梁希森林公園管理處,湖州 313000
?
模擬增溫條件下接種AMF對夏蠟梅幼苗生長與光合生理特性的影響
王曉燕1,2,彭禮瓊1,3,金則新1,2,*
1 臺州學院生態(tài)研究所,臺州318000 2 浙江省植物進化生態(tài)學與保護重點實驗室,臺州318000 3 湖州市梁希森林公園管理處,湖州313000
全球變暖已對植物尤其是珍稀瀕危植物產(chǎn)生重要影響。AMF對植物應(yīng)對氣候變化具有重要意義,但是在瀕危植物應(yīng)對氣候變暖過程中發(fā)揮的作用并不清楚。以瀕危植物夏蠟梅(Sinocalycanthuschinensis)一年生幼苗為對象,研究人工模擬增溫條件下接種AMF對其生長、形態(tài)建成、光合生理、抗氧化酶活性和膜脂過氧化程度、營養(yǎng)物質(zhì)積累和葉綠素相對含量的影響。實驗共4個處理:模擬增溫條件下添加AMF(AMF+SW)、添加AMF(AMF)、模擬增溫(SW)和對照(CK)。結(jié)果表明:(1)接種AMF對幼苗株高、葉寬長比、總根長、根平均直徑、根尖總數(shù)、比根長和比根表面積有顯著影響。(2)AMF+SW條件下幼苗光合日進程呈現(xiàn)出明顯“雙峰”曲線,AMF顯著提高葉片日均凈光合速率(Pn);光合有效輻射大于50mol m-2s-1時,AMF+SW和AMF處理的Pn、最大凈光合速率Pnmax和呼吸速率Rd顯著高于CK;胞間CO2濃度大于100mol CO2/mol時,AMF+SW與AMF處理的Pn、AMF+SW處理的初始羧化效率(α)及AMF處理的光合能力(Amax)顯著高于CK,而AMF+SW和AMF處理的CO2補償點均低于CK。(3)AMF處理的葉可溶性糖顯著高于其它處理,AMF+SW和AMF處理的葉可溶性蛋白顯著高于CK。因此,AMF能顯著促進夏蠟梅幼苗的形態(tài)建成和光合作用;在模擬增溫條件下,接種AMF對夏蠟梅光合生理具有顯著影響。
夏蠟梅; 模擬增溫; 叢枝菌根真菌(AMF); 生長; 光合生理
全球氣候變化對自然生態(tài)系統(tǒng)的影響越來越受到人類關(guān)注[1- 4]。到2100年,全球平均氣溫將升高1.8—4.0℃[5]。氣候變暖對植物形態(tài)指標、生物量積累、光合生理及抗氧化酶活性有重要影響[6- 8]。這種影響將會持續(xù)作用于全球生物。對于分布范圍狹小的瀕危植物,通過生長生理的調(diào)節(jié)應(yīng)對氣溫升高對于個體存活和種群維持至關(guān)重要。土壤真菌與植物相互作用對植物生長生理具有重要影響,進而對于植物適應(yīng)氣候變暖具有重要意義[9- 10]。其中叢枝菌根真菌(AMF)可與約80%的陸生植物形成菌根[11],促進宿主植物對土壤中P,N,K等礦質(zhì)養(yǎng)分的吸收[12- 13],提高植物凈光合速率[14- 15]和生物量[16],通過對植物根系形態(tài)和生物量分配的影響使植物更有效的利用資源[17]。AMF還可緩解植物對干旱[18]、鹽分[19- 21]、溫度[22- 23]、病蟲害[24]和重金屬[25]等環(huán)境脅迫的影響,但是,AMF在瀕危植物應(yīng)對氣候變暖過程中發(fā)揮怎樣的作用并不清楚。
夏蠟梅(Sinocalycanthuschinensis)為蠟梅科(Calycanthaceae)夏蠟梅屬,中國特有第三紀孑遺物種和國家二級重點保護植物,具有藥用價值和較高的觀賞價值[26]。歷史時期的氣候變遷導致夏蠟梅種群大幅減少,而自然生境的人為破壞和對種子大量采集導致的種群更新受阻使該物種資源十分有限[26],目前分布范圍狹小,極度瀕危[27]。前期研究表明,現(xiàn)存自然種群夏蠟梅具有較高的AMF侵染率(> 80%)。目前,有關(guān)夏蠟梅能否通過與AMF共生適應(yīng)氣候變暖的研究尚未見報道。
模擬增溫已成為當前生態(tài)學家研究氣候變暖對植物影響的主要手段[28- 29]。以夏蠟梅一年生幼苗為對象,研究模擬增溫條件下接種AMF對夏蠟梅生長、光合生理特性、保護酶活性及營養(yǎng)物質(zhì)積累的影響。試圖闡明接種AMF在夏蠟梅響應(yīng)氣候變暖過程中發(fā)揮的作用,為夏蠟梅的繁衍和復壯以及在人工繁育中如何利用AMF促進植株生長提供理論依據(jù)。
1.1實驗材料
夏蠟梅種子采自浙江省天臺縣大雷山野生種群。對種子萌發(fā)和幼苗培養(yǎng)基質(zhì)(有機土∶河沙=1∶2,有機土為浙江省天臺山森林表層至20 cm深土壤,過0.5 cm篩網(wǎng)去除石塊)高壓蒸汽滅菌(121 ℃,2 h)。2012年9月2日,對夏蠟梅種子預處理(消毒,種皮軟化及水浴吸脹)后,播于裝有滅菌基質(zhì)的塑料筐(50 cm×40 cm×30 cm)中,于遮陰條件下萌發(fā)。待夏蠟梅長至4葉苗齡,于2012年11月15日取相似大小的幼苗移栽到花盆(上口徑13 cm,底徑9 cm,高11 cm)中,每盆1棵。
1.2實驗設(shè)計
本研究設(shè)置模擬溫度(增溫、不增溫)和AMF(接種、不接種)兩因素兩水平,共4個處理:模擬增溫(Simulated Warming,SW)+AMF(SW+AMF)、AMF、模擬增溫(SW)、和對照(CK)。增溫處理采用紅外線輻射加熱管(Electric radiant infrared heater,Model MR- 2420,Kalglo Electronics,USA),調(diào)整加熱管高度使植株頂部溫度增加2℃;AMF接種物為天臺大雷山野生夏蠟梅的根際土(平均每毫升土壤28.3個孢子),接種AMF采用5%野外采集的土壤與95%基質(zhì)(體積比),混勻后待用[30- 31]。不接種AMF處理則添加5%(體積比)接種物的濾液(濾網(wǎng)孔徑45m以去除AMF)[22],以保證其它微生物一致。 每個處理15個重復,在遮陰(37%全光照)條件下進行。實驗處理時間為2013年3月4日—2013年7月25日。據(jù)2013年7月統(tǒng)計,SW+AMF、AMF、SW和CK處理的AMF侵染率分別達到71.11%、70.00%、5.56%和3.33%。
1.3測定指標及測定方法1.3.1生長指標的測定
于2013年7月25日—7月31日對所有處理中夏蠟梅幼苗生長指標進行測定。株高和基徑分別用直尺與游標卡尺測定。葉片形態(tài)指標(葉面積、葉長、葉寬、葉周長和寬長比)用掃描儀(Epson 1680)與WinFOLIA葉片分析系統(tǒng)(Regent Instruments Inc., Quebec, Canada)測定;根系形態(tài)指標(總根長、總根表面積、總根體積、根平均直徑和根尖總數(shù))用掃描儀(Epson 1680)與WinRHIZO根系分析系統(tǒng)(Regent Instruments Inc., Quebec, Canada)測定。測定時將收獲的每株幼苗的葉片和根系取下分別置于掃描儀中掃描,葉片和根系分析系統(tǒng)對掃描的圖片進行識別和定量化分析獲得相應(yīng)數(shù)據(jù)。根、莖、葉分別于105 ℃殺青后70 ℃烘至恒重。同時計算獲得:比根長 = 總根長 / 根干重;比根表面積 = 根總表面積 / 根干重。
1.3.2光合生理指標的測定
光合日進程、光響應(yīng)曲線和CO2響應(yīng)曲線于2013年7月25日—7月31日,采用Li- 6400便攜式光合作用測定系統(tǒng)(LI-COR, Lincoln, USA)進行測定。每個處理隨機選取3株,每株取1片健康、葉位一致的功能葉為樣葉,每個樣葉重復測3次,結(jié)果取平均值。光合日進程的測定選擇晴朗少云的天氣,測定時間為6:00—18:00,每隔2 h測定1次。測定參數(shù)包括葉片凈光合速率(Pn)、蒸騰速率(Tr)、胞間CO2濃度(Ci)、氣孔導度(Gs)等。
光響應(yīng)曲線在9: 00—11: 00測定,采用LED光源控制光合有效輻射依次為2000、1500、1200、1000、800、600、400、200、150、100、50、20、0 μmol m-2s-1。光響應(yīng)曲線模型用直角雙曲線修正模型[32],同時用光合4.1.1軟件對響應(yīng)曲線擬合,得到初始量子效率(a),最大凈光合速率(Pnmax),光補償點(LCP),光飽和點(LSP) 和暗呼吸速率(Rd)。
CO2響應(yīng)曲線的測定采用LED光源將光強控制在1200 μmol m-2s-1(接近葉片飽和光強),以小鋼瓶內(nèi)液態(tài)CO2為氣源,控制CO2濃度梯度依次為1500、1200、1000、800、600、400、200、150、120、100、80 μmol/mol。CO2響應(yīng)曲線模型用直角雙曲線修正模型[33],同時用光合4.1.1軟件對CO2響應(yīng)曲線擬合,得到初始羧化效率(α),光合能力(Amax),飽和胞間CO2濃度(Cisat),CO2補償點和光呼吸速率(Rp)。
1.3.3抗氧化酶與膜脂過氧化程度的測定
超氧化物歧化酶(SOD)活性的測定采用氮藍四唑(NBT)光化還原法,以抑制NBT光化還原50%的酶量為1個酶活力單位[34]。過氧化物酶(POD)和過氧化氫酶(CAT)活性的測定采取愈創(chuàng)木酚法,分別以每分鐘A470增加0.01和每分鐘A240減少0.01為1個酶活力單位[34]。丙二醛(MDA)含量的測定采用硫代巴比妥酸(TBA)法[34]。
1.3.4營養(yǎng)物質(zhì)及葉綠素相對含量的測定
葉可溶性糖的測定采取蒽酮比色法[35]。葉可溶性蛋白的測定采取考馬斯亮藍染色法[34]。葉綠素相對含量用CCM- 200手持式葉綠素測定儀(OPTI-SCIENCES,USA)測定。
1.4數(shù)據(jù)分析
用SPSS16.0軟件對不同處理生長和生理指標進行方差分析(P< 0.05),對符合方差齊性的參數(shù)用LSD 法對各參數(shù)平均數(shù)進行顯著性檢驗和多重比較,對不符合方差齊性的參數(shù)用Dunnett T3法對各參數(shù)平均數(shù)進行顯著性檢驗和多重比較。同時,以模擬增溫和接種AMF作為固定因子,對各指標進行雙因素方差分析。此外,還對夏蠟梅幼苗光合生理生態(tài)指標進行Pearson相關(guān)性分析。
2.1模擬增溫條件下接種AMF對夏蠟梅幼苗生長與形態(tài)建成的影響 2.1.1模擬增溫條件下接種AMF對夏蠟梅幼苗生長的影響
對夏蠟梅幼苗生長指標分析表明,模擬增溫條件下添加AMF(AMF+SW)和AMF處理的株高均顯著高于CK(表1)。模擬增溫(SW)對株高沒有顯著影響。AMF處理的莖生物量比也顯著高于CK(P= 0.027)。模擬增溫和添加AMF對夏蠟梅幼苗基徑、總生物量、葉生物量比及根生物量比沒有顯著影響。雙因素方差分析表明(表1):AMF對夏蠟梅幼苗株高有極顯著影響。SW對夏蠟梅幼苗的生長指標雖高于CK,但差異不顯著。AMF與SW的交互作用對夏蠟梅幼苗莖生物量比的影響達到顯著,而對其它生長指標均沒有影響。
表1 模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗生長的影響
AMF:添加叢枝菌根真菌 Arbuscular Mycorrhizal Fungi;SW:模擬增溫 Simulated Warming;AMF+SW:既添加AMF又模擬增溫;數(shù)據(jù)為平均值±標準誤,同列數(shù)據(jù)不同小寫字母表示不同處理間存在顯著差異(P< 0.05);*表示P< 0.05; **表示P< 0.01
2.1.2模擬增溫條件下接種AMF對夏蠟梅幼苗葉片形態(tài)建成的影響
由表2可知,AMF+SW處理條件下夏蠟梅幼苗總?cè)~片數(shù)顯著高于SW處理。與CK相比,AMF處理的葉平均長度高出18.48%,且差異達到顯著。同時,CK處理的葉寬長比比AMF高出16.36%。AMF+SW處理的總?cè)~片數(shù)、總?cè)~面積、葉平均寬度、葉平均長度、葉平均周長均高于CK,但未達到顯著差異。雙因素方差分析表明(表2):AMF對夏蠟梅幼苗葉寬長比有顯著影響。
表2模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗葉片形態(tài)的影響
Table 2Effects of arbuscular mycorrhizal fungi inoculation on the leaf morphology ofSinocalycanthuschinensisseedlings under simulated warming
處理Treatment總?cè)~片數(shù)Totalleafnumber總?cè)~面積/cm2Totalleafarea葉平均寬度/cmAverageleafbreadth葉平均長度/cmAverageleaflength葉平均周長/cmAverageleafperimeter葉寬長比Breadth/lengthAMF+SW7.22±0.57a118.19±10.57a3.75±0.24a6.38±0.29ab16.44±0.94a0.59±0.01aAMF6.33±0.50ab108.53±9.64a3.63±0.22a6.86±0.41a17.22±1.05a0.55±0.02aSW5.56±0.53b97.29±7.82a3.96±0.20a6.51±0.39ab17.45±0.94a0.63±0.05aCK6.44±0.44ab96.25±6.75a3.61±0.11a5.79±0.33b15.84±0.65a0.64±0.04aFAMF1.9422.7400.2201.7570.0494.459*SW0.0060.6591.3510.0610.1720.197AMF×SW3.1030.4820.2952.7841.7060.350
數(shù)據(jù)為平均值±標準誤,同列數(shù)據(jù)不同小寫字母表示不同處理間存在顯著差異(P< 0.05); *表示P< 0.05; **表示P< 0.01
2.1.3模擬增溫條件下接種AMF對夏蠟梅幼苗根系形態(tài)建成的影響
由表3可知,接種AMF顯著改變了夏蠟梅幼苗根系形態(tài)。CK處理的總根長、總根表面積、根尖總數(shù)、比根長和比根表面積分別比AMF處理高47.63%、21.79%、122.47%、46.74%、17.35%,而AMF處理的根平均直徑則比CK高12.36%。且AMF處理的總根長、根平均直徑、根尖總數(shù)和比根長與CK存在顯著差異。與CK相比,SW處理顯著降低了夏蠟梅幼苗的根尖總數(shù),對其它指標均無顯著影響。與AMF類似,AMF+SW處理顯著提高夏蠟梅幼苗根平均直徑和顯著降低根尖總數(shù)。雙因素方差分析也表明(表3):AMF對總根長、根平均直徑、根尖總數(shù)、比根長和比根表面積均存在顯著影響。且AMF與SW對根平均直徑和根尖總數(shù)的影響存在顯著的交互作用。SW對根系形態(tài)各指標無顯著影響。
表3模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗根系形態(tài)的影響
Table 3Effects of arbuscular mycorrhizal fungi inoculation on the root morphology ofSinocalycanthuschinensisseedlings under simulated warming
數(shù)據(jù)為平均值±標準誤,同列數(shù)據(jù)不同小寫字母表示不同處理間存在顯著差異(P< 0.05);*表示P< 0.05;**表示P< 0.01
2.2模擬增溫條件下接種AMF對夏蠟梅幼苗光合生理生態(tài)的影響2.2.1模擬增溫條件下接種AMF對夏蠟梅幼苗光合日進程的影響
由圖1可知,AMF+SW條件下夏蠟梅幼苗光合日進程為“雙峰”曲線。Pn于10: 00出現(xiàn)第1個峰值,14:00左右出現(xiàn)第2個峰值,12:00存在明顯的光合午休現(xiàn)象。AMF+SW處理的Pn在14:00和16:00顯著高于CK,而在18:00顯著低于CK。模擬增溫處理條件下的Gs在大多數(shù)觀察時間高于非增溫處理。AMF+SW處理組的葉片Gs變化規(guī)律與Pn一致,也呈現(xiàn)出“雙峰”。葉片Tr的變化呈現(xiàn)“單峰”曲線,而SW處理在12:00具有較高的Gs,這與正午較高的Tr相一致。
對各參數(shù)日均值的比較也發(fā)現(xiàn)(表4):AMF+SW的日均Pn、Gs、Ci和Tr均高于CK,且AMF+SW的日均Pn顯著高于SW處理。雙因素方差分析也表明,AMF對夏蠟梅幼苗日均Pn有顯著影響。相關(guān)性分析表明,日均Pn與Gs和Tr呈現(xiàn)顯著正相關(guān)。
圖1 模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗葉片凈光合速率(Pn)、葉片氣孔導度(Gs)、胞間CO2濃度(Ci)和蒸騰速率(Tr)日變化的影響Fig.1 Effects of arbuscular mycorrhizal fungi inoculation on the diurnal variations of net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate in the leaves of Sinocalycanthus chinensis seedlings under simulated warmingAMF(Arbuscular Mycorrhizal Fungi)表示添加叢枝菌根真菌;SW(Simulated Warming)表示模擬增溫;AMF+SW表示既添加AMF又模擬增溫;圖中數(shù)據(jù)為平均值±標準誤
2.2.2模擬增溫條件下接種AMF對夏蠟梅幼苗光響應(yīng)的影響
用直角雙曲線修正模型對不同處理條件下夏蠟梅幼苗光響應(yīng)擬合發(fā)現(xiàn),擬合效果較好(表5)。由圖2可知,各處理條件下夏蠟梅幼苗葉片Pn均呈現(xiàn)出隨光合有效輻射先迅速增加然后逐漸變緩甚至略有下降的趨勢。其中,當光合有效輻射大于50mol m-2s-1時,AMF+SW和AMF處理的Pn顯著高于CK,但是與SW處理不存在顯著差異。雙因素方差分析也表明,光合有效輻射大于50mol m-2s-1時,AMF對夏蠟梅幼苗葉片的Pn有顯著影響,而SW對Pn無顯著影響, 且AMF與SW在各光合有效輻射條件下對Pn的影響不存在顯著的交互作用。
從表5可以看出,和CK相比,AMF+SW處理的初始量子效率(a)、最大凈光合速率(Pnmax)、光補償點(LCP)、光飽和點(LSP)和暗呼吸速率(Rd)分別增加了23.21%、68.22%、17.16%、32.63%和47.63%,其中Pnmax和Rd的差異顯著。AMF處理與AMF+SW處理結(jié)果類似,各光響應(yīng)參數(shù)均高于CK,其中Pnmax和Rd的差異顯著。SW處理的各光合參數(shù)指標均高于CK,但都無顯著差異。雙因素方差分析表明(表5):AMF處理對夏蠟梅幼苗的最大凈光合速率(Pnmax)的影響達到極顯著水平,對LSP和Rd的影響達到顯著水平。SW處理僅對夏蠟梅幼苗的LSP有顯著影響。
表4模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗葉片光合參數(shù)的影響
Table 4Effects of arbuscular mycorrhizal fungi inoculation on the photosynthetic parameters of leaves ofSinocalycanthuschinensisseedlings under simulated warming
處理日均凈光合速率(Pn)日均氣孔導度(Gs)日均胞間CO2濃度(Ci)日均蒸騰速率(Tr)TreatmentDailymeannetDailymeanstomatalDailymeanintercellularDailymeantranspirationphotosyntheticrateconductanceCO2concentrationrate/(μmolm-2s-1)/(mmolm-2s-1)/(μmol/mol)/(mmolm-2s-1)AMF+SW1.513±0.090a0.036±0.008a296.907±19.433a1.407±0.274aAMF1.334±0.064ab0.029±0.002a310.259±6.373a1.231±0.075aSW1.189±0.091b0.032±0.007a318.640±10.749a1.311±0.282aCK1.242±0.107ab0.023±0.005a279.943±11.457a0.911±0.182aFAMF5.447*0.7490.1110.895SW0.4991.8800.9661.721AMF×SW1.6900.0304.0740.260
數(shù)據(jù)為平均值±標準誤,同列數(shù)據(jù)不同小寫字母表示不同處理間存在顯著差異(P< 0.05); *表示P< 0.05; **表示P< 0.01
表5模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗葉片光響應(yīng)參數(shù)的影響
Table 5Effects of arbuscular mycorrhizal fungi inoculation on the light response parameters of leaves ofSinocalycanthuschinensisseedlings under simulated warming
處理Treatment初始量子效率(a)Initialquantumefficiency最大凈光合速率(Pnmax)Maximumnetphotosynthesisrate/(μmolCO2×m-2×s-1)光補償點(LCP)Lightcompensationpoint/(μmolCO2m-2s-1)光飽和點(LSP)Lightsaturationpoint/(μmolCO2m-2s-1)暗呼吸速率(Rd)Darkrespirationrate/(μmolCO2m-2s-1)決定系數(shù)(R2)DeterminationcofficientAMF+SW0.069±0.005a3.213±0.147a7.769±0.406a933.297±34.179a0.468±0.004a0.997±0.001aAMF0.079±0.010a3.312±0.248a6.487±1.410a790.917±30.207a0.435±0.029a0.997±0.001aSW0.071±0.006a2.582±0.256ab6.458±0.944a801.554±4.122a0.396±0.041ab0.993±0.004aCK0.056±0.008a1.910±0.444b6.631±0.461a703.682±80.852a0.317±0.040b0.990±0.003aFAMF1.90311.940**0.4175.553*8.849*4.792SW0.1080.9480.3776.685*3.0780.164AMF×SW3.0091.7130.6500.2290.5240.475
數(shù)據(jù)為平均值±標準誤,同列數(shù)據(jù)不同小寫字母表示不同處理間存在顯著差異(P< 0.05); *表示P< 0.05; **表示P< 0.01
2.2.3模擬增溫條件下接種AMF對夏蠟梅幼苗CO2響應(yīng)的影響
對夏蠟梅幼苗葉片CO2響應(yīng)用直角雙曲線修正模型擬合發(fā)現(xiàn),擬合效果較好(表6)。如圖3所示,隨著胞間CO2濃度的增加,Pn隨之增加。與CK相比,當胞間CO2濃度大于100mol CO2/mol時,AMF+SW與AMF處理在各胞間CO2濃度下的Pn均顯著高于CK。雙因素方差分析表明,AMF在各胞間CO2濃度處理條件下均對Pn具有顯著影響;而SW處理及與AMF的交互作用在各胞間CO2濃度下對Pn均不存在顯著影響。由表6可知,與CK相比,AMF+SW處理的初始羧化效率(α)和光合能力(Amax)分別增加了80.00%和37.44%,CO2補償點降低了29.18%;AMF處理的Amax也比CK高出45.58%,CO2補償點比CK低24.20%。不同處理間飽和胞間CO2濃度(Cisat)和光呼吸速率(Rp)不存在顯著差異。說明AMF+SW和AMF處理在較低的CO2濃度下即可進行光合產(chǎn)物的凈積累,而不同處理間光呼吸速率沒有顯著差異,因此提高了夏蠟梅幼苗的光合能力。雙因素方差分析表明(表6):AMF對夏蠟梅幼苗CO2補償點具有極顯著影響,而SW對夏蠟梅幼苗CO2響應(yīng)各參數(shù)影響均不顯著。
2.3模擬增溫條件下接種AMF對夏蠟梅幼苗保護酶活性和膜脂過氧化程度的影響
模擬增溫條件下AMF對夏蠟梅幼苗保護酶SOD、POD和CAT活性及膜脂過氧化程度指標MDA均無顯著影響(表7)。雙因素方差分析表明(表7):AMF和SW及兩者交互作用對夏蠟梅幼苗保護酶和膜脂過氧化程度的影響均不顯著。
圖2 模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗葉片光響應(yīng)曲線的影響Fig.2 Effects of arbuscular mycorrhizal fungi inoculation on the light response curves of leave of Sinocalycanthus chinensis seedlings under simulated warming圖中數(shù)據(jù)為平均值±標準誤
圖3 模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗葉片CO2響應(yīng)曲線的影響Fig.3 Effects of arbuscular mycorrhizal fungi inoculation on leave CO2 response curves of Sinocalycanthus chinensis seedlings under simulated warming
Table 6Effects of arbuscular mycorrhizal fungi inoculation on the CO2response parameters of leaves ofSinocalycanthuschinensisseedlings under simulated warming
處理Treatment初始羧化效率(α)Initialcarboxylationefficiency/(molm-2s-1)光合能力(Amax)Photosytheticcapacity/(μmolCO2m-2s-1)飽和胞間CO2濃度(Cisat)SaturationintercellularCO2concentration/(μmol/mol)CO2補償點CO2compensationpoint/(μmol/mol光呼吸速率(Rp)Photorespirationrate/(μmolCO2m-2s-1)決定系數(shù)(R2)DeterminationcofficientAMF+SW0.018±0.003a10.205±0.498ab1502.248±217.340a118.489±7.183a1.994±0.248a0.998±0.001aAMF0.015±0.001ab10.809±0.969a1682.957±113.230a126.833±4.623ab1.832±0.117a0.998±0.001aSW0.013±0.003ab9.933±0.913ab2133.814±629.708a161.736±16.767bc1.919±0.402a0.993±0.003aCK0.010±0.002b7.425±1.451b1958.956±313.272a167.320±14.961c1.461±0.190a0.994±0.003aFAMF4.0263.2361.48512.132**0.7303.996SW1.5870.8790.0010.3361.4100.015AMF×SW0.0072.3460.2280.0130.3230.029
數(shù)據(jù)為平均值±標準誤,同列數(shù)據(jù)不同小寫字母表示不同處理間存在顯著差異(P< 0.05); *表示P< 0.05; **表示P< 0.01
2.4模擬增溫條件下接種AMF對夏蠟梅幼苗營養(yǎng)物質(zhì)積累和葉綠素相對含量的影響
AMF處理的夏蠟梅葉可溶性糖分別比AMF+SW,SW和CK高出81.72%,35.98%和32.94%,且AMF+SW,SW和CK之間不存在顯著差異。AMF+SW和AMF處理的夏蠟梅葉可溶性蛋白分別比CK高出86.09%和30.60%,且AMF+SW處理顯著高于其它處理。雙因素方差分析表明(表8):AMF和SW及兩者交互作用對葉綠素相對含量的影響均不顯著。SW對夏蠟梅葉可溶性糖具有顯著影響,且AMF和SW對葉可溶性糖的影響有顯著的交互作用。添加AMF和SW對夏蠟梅葉片可溶性蛋白含量的影響均達到極顯著,但兩者交互作用不顯著。
模擬增溫條件下添加AMF對夏蠟梅幼苗光合生理的影響與AMF在夏蠟梅幼苗生長過程中發(fā)揮的作用密不可分。AMF菌絲直徑較小(厚壁菌絲20—30m,薄壁菌絲2—7m)[36],僅為夏蠟梅根系平均直徑的百分之一,因此AMF能進入夏蠟梅根系無法抵達的細小土壤孔隙吸收水分和養(yǎng)分。此外,氣候變暖還會通過土壤溫度對AMF的影響作用于共生植物。土壤溫度升高會提高AMF的拓殖率和菌絲長度,從而促進共生植物養(yǎng)分吸收和生長[37- 38]其中AMF對于共生植物P元素的吸收貢獻最大。菌絲能分泌有機酸,磷酸酶,活化土壤中難溶性P進而通過無隔菌絲供給宿主植物[12- 13]。在植物光合作用中,元素P是光反應(yīng)階段的輔酶,暗反應(yīng)階段固定CO2的1,5-二磷酸核酮糖羧化酶Rubisco,以及能量物質(zhì)ATP的重要組成元素。因此,AMF促進夏蠟梅光合作用的原因之一可能是AMF對土壤中有限P元素吸收的增加。夏蠟梅對養(yǎng)分和水分吸收的增加將有利于光合作用和有機物積累。本研究表明接種AMF顯著提高了夏蠟梅最大凈光合速率Pnmax和光合能力Amax,其它研究也有類似的結(jié)果[14- 15]。接種AMF還會影響氣孔行為,縮短氣孔關(guān)閉時間[36, 39- 40]。在光合日進程中,夏蠟梅Pn與Gs呈現(xiàn)出一致的變化趨勢,相關(guān)性分析也表明夏蠟梅幼苗日均Pn與Gs和Tr呈顯著的正相關(guān),說明夏蠟梅光合作用主要以氣孔限制為主。添加AMF還提高了夏蠟梅幼苗葉片的LSP,說明接種AMF可以提高夏蠟梅幼苗對強光的利用能力。夏蠟梅是典型的陰生植物,50%的全光照下夏蠟梅的Pnmax是100%全光照的2.6倍[26]。因此,對強光利用能力的提高有利于夏蠟梅開拓新生境。在不同的CO2濃度下,接種AMF的Pn均高于CK,而CO2補償點則低于CK,說明接種AMF可能有利于夏蠟梅幼苗光合產(chǎn)物的凈積累。
表7 模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗葉片保護酶活性和膜脂過氧化程度的影響
Table 7Effects of arbuscular mycorrhizal fungi inoculation on the protection enzyme activity and membrane lipid peroxide level of leavels ofSinocalycanthuschinensisseedlings under simulated warming
處理Treatment超氧化物歧化酶SOD/(U/g鮮重)過氧化物酶POD/(100Ug-1鮮重min-1)過氧化氫酶CAT/(100Ug-1鮮重min-1)丙二醛MDA/(μmol/μg鮮重)AMF+SW0.21±0.002a27.92±2.15a6.17±0.41a14.02±1.76aAMF0.21±0.01a31.10±4.96a4.63±0.36a14.12±2.21aSW0.21±0.003a28.94±2.17a4.80±0.54a14.37±1.40aCK0.21±0.01a31.10±5.56a6.50±0.98a10.54±0.55aFAMF0.0740.1040.0610.036SW0.0510.2520.1323.047AMF×SW0.1180.0243.0930.824
數(shù)據(jù)為平均值±標準誤,同列數(shù)據(jù)不同小寫字母表示不同處理間存在顯著差異(P< 0.05); *表示P< 0.05; **表示P< 0.01
表8模擬增溫條件下接種叢枝菌根真菌對夏蠟梅幼苗葉片營養(yǎng)物質(zhì)積累和葉綠素相對含量的影響
Table 8Effects of arbuscular mycorrhizal fungi inoculation on the nutrient accumulation and chlorophyll relative content of leaves ofSinocalycanthuschinensisseedlings under simulated warming
處理Treatment可溶性糖Solublesugar/(mg/g干重)可溶性蛋白Solubleprotein/(mg/g鮮重)葉綠素相對含量ChlorophyllrelativecontentAMF+SW22.92±4.11b12.04±0.40a14.15±1.43aAMF41.65±2.86a8.45±0.63b14.88±1.74aSW30.63±1.38b8.21±0.76bc17.27±1.56aCK31.33±2.17b6.47±0.65c14.88±1.28aFAMF0.02012.582**1.025SW8.847*13.638**0.291AMF×SW6.541*1.1001.034
數(shù)據(jù)為平均值±標準誤,同列數(shù)據(jù)不同小寫字母表示不同處理間存在顯著差異(P< 0.05); *表示P< 0.05; **表示P< 0.01
AMF顯著提高可溶性糖的積累,而在增溫條件下添加AMF對可溶性糖的含量卻沒有影響。這可能與增溫條件下,AMF對植物糖類的消耗增加有關(guān)。本研究表明接種AMF不僅顯著提高了夏蠟梅最大凈光合速率Pnmax和光合能力Amax,還顯著促進了可溶性糖和可溶性蛋白的積累。AMF和模擬增溫均顯著提高葉可溶性蛋白,而模擬增溫條件下添加AMF卻對可溶性蛋白沒有影響。說明AMF和模擬增溫對可溶性蛋白的積累具有相反的作用。
模擬增溫條件下接種AMF提高了夏蠟梅幼苗葉片的日均Pn和Pnmax,但是對生物量的積累沒有顯著影響。模擬增溫條件下對玉米接種AMF幼套球囊霉(Glomusetunicatum)后也發(fā)現(xiàn),不管增溫與否,接種AMF對玉米生物量沒有顯著影響[39]。原因可能有3個方面,首先,接種AMF提高夏蠟梅幼苗Pn的同時也提高了葉片的Rd和Rp,因此對生物量的積累沒有表現(xiàn)出顯著的影響;其次,AMF與植物共生過程中,植物光合產(chǎn)物中約有20%供給共生的AMF,而溫度升高可以通過提高菌根呼吸速率來加強養(yǎng)分從植物向AMF的流動,從而減少植物的有機物積累[22, 39, 41]。因此,模擬增溫條件下接種AMF雖然會提高夏蠟梅Pn,但是可能同時也提高了對有機物的消耗,其最終生物量的積累取決于兩者之差;此外,實驗處理時間短也可能是一個原因,雖然從實驗處理到指標測定有8個多月,但是夏蠟梅為落葉植物,夏蠟梅有葉期僅有4—5個月,因此可能導致實驗處理的效果未達到顯著。
盡管模擬增溫和AMF對夏蠟梅幼苗生物量積累沒有顯著影響,但是對根系形態(tài)與生物量分配具有顯著影響。研究發(fā)現(xiàn),接種AMF對夏蠟梅根長度、根表面積、根體積及根尖數(shù)均具有顯著的負效應(yīng),而對根平均直徑則表現(xiàn)出顯著的正效應(yīng)。AMF不同水分條件下接種AMF對顯著降低了濕地植物Bidensfrondosa的根系長度與根系表面積[42]。而接種AMF對植物Lythrumsalicaria和Panicumhemitomon的根系長度則具有正效應(yīng)[43],但是另外的研究則發(fā)現(xiàn)接種AMF對L.salicaria的根長和根表面積沒有影響[42]。因此,AMF對共生植物根系形態(tài)和生物量分配的影響與植物物種、AMF物種及實驗條件有關(guān)。AMF對夏蠟梅根系結(jié)構(gòu)的影響與AMF的功能密不可分,AMF能使共生植物低成本高效率的吸收養(yǎng)分,從而使共生植物對根系系統(tǒng)生長的投入比未接種植株減少[44- 45],因此,接種AMF有使夏蠟梅幼苗根系變短變粗的趨勢。但是,AMF+SW與SW的根系形態(tài)不存在顯著差異。說明模擬增溫條件下添加AMF不會影響夏蠟梅根系,或者模擬增溫會減弱AMF對夏蠟梅根系形態(tài)的影響。這與模擬增溫與AMF對夏蠟梅根系的顯著的交互作用一致。
[1]Thomas C D, Cameron A, Green R E, Bakkenes M, Beaumont L J, Collingham Y C, Erasmus B F N, de Siqueira M F, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld A S, Midgley G F, Miles L, Ortega-Huerta M A, Peterson A T, Phillips O L, Williams S E. Extinction risk from climate change. Nature, 2004, 427(6970): 145- 148.
[2]Araújo M B, Rahbek C. How does climate change affect biodiversity?. Science, 2006, 313(5792): 1396- 1397.
[3]Hellmann J J, Byers J E, Bierwagen B G, Dukes J S. Five potential consequences of climate change for invasive species. Conservation Biology, 2008, 22(3): 534- 543.
[4]Parmesan C, Burrows M T, Duarte C M, Poloczanska E S, Richardson A J, Schoeman D S, Singer M C. Beyond climate change attribution in conservation and ecological research. Ecology Letters, 2013, 16(S1): 58- 71.
[5]IPCC. Climate change 2007: the physical science basis // Contribution of the Fourth Assessment Report of Working Group. Cambridge: Cambridge University Press, 2007.
[6]Wu Z, Dijkstra P, Koch G W, Peuelas J, Hungate B A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 2011, 17(2): 927- 942.
[7]Niu S L, Luo Y Q, Li D J, Cao S H, Xia J Y, Li J W, Smith M D. Plant growth and mortality under climatic extremes: an overview. Environmental and Experimental Botany, 2014, 98: 13- 19.
[8]Fu G, Shen Z X, Sun W, Zhong Z M, Zhang X Z, Zhou Y T. A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan plateau. Journal of Plant Growth Regulation, 2015, 34: 57- 65.
[9]Kivlin S N, Emery S M, Rudgers J A. Fungal symbionts alter plant responses to global change. American Journal of Botany, 2013, 100(7): 1445- 1457.
[10]Mohan J E, Cowden C C, Baas P, Dawadi A, Frankson P T, Helmick K, Hughes E, Khan S, Lang A, Machmuller M, Taylor M T, Witt C A. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecology, 2014, 10: 3- 19.
[11]吳強盛. 園藝植物叢枝菌根研究與應(yīng)用. 北京: 科學出版社, 2010.
[12]Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 1994, 159(1): 89- 102.
[13]王曉英, 王冬梅, 陳保冬, 黃益宗, 王幼珊. 叢枝菌根真菌群落對白三葉草生長的影響. 生態(tài)學報, 2010, 30(6): 1456- 1462.
[14]Wu Q S, Xia R X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 2006, 163(4): 417- 425.
[15]Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y. Arbuscular mycorrhizal fungi alter fractal dimension characteristics ofRobiniapseudoacaciaL. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. Journal of Plant Growth Regulation, 2014, 33(3): 612- 625.
[16]Schnitzer S A, Klironomos J N, HilleRisLambers J, Kinkel L L, Reich P B, Xiao K, Rillig M C, Sikes B A, Callaway R M, Mangan S A, van Nes E H, Scheffer M. Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 2011, 92(2): 296- 303.
[17]Bona E, Marsano F, Massa N, Cattaneo C, Cesaro P, Argese E, di Toppi L S, Cavaletto M, Berta G. Proteomic analysis as a tool for investigating arsenic stress inPterisvittataroots colonized or not by arbuscular mycorrhizal symbiosis. Journal of Proteomics, 2011, 74(8): 1338- 1350.
[18]Augé R M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 2001, 11(1): 3- 42.
[19]Feng G, Zhang F S, Li X L, Tian C Y, Tang C, Rengel Z. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 2002, 12(4): 185- 190.
[20]Sharifi M, Ghorbanli M, Ebrahimzadeh H. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology, 2007, 164(9): 1144- 1151.
[21]Daei G, Ardekani M R, Rejali F, Teimuri S, Miransari M. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Journal of Plant Physiology, 2009, 166(6): 617- 625.
[22]Martin C A, Stutz J C. Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration ofCapsicumannuumL. Mycorrhiza, 2004, 14(4): 241- 244.
[23]潘傳威, 劉小芳, 屈鵬飛, 吳強盛. 叢枝菌根真菌提高溫度脅迫下枳根系抗氧化能力. 長江大學學報: 自然科學版, 2011, 8(9): 245- 247.
[24]劉潤進, 陳應(yīng)龍. 菌根學. 北京: 科學出版社, 2007.
[25]Meier S, Borie F, Bolan N, Bolan N, Cornejo P. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology, 2012, 42(7): 741- 775.
[26]金則新, 李鈞敏, 柯世省, 邊才苗, 張文標. 夏蠟梅保護生物學. 北京: 科學出版社, 2010.
[27]周世良, 葉文國. 夏臘梅的遺傳多樣性及其保護. 生物多樣性, 2002, 10(1): 1- 6.
[28]Kimball B A, Conley M M, Wang S P, Lin X W, Luo C Y, Morgan J, Smith D. Infrared heater arrays for warming ecosystem field plots. Global Change Biology, 2008, 14(2): 309- 320.
[29]McDaniel M D, Kaye J P, Kaye M W, Bruns M A. Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest. Oecologia, 2014, 174(4): 1437- 1448.
[30]Lau J A, Lennon J T. Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytologist, 2011, 192(1): 215- 224.
[31]Walling S Z, Zabinski C A. Defoliation effects on arbuscular mycorrhizae and plant growth of two native bunchgrasses and an invasive forb. Applied Soil Ecology, 2006, 32(1): 111- 117.
[32]Ye Z P, Yu Q. A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica, 2008, 46(4): 637- 640.
[33]葉子飄, 于強. 光合作用對胞間和大氣CO2響應(yīng)曲線的比較. 生態(tài)學雜志, 2009, 28(11): 2233- 2238.
[34]章家恩. 生態(tài)學常用實驗研究方法與技術(shù). 北京: 化學工業(yè)出版社, 2007.
[35]張志良, 瞿偉菁, 李小方. 植物生理學實驗指導(第四版). 北京: 高等教育出版社, 2009.
[36]李曉林, 馮固. 叢枝菌根生理生態(tài). 北京: 華文出版社, 2001.
[37]Rillig M C, Wright S F, Shaw M R, Field C B. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos, 2002, 97(1): 52- 58.
[38]Staddon P L, Gregersen R, Jakobsen I. The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Global Change Biology, 2004, 10(11): 1909- 1921.
[39]Zhu X C, Song F B, Liu S Q, Liu T D. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant and Soil, 2011, 346(1/2): 189- 199.
[40]Lawson T. Guard cell photosynthesis and stomatal function. New Phytologist, 2009, 181(1): 13-34.
[41]Hawkes C V, Hartley I P, Ineson P, Fitter A H. Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology, 2008, 14(5): 1181- 1190.
[42]Stevens K, Spender S, Peterson R. Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plantLythrumsalicariaL. under inundated conditions. Mycorrhiza, 2002, 12(6): 277- 283.
[43]Miller S P, Sharitz R R. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Functional Ecology, 2000, 14(6): 738- 748.
[44]Stevens K J, Wall C B, Janssen J A. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants,BidensfrondosaL., andEcliptaprostrata(L.) L., grown under three levels of water availability. Mycorrhiza, 2011, 21(4): 279- 288.
[45]Zavalloni C, Vicca S, Büscher M, de la Providencia I E, Dupré de Boulois H, Declerck S, Nijs I, Ceulemans R. Exposure to warming and CO2enrichment promotes greater above-ground biomass, nitrogen, phosphorus and arbuscular mycorrhizal colonization in newly established grasslands. Plant and Soil, 2012, 359(1/2): 121- 136.
Effects of AMF inoculation on growth and photosynthetic physiological characteristics ofSinocalycanthuschinensisunder conditions of simulated warming
WANG Xiaoyan1,2, PENG Liqiong1, 3, JIN Zexin1,2,*
1InstituteofEcology,TaizhouUniversity,Taizhou318000,China2ZhejiangProvincialKeyLaboratoryofPlantEvolutionaryEcologyandConservation,Taizhou318000,China3HuzhouLiangxiForestParkManagementOffice,Huzhou313000,China
The global climate warming is affecting ecosystems, especially endangered plant species whose distribution is mostly restricted to few areas. Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with many plant species, supplying mineral nutrients to their host plants.Sinocalycanthuschinensisis a national second-class protected plant species, distributed in only a few areas in Zhejiang and Anhui provinces in China. Preliminary investigation has revealed higher infection rate of natural populations ofS.chinensisby AMF. The role of AMF inS.chinensisunder global warming has remained unknown. To reveal the effects of AMF onS.chinensisunder the conditions of global climate warming, the pot experiment was conducted with one-year-oldS.chinensisseedlings inoculated with AMF (inoculation of rhizosphere soil at a rate of 5%, v/v; soil without AMF was used as control) and temperature increase was simulated by an electric radiant infrared heater (+ 2℃ measured around the leaves; normal temperature was used as control). Growth rate, morphogenesis, photosynthetic physiological characteristics, antioxidant activities, membrane lipid peroxide level, nutrient content ofS.chinensisseedlings were compared under four treatments: AMF, simulated warming (SW), both AMF inoculation and simulated warming (AMF + SW), and control (CK). The results showed that: (1) AMF inoculation had a significant positive effect on plant height and average root diameter, and a negative effect on the width-to-length ratio of mature leaves, total root length, total number of root tips, special root length (root length/root biomass), and special root surface area (root surface area/root biomass). Double-factor variance analysis showed that the average root diameter and total number of root tips was significantly correlated with AMF and SW. This showed that symbiotic association between AMF andS.chinensismay modify the nutrient absorption strategy ofS.chinensisthrough modification in root morphology. (2) The diurnal change in net photosynthetic rate (Pn) of leaves inS.chinensisseedlings under AMF + SW treatment had a typical bimodal curve that was determinately regulated by stomatal conductance. AMF affected significantly the daily meanPn. After fitting the photosynthesis light response using modified models of rectangular hyperbola, we found thatPnin plants with AMF + SW and AMF treatments were distinctly higher than that of CK when light intensity was more than 50mol m-2s-1. The double-factor variance analysis showed that AMF significantly affected the daily meanPn, maximum net photosynthetic rate, light saturation point (LSP), and dark respiration rate, whereas SW had a significant effect on LSP. Fitting of the CO2response by using modified models of rectangular hyperbola revealed thatPnin plants under AMF + SW and AMF treatments was significantly higher than that in the CK with increasing the concentration of CO2. Initial carboxylation efficiency under AMF + SW treatment and photosynthetic capacity under AMF treatment were significantly higher than that of the CK. The CO2compensation point after the treatment by AMF + SW or AMF was significantly lower than that of the CK. (3) The content of soluble sugars in leaves after the treatment with AMF was significantly higher than that in other treatments. The content of soluble proteins in leaves of plants treated with AMF + SW or AMF was distinctly higher than that of the CK. The double-factor variance analysis showed that SW and AMF + SW interaction had significant effect on the content of soluble sugars in leaves, and both AMF and SW had significant effect on the content of soluble proteins in leaves. The results provided the theoretical foundation for conservation and artificial cultivation ofS.chinensisunder conditions of global climate change.
Sinocalycanthuschinensis; simulated global warming; arbuscular mycorrhizal fungi(AMF); growth; photosynthetic physiology
國家自然科學基金(31400423);浙江省自然科學基金(LQ14C030001);臺州學院生態(tài)學浙江省重點學科開放課題(EKD2013-07)
2015- 01- 22; 網(wǎng)絡(luò)出版日期:2015- 11- 30
Corresponding author.E-mail: jzx@tzc.edu.cn
10.5846/stxb201501220177
王曉燕,彭禮瓊,金則新.模擬增溫條件下接種AMF對夏蠟梅幼苗生長與光合生理特性的影響.生態(tài)學報,2016,36(16):5204- 5214.
Wang X Y, Peng L Q, Jin Z X.Effects of AMF inoculation on growth and photosynthetic physiological characteristics ofSinocalycanthuschinensisunder conditions of simulated warming.Acta Ecologica Sinica,2016,36(16):5204- 5214.