黃燕曉, 郝紅勛, 郭家琛
(1. 中國(guó)民航大學(xué) 通用航空學(xué)院, 天津 300300;2. 中國(guó)民航大學(xué) 飛行技術(shù)學(xué)院, 天津 300300;3. 南京航空航天大學(xué) 民航學(xué)院, 江蘇 南京 210016)
?
應(yīng)用單元體參數(shù)的航空發(fā)動(dòng)機(jī)性能預(yù)警方法
黃燕曉1, 郝紅勛2, 郭家琛3
(1. 中國(guó)民航大學(xué) 通用航空學(xué)院, 天津 300300;2. 中國(guó)民航大學(xué) 飛行技術(shù)學(xué)院, 天津 300300;3. 南京航空航天大學(xué) 民航學(xué)院, 江蘇 南京 210016)
基于安全關(guān)口前移的性能預(yù)警要求,提出以單元體參數(shù)的航空發(fā)動(dòng)機(jī)性能預(yù)警方法,提取發(fā)動(dòng)機(jī)原理分析性能參數(shù)相關(guān)的可測(cè)參數(shù)與參數(shù)組合.以發(fā)動(dòng)機(jī)機(jī)隊(duì)為研究對(duì)象,運(yùn)用數(shù)據(jù)統(tǒng)計(jì)的σ準(zhǔn)則構(gòu)建性能指數(shù)動(dòng)態(tài)閾值模型.以PW4077D型機(jī)隊(duì)5臺(tái)發(fā)動(dòng)機(jī)1 440~1 980循環(huán)數(shù)據(jù)驗(yàn)證模型,并與主成分性能閾值模型比較.結(jié)果表明:構(gòu)建的模型計(jì)算結(jié)果與主成分模型結(jié)果一致,即性能動(dòng)態(tài)閾值隨循環(huán)數(shù)增加而復(fù)雜下降,在1 500,1 560和1 840等循環(huán)附近閾值有所恢復(fù).
航空發(fā)動(dòng)機(jī); 單元體參數(shù); 預(yù)警方法; 動(dòng)態(tài)閾值;σ準(zhǔn)則
民航干線飛機(jī)裝配的渦輪風(fēng)扇發(fā)動(dòng)機(jī),具有推力大、耗油率低特點(diǎn),因長(zhǎng)期工作在高速、高壓和高溫等惡劣環(huán)境下[1-3],容易引起性能衰退或突變,帶來(lái)安全隱患.因此,航空發(fā)動(dòng)機(jī)性能需要可靠監(jiān)控預(yù)警[4-5].傳統(tǒng)的監(jiān)控預(yù)警方法常以氣路參數(shù)或振動(dòng)參數(shù)構(gòu)建性能超限或趨勢(shì)模型,預(yù)測(cè)突發(fā)故障或分析性能衰退趨勢(shì)等[5-6].然而,以氣路或振動(dòng)參數(shù)而不是單元體參數(shù)進(jìn)行性能監(jiān)控預(yù)警,將使單元體結(jié)構(gòu)設(shè)計(jì)優(yōu)勢(shì)無(wú)法充分應(yīng)用,也不能將發(fā)動(dòng)機(jī)安全關(guān)口前移至單元體層面[7],采用經(jīng)驗(yàn)確定的靜態(tài)閾值不能滿足性能精確監(jiān)控預(yù)警要求.從單元體層面構(gòu)建性能參數(shù)邊界或閾值建立性能預(yù)警監(jiān)控模型,國(guó)內(nèi)外學(xué)者都做了相關(guān)工作[1,8,9].這些研究工作更注重以經(jīng)驗(yàn)監(jiān)控發(fā)動(dòng)機(jī)瞬態(tài)性能,判斷精度不高且沒(méi)有預(yù)警能力.鑒于此,本文提出單元體參數(shù)表征發(fā)動(dòng)機(jī)性能的預(yù)警方法.
民航飛機(jī)裝配的渦輪風(fēng)扇發(fā)動(dòng)機(jī)均是以單元體結(jié)構(gòu)設(shè)計(jì)為原則,常用機(jī)型為PW4077D發(fā)動(dòng)機(jī)[10].目前,使用機(jī)型為GE90系列發(fā)動(dòng)機(jī),文中以二者為例進(jìn)行比較分析.PW4077D發(fā)動(dòng)機(jī)有風(fēng)扇、核心機(jī)、低壓渦輪和附件傳動(dòng)裝置4個(gè)核心單元體,以13個(gè)占位表示著不同的發(fā)動(dòng)機(jī)位置,為使表述簡(jiǎn)潔,不計(jì)各占位的小數(shù)點(diǎn),如12.5占位以125表述.航空發(fā)動(dòng)機(jī)單元體性能參數(shù)與可測(cè)參數(shù),如表1所示.
表1 航空發(fā)動(dòng)機(jī)單元體性能參數(shù)與可測(cè)參數(shù)
2.1發(fā)動(dòng)機(jī)性能單元體參數(shù)權(quán)值計(jì)算方法
(1)
各參數(shù)的相關(guān)系數(shù)αi,j為
(2)
2.2機(jī)隊(duì)各循環(huán)性能動(dòng)態(tài)閾值計(jì)算方法
以機(jī)隊(duì)性綜合閾值替代各臺(tái)發(fā)動(dòng)機(jī)性能閾值作為準(zhǔn)則,依據(jù)發(fā)動(dòng)機(jī)單元體參數(shù)值及各參數(shù)權(quán)值,提出基于單元體參數(shù)的發(fā)動(dòng)機(jī)性能指數(shù).不同循環(huán)t下的性能指數(shù)計(jì)算式為
(3)
3.1定量計(jì)算單元體參數(shù)性能權(quán)值
發(fā)動(dòng)機(jī)性能的主成分計(jì)算結(jié)果,如表2所示.
表2 發(fā)動(dòng)機(jī)性能的主成分計(jì)算結(jié)果
由表2可知:主成分1,2對(duì)應(yīng)特征根大于1,且方差貢獻(xiàn)率分別為59.154 0%和23.118 0%,累計(jì)貢獻(xiàn)率為82.272 0%,在80%~90%準(zhǔn)則內(nèi).故主成分1,2能夠包含選取的7個(gè)參數(shù)表征的發(fā)動(dòng)機(jī)性能,選取主成分k=2,特征根λk={(4.414 0, 1.168 0)|k=1,2}.計(jì)算各主成分對(duì)應(yīng)于7個(gè)參數(shù)的載荷系數(shù)和線性組合系數(shù),然后,計(jì)算相關(guān)系數(shù)矩陣中發(fā)動(dòng)機(jī)排氣溫度特征值和權(quán)值,所得結(jié)果如表3所示.
表3 發(fā)動(dòng)機(jī)單元體參數(shù)相關(guān)系數(shù)矩陣特征值與權(quán)值
圖1 5臺(tái)發(fā)動(dòng)機(jī)性能指數(shù)趨勢(shì)Fig.1 performance index trends of five engines
3.2機(jī)隊(duì)各臺(tái)發(fā)動(dòng)機(jī)的性能指數(shù)
由式(3)可計(jì)算出機(jī)隊(duì)各臺(tái)發(fā)動(dòng)機(jī)的性能指數(shù).機(jī)隊(duì)中5臺(tái)發(fā)動(dòng)機(jī)性能指數(shù)趨勢(shì),如圖1所示.由圖1可知:PW4077D機(jī)隊(duì)中5臺(tái)發(fā)動(dòng)機(jī)在該循環(huán)區(qū)間內(nèi)性能總體處于降趨勢(shì),但過(guò)程變化復(fù)雜.
3.3發(fā)動(dòng)機(jī)機(jī)隊(duì)性能指數(shù)動(dòng)態(tài)閾值
圖2 機(jī)隊(duì)發(fā)動(dòng)機(jī)性能閾值趨勢(shì)Fig.2 Fleet performance threshold values trend
由于5臺(tái)發(fā)動(dòng)機(jī)在相同循環(huán)的發(fā)動(dòng)機(jī)性能指數(shù)值視作正態(tài)分布,按照σ準(zhǔn)則分析該機(jī)隊(duì)的性能指數(shù)動(dòng)態(tài)閾值,如圖2所示.圖2中:顯著性水平α=0.05;n為工作循環(huán)數(shù).
依據(jù)主成分分析法,計(jì)算第1,2主成分特征值對(duì)應(yīng)的發(fā)動(dòng)機(jī)性能指數(shù).計(jì)算機(jī)隊(duì)各循環(huán)性能的閾值分別為:6.305 0, 1.764 4, 4.531 0,1.339 3, 2.179 9,0.850 1,-0.725 2,-2.579 0,-1.492 8,-3.442 2,5.277 7,-0.200 1,-1.209 6,-1.382 4.由圖2可知:在1 440~1 980循環(huán)區(qū)間的性能指數(shù)閾值變化與定權(quán)值法得到的結(jié)果從趨勢(shì)上是一致的,故基于定權(quán)值法和數(shù)據(jù)統(tǒng)計(jì)結(jié)合計(jì)算出的機(jī)隊(duì)性能指數(shù)閾值曲線能夠替代發(fā)動(dòng)機(jī)性能基線監(jiān)控發(fā)動(dòng)機(jī)無(wú)故障狀態(tài)下的性能預(yù)警監(jiān)控.
1) 結(jié)合航空發(fā)動(dòng)機(jī)單元體結(jié)構(gòu)設(shè)計(jì)的主要特點(diǎn),提出以單元體參數(shù)及組合替代氣路參數(shù)和振動(dòng)參數(shù)表征發(fā)動(dòng)機(jī)性能[11].
2) 提出以機(jī)隊(duì)而不是單臺(tái)發(fā)動(dòng)機(jī)為預(yù)警計(jì)算的基準(zhǔn),定權(quán)值和主成分法得到的性能閾值趨勢(shì)變化均隨工作循環(huán)數(shù)增加而單調(diào)下降.下降過(guò)程比較復(fù)雜,在維護(hù)維修等工作后性能閾值會(huì)顯著恢復(fù),但不會(huì)恢復(fù)到初始循環(huán)水平.
[1]SIMONDL,ARMSTONGJB.Anintegratedapproachforaircraftengineperformanceestimationandfaultdiagnostics[J].JournalofEngineeringforGasTurbinesandPower,2013,135(7):1-10.
[2]HOCHGREBS,DENNISD,AYRANCII,etal.Forcedandself-excitedinstabilitiesfromleanpremixed,liquid-fuelledaero-engineinjectorsathighpressuresandtemperature[C]∥ASMETurboExpTurbineTechnicalConferenceandExposition.SanAntonio:AmericanSocietyofMechanicalEngineers,2013:1-12.
[3]GREITZEREM.SomeaerodynamicproblemsofaircraftEngines:fiftyyearsafter-the2007IGTIscholarlecture[J].JournalofTurboMachinery,2009,131(3):1-13.
[4]孫見(jiàn)忠,左洪福,劉鵬鵬,等.基于動(dòng)態(tài)線性模型的民航發(fā)動(dòng)機(jī)性能監(jiān)控模型與在翼壽命預(yù)測(cè)[J].系統(tǒng)工程理論與實(shí)踐,2013,33(2):3243-3250.
[5]VOLPONIAJ.Gasturbineenginehealthmanagement:Past,present,andfuturetrends[J].JournalofEngineeringforGASturbinesandPower,2014,136(5):1-20.
[6]單曉明,宋云峰,黃金泉,等.基于神經(jīng)網(wǎng)絡(luò)和模糊邏輯的航空發(fā)動(dòng)機(jī)狀態(tài)監(jiān)視[J].航空動(dòng)力學(xué)報(bào),2009,24(10):2356-2361.
[7]趙威,張德志.單元體結(jié)構(gòu)發(fā)動(dòng)機(jī)總體結(jié)構(gòu)尺寸控制與分析[J].航空發(fā)動(dòng)機(jī),2014,40(5):45-49.
[8]劉志榮,朱睿,梁忠生,等.發(fā)動(dòng)機(jī)健康基線及評(píng)估準(zhǔn)則研究[J].廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,49(4):520-525.
[9]周俊,劉俊華,楊濤,等.航空發(fā)動(dòng)機(jī)在線振動(dòng)檢測(cè)系統(tǒng)的開(kāi)發(fā)[J].計(jì)算機(jī)測(cè)量與控制,2015,23(11):3599-3602.
[10]黃燕曉,李書(shū)明,王凌云,等.面向核心單元體的航空發(fā)動(dòng)機(jī)性能評(píng)估研究[J].制造業(yè)自動(dòng)化,2015,37(9):86-92,105.
[11]李東民,張慧,李玉善.不同氧空比下發(fā)動(dòng)機(jī)動(dòng)力性能與 NOx排放仿真分析[J].華僑大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,37(3):281-286.
(責(zé)任編輯: 陳志賢 英文審校: 崔長(zhǎng)彩)
Research on Aero-Engine Performance Early Alerting Method Using Module Parameters
HUANG Yanxiao1, HAO Hongxun2, GUO Jiachen2
(1. College of General Aviation, Civil Aviation University of China, Tianjin 300300, China;2. College of Flight Technology, Civil Aviation University of China, Tianjin 300300, China;3. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
To satisfy the requirements caused by the pre crossing safety for aero-engine performance early alerting, the paper put forward to take out the measurable parameters and their combinations related to the performance parameters by engine operating principle with aero-engine performance early alerting method based on module parameters. With the engine fleet as the research objects, then proposed performance index dynamic threshold model using the statistical criteria with the fleet as the research objects. The performance data of 5 engines with 1 440-1 980 cycles in PW4077D fleet were imputed into the model to verify the performance index dynamic threshold model. Then the paper compared the results generated by combining the fixed weighted value and the statistical criteria with that generated by the PCA method. The comparison showed that the results of two methods were in agreement with each other, i.e., when the performance index dynamic threshold values decrease complexly as the cycle number within the 1 440-1 980 cycles increases, and the threshold values of the 1 500, 1 560 and 1 840 cycles in their neighborhood had recovered somewhat.
aero-engine; module parameters; alerting method; dynamic threshold;σcriteria
10.11830/ISSN.1000-5013.201605001
2016-07-23
黃燕曉(1980-),男,講師,博士,主要從事飛機(jī)發(fā)動(dòng)機(jī)健康管理技術(shù)的研究.E-mail:oldsea0592@163.com.
國(guó)家安全生產(chǎn)監(jiān)督管理局安全生產(chǎn)重大事故防治關(guān)鍵技術(shù)科技項(xiàng)目(tianjin-0001-2015AQ)
V 239
A
1000-5013(2016)05-0527-04