楊萌,董潤(rùn)安
(北京理工大學(xué) 生命學(xué)院,北京 100081)
D-1,2,4-丁三醇的綠色合成
楊萌,董潤(rùn)安*
(北京理工大學(xué) 生命學(xué)院,北京 100081)
D-1,2,4-丁三醇(D-1,2,4-butanetriol,BT)是四碳的手性多羥基醇,同時(shí)也是極具價(jià)值的有機(jī)合成中間體,應(yīng)用十分廣泛,特別是在醫(yī)藥和軍事工業(yè)領(lǐng)域。目前D-1,2,4-丁三醇的工業(yè)化生產(chǎn)仍以化學(xué)合成法為主,該方法存在反應(yīng)條件苛刻、產(chǎn)率低、副產(chǎn)物多,易引發(fā)環(huán)境污染等弊端。目前,利用合成生物學(xué)技術(shù),安全高效的生物合成該化學(xué)品成為研究的熱點(diǎn)。本文評(píng)述了D-1,2,4-丁三醇的化學(xué)合成和生物合成,以期為D-1,2,4-丁三醇的綠色合成提供理論基礎(chǔ)。
D-1,2,4-丁三醇;生物合成;綠色合成
D-1,2,4-丁三醇是無色無味、透明、粘稠的四碳多元醇[1],其分子式為C4H10O3,結(jié)構(gòu)式如圖1所示,由于第二位碳是手性碳原子,具有旋光性,在水和醇類物質(zhì)中溶解度較高,具有吸濕性。工業(yè)用的D-1,2,4-丁三醇呈草黃色或褐色[2]。D-1,2,4-丁三醇是重要的有機(jī)合成中間體,廣泛應(yīng)用于醫(yī)藥、農(nóng)業(yè)、化妝品、造紙、高分子材料、煙草、軍工等領(lǐng)域[3-6]。D-1,2,4-丁三醇的硝基化合物沖擊敏感性低、熱穩(wěn)定性好、低毒性、吸濕性好,與其它含能增塑劑混合使用,可顯著提高以硝化纖維素為基火藥的低溫力學(xué)性能[7-9]。D-1,2,4-丁三醇用作緩釋劑,是制備抗病毒化合物等藥物的關(guān)鍵中間體[10-12],添加在煙草中,降低了硝基化合物的毒害作用,可用作高分子材料的交聯(lián)劑,增加材料的強(qiáng)度和硬度,還可用作高級(jí)墨水的防干劑、高級(jí)服裝表面處理劑、陶瓷加工助劑、特殊用途包裝與儲(chǔ)運(yùn)等[13,14]。D-1,2,4-丁三醇能抑制微生物,是抗微生物制劑(如防腐劑)的組成部分[2]。有巨大的市場(chǎng)潛力。
圖1 D-1,2,4-丁三醇的分子結(jié)構(gòu)Fig. 1 The structure of D-1,2,4-butanetrion
自Wagner以3-丁烯醇為原料合成D-1,2,4-丁三醇以來,合成方法不斷改進(jìn),先后有蘋果酸還原法[14]、丙烯醇法[15]、環(huán)醚的開環(huán)反應(yīng)[1]、2-丁烯-1,4-二醇硼烷-氧化法[16]、2-丁烯-1,4-二醇的汞氧化水合法[17]、乙炔-硫酸汞法[18,19]、2-丁烯-1,4-二醇的酸催化法[20]、1,4-二羥基環(huán)氧丁烷的氫化法[21]、馬來酸及其酯的氫化法[22]、3-丁烯-1-醇的氧化水合法[23-25]等。
從生產(chǎn)成本、污染程度和安全性評(píng)價(jià),以下四條合成路線具有工業(yè)化生產(chǎn)的潛力[26]。2-丁烯-1,4-二醇(BTD)酸催化法[20]:BTD在H2SO4作用下水合,生成硫酸氫酯中間體,加熱水解生成D-1,2,4-丁三醇,收率不足30%,成本約5300~6200美元/噸。該工藝需要進(jìn)一步改進(jìn)BTD酯化水解條件,提高收率。BTD氧化法[23-25]:在H2WO4催化下用H2O2氧化BTD,生成2-環(huán)氧基-1,4-二醇,然后以RaneyNi-Pd/C或硼化鎳為催化劑,高壓催化氫化,合成D-1,2,4-丁三醇,收率約60 %~ 80 %,成本價(jià)約4130~5500美元/噸[27]。馬來酸及其酯的氫化法[22]:馬來酸二乙酯溶于乙醇,以酮-鉻為催化劑,在150℃,21MPa條件下發(fā)生氫化,D-1,2,4-丁三醇的轉(zhuǎn)化率為50%~60%,該工藝條件比較苛刻,收率低。丙烯醇法[15]:由多聚甲醛、醋酸和硫酸組成混合液,將丙烯醇和醋酸酐、甲醛加入其中進(jìn)行反應(yīng),反應(yīng)溫度控制在70~75 ℃,Na2CO3中和,收率在45%~50%,反應(yīng)路線原料廉價(jià)、易得、成本低,反應(yīng)條件溫和,成本約3965~4400美元/噸[1],是目前工業(yè)化生產(chǎn)較好的工藝,該方法副反應(yīng)多,產(chǎn)品提純困難,所用溶劑醋酸對(duì)環(huán)境有一定的污染。
3.1木糖/阿拉伯糖—D-1,2,4-丁三醇的轉(zhuǎn)化
Niu等[3]2003年提出D-1,2,4-丁三醇的微生物合成法。在大腸桿菌(Escherichia coli)中,利用來自Pseudomonas putida的氧化酶氧化D-木糖生成D-木糖酸,產(chǎn)率70%,D-木糖酸再經(jīng)Escherichia coli DH5α/pWN6.186A催化生成D-1,2,4-丁三醇,產(chǎn)率為25%,由木糖到丁三醇的總產(chǎn)率為17.5%。Pseudomonas fragi氧化L-阿拉伯糖生成L-阿拉伯-1,4-內(nèi)酯和L-阿糖酸的混合物,內(nèi)酯水解成L-阿糖酸后,再由Escherichia. coli BL21(DE3)/pWN6.222A轉(zhuǎn)化L-阿糖酸生成L-1,2,4-丁三醇,產(chǎn)率為35%,總轉(zhuǎn)化率19%[3]。
圖2 重組大腸桿菌利用木糖/阿拉伯糖生產(chǎn)D/L-1,2,4-丁三醇的代謝途徑[33]Fig 2 Metabolic pathway from D-xylose or L-arabinose to D/L-1,2,4-butanetrion
Frost 等[34]利用木糖途徑(圖2)生產(chǎn)丁三醇,不敲除任何副產(chǎn)物途徑,丁三醇的產(chǎn)量?jī)H有0.08 g/L。 Kris 等[35]敲除了木糖的副產(chǎn)物途徑后,產(chǎn)量0.25 g/L,這兩種情況丁三醇轉(zhuǎn)化率較低。
Valdehuesa等[36]敲除了E.coli的木糖異構(gòu)酶(xylA)、木酮糖激酶(xylB)、2-酮酸醛羧酶(yjhH和yagE),使菌體無法以木糖為碳源進(jìn)行代謝,并過表達(dá)了來源于新月柄桿菌(Caulobacter crescentus)的木糖脫氫酶(xylB)和來自于惡臭假單胞菌(Pseudomonas putida)的2-酮酸脫羧酶(mdlC),并對(duì)其序列優(yōu)化,重組大腸桿菌可直接利用D-木糖合成D-1,2,4-丁三醇,產(chǎn)量0.88g/L。江南大學(xué)的孫文龍等[37]與Valdehuesa類似的研究,丁三醇產(chǎn)量0.9g/L。
馬鵬飛等[33]以E.coli MG1655為出發(fā)菌株,通過敲除消耗木糖和中間代謝產(chǎn)物的關(guān)鍵基因xylA、yjhH和yagE,并過表達(dá)Caulobacter Crescentus CB15 編碼D-木糖脫氫酶的xylB基因和Pseudomonas putida ATCC12633編碼2-酮酸脫羧酶的mdlC基因,以宿主菌自身的D-木糖酸脫水酶和醇脫氫酶[34,38-40]即MG1655△yjhH△yagE△xylA::Kanr/pTMX實(shí)現(xiàn)了D-木糖向D-1,2,4-丁三醇的轉(zhuǎn)化,代謝途徑如圖3,產(chǎn)量2.05g/L。為保證該重組菌的繁殖代謝,應(yīng)增加細(xì)胞的碳源供應(yīng),提出補(bǔ)加葡萄糖的策略,對(duì)影響葡萄糖和木糖共利用的相關(guān)基因進(jìn)行分析發(fā)現(xiàn)ptsG、mgsA的敲出有利于丁三醇的合成,結(jié)果產(chǎn)量分別提高到3.05g/L和9.0g/L[33]。
圖3 D-木糖轉(zhuǎn)化為D-1,2,4-丁三醇的代謝途徑及主要分支途徑[33]Fig 2.2 Metabolicpathway for D-1,2,4-butanetriol biosynthesis from D-xylose and main branch pathways.
3.2赤蘚糖醇—D-1,2,4-丁三醇的轉(zhuǎn)化
Man Kit Lau 等[35]構(gòu)建工程菌E. coli W3110(PML5.200),過表達(dá)Klebsiella ATCC25955 的甘油脫水酶基因gldABC,用重組菌的裂解液催化赤蘚糖醇脫水生成3,4-二羥基丁醛后,被NaBH4還原成1,2,4-丁三醇。但在培養(yǎng)基中添加赤蘚糖醇時(shí),在發(fā)酵液中無法檢測(cè)到1,2,4-丁三醇。
3.3葡萄糖—D-1,2,4-丁三醇的轉(zhuǎn)化
Li等[41]以大腸桿菌為基礎(chǔ)菌,構(gòu)建以葡萄糖為底物經(jīng)蘋果酸合成途徑合成1,2,4-丁三醇的代謝通路。該途徑是六個(gè)連續(xù)的酶促反應(yīng)。選擇蘋果酸硫激酶,琥珀酸鹽半醛脫氫酶,4-羥基丁酸酯脫氫酶,4-羥基丁酰-CoA轉(zhuǎn)移酶和雙功能醛/醇脫氫酶5種酶,酶的編碼基因重組在大腸桿菌兩個(gè)兼容性質(zhì)粒上表達(dá)。在確定兩個(gè)功能模塊(即相容性質(zhì)粒)導(dǎo)入宿主細(xì)胞后,在加入蘋果酸的發(fā)酵液中檢測(cè)到1,2,4-丁三醇。這種新的合成途徑實(shí)現(xiàn)了從更為低廉的葡萄糖生產(chǎn)1,2,4-丁三醇。
孫雷等[42]人利用來自乳酸乳球菌(Lactococcus lactis)的α-酮異戊酸脫羧酶(KivD)替代 MdlC,表現(xiàn)出更高的催化效率,通過對(duì) KivD的合理設(shè)計(jì),進(jìn)一步提高 KivD 對(duì)目標(biāo)反應(yīng)的催化活性,重組菌株的最高產(chǎn)量2.38g/L。
化學(xué)合成1,2,4,-丁三醇反應(yīng)條件苛刻、產(chǎn)率低、副產(chǎn)物多,易引發(fā)環(huán)境污染。生物合成成本低廉,環(huán)境友好,合成綠色??朔嘶瘜W(xué)合成的不足。但非天然合成途徑與原有的代謝互相影響,導(dǎo)致1,2,4-丁三醇產(chǎn)量較低,生物法合成1,2,4-丁三醇需更為精細(xì)的研究,克服現(xiàn)有瓶頸,才能為實(shí)現(xiàn)大規(guī)模生產(chǎn)奠定基礎(chǔ)。
[1] 李赤峰,徐保國(guó). 1,2,4-丁三醇合成工藝述評(píng)[J]. 精細(xì)化工中間體,2000(03): 9-11.
[2] 孫文龍. 生物法合成D-1,2,4-丁三醇關(guān)鍵基因的克隆及重組菌的構(gòu)建[D]. 江南大學(xué),2014.
[3] Niu W,Molefe M N,F(xiàn)rost J W. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol[J]. Journal of the American Chemical Society,2003,125(43): 12998-12999.
[4] Sato T,Aoyagi S,Kibayashi C. Enantioselective total synthesis of(+)-azimine and(+)-carpaine[J]. Organic Letters,2003,5(21): 3839-3842.
[5] Xu Y,Qian L,Pontsler A V,et al. Synthesis of difluoromethyl substituted lysophosphatidic acid analogues[J]. Tetrahedron,2004,60(1): 43-49.
[6] Yamada O K,Norimoto A,Kawada N,et al. Production of optically active 1,2,4-butanetriol from corresponding racemate by microbial stereoinversion[J]. Journal of bioscience and bioengineering,2007,103(5): 494-496.
[7] Dai X Y,Yang K X. Minimum Signature Composite Solid Propellants Containing HEGH Energy-Density Materials[J]. Aerospace Shang Hai,1996,1(5): 9-14.
[8] Wang F,Zhang X P,Hu R Z,et al. Study on Combustion Properties of Nitrate Ester Plasticized Polyether Propellants at High Pressure[J]. Journal of Propulsion Technology,2004,19(5): 20-25.
[9] Li Z F,F(xiàn)eng Z G,Hou Z L. Mechanical Properties of Hydroxy-Terminated Glycidyl Azide Polymer(GAP)Polyurethanes[J]. Journal of Beijing Institute of Technology,1997,23(5): 469-472.
[10] Luo S G,Tan H M,Zhang J G. Thermal Degradation
Characteristics of Co-Polyether(EO-THF)and the Poly(etherurethane-urea)Cured by N-100[J]. Journal of Beijing Institute of Technology,1995,10(06): 10-12.
[11] Johansson K,Kovacs Z,Lindborg B,et al. Derivatives of Purine,US 5,036,071 1991,30(07).
[12] Chu G H,Zhou Q,Bai D L. Synthesis of Sarmentosin[J]. Acta Pharmaceutica Sinica,1999,7(1): 7-10.
[13] Xu X M,Tang X Z. The Study on 1,2,4-butantriol[N]. ID 9319201320 1989,06.
[14] Adkins H,Billica H R. The Hydrogenation of Esters to Alcohols at 25-150[J]. Journal of the American Chemical Society,1948,70(9): 3121-3125.
[15] Olsen S. Naturforsch[J]. Acta Chem Scand,1950(4): 375.
[16] Zweifel G,Brown H. Organic reactions[M]. New York: Wiley,1963(13).
[17] Pariselle H.d'une glycérine en C4: passage à la série du furfurane et aux érythrites,par M. Henri Pariselle[M]. Gauthier-Villars,1911.
[18] Reppe J W. Acetylene chemistry[M]. Meyer,1949: 418.
[19] Reppe J. Acetylene Chemistry. University Microfilms: PB Report[R]. Inc: Ann Arbor,Mich(London),1949.
[20] Taberner P,Pearce M. Hypothermic and toxic actions of 2-butyne-1,4-diol and other related diols in the rat[J]. Journal of Pharmacy and Pharmacology,1974,26: 597-604.
[21] Eggersdorfer D,Siegel D,Mueller D,et al. Method for the production of 1,2,4-butanetriol [P]. EP Patent,0297444,1989.
[22] Frank. J Pisacane. 1,2,4-Buntanetriol Analysis And Synthesis[R]. NSWC TR 82-380,1983,20(7).
[23] Gallaghan J A. Butanetriol Trinit rate:Its Manufacture and Evaluation as a Propellant Ingredient[R]. Navord,Report 3014,Technical Report 41,1963-01-12.
[24] Gallaghan J A. The Synthesis of 1,2,4-Butanetriol and the Evaluation of It s Trinit rate [N].US Naval Powder Factory Technical Report,1948,19.
[25] Schaffuer I J. Synthesis of New Explosives and Propellants [R]. Quarterly Progress Report,1948,3: US Rubber Co.
[26] 羅阿力,喬建軍,宋新潮. 1,2,4-丁三醇的合成工藝研究[J].西北藥學(xué)雜志,2007,22(3): 144-145.
[27] 吳思忠,余正坤,劉韌,等. 一種1,2,4-丁三醇的合成方法: CN1803747[P],2006.
[28] Furukawa Y,Ho S,Ikai K,et al. Process for producing 1,2,4-butanetriol: EP,EP 1061060 B1[P]. 2005.
[29] Schofield D,Bailey M,Monteith M J. Process for thepreparation of butane triols: US,US 6479714 B1[P]. 2002.
[33] 馬鵬飛. 重組大腸桿菌合成D-1,2,4-丁三醇代謝系統(tǒng)的理性改造[D]. 北京理工大學(xué),2015.
[34] Frost J,Niu W. Microbial synthesis of d-1,2,4-butanetriol[P]. WO Patent,2008091288,2008.
[35] Kris NG. Valdehuesaa,Huaiwei Liu,et al. Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli[J]. Process Biochemistry,2013.
[36] Valdehuesa K N G,Liu H,Ramos K R M,et al. Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli[J]. Process Biochemistry,2014,49(1): 25-32.
[37] 孫文龍,陸信曜,宗紅,等. 代謝工程改造大腸桿菌合成D-1,2,4-丁三醇[J]. 微生物學(xué)通報(bào),2014,41(10): 1948-1954.
[38] Wang X,Miller E N,Yomano L P,et al. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate[J]. Applied and environmental microbiology,2011,77(15): 5132-5140.
[39] Rodriguez G M,Atsumi S. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity[J]. Microb Cell Fact,2012,11(1): 90.
[40] Leonardo M R,Cunningham P R,Clark D P. Anaerobic regulation of the adhE gene,encoding the fermentative alcohol dehydrogenase of Escherichia coli[J]. Journal of bacteriology,1993,175(3): 870-878.
[41] Li X,Cai Z,Li Y,et al. Design and Construction of a Non-Natural Malate to 1,2,4-Butanetriol Pathway Creates Possibility to Produce 1,2,4-Butanetriol from Glucose[J]. Scientific reports,2014,4.
[42] 孫雷. 重組大腸桿菌中1,2,4-丁三醇合成途徑的構(gòu)建和優(yōu)化[D]. 江南大學(xué),2015.
Environmentally Friendly Synthesize of 1,2,4-Butanetriol
Yang Meng,Dong Runan*
(School of Life Science,Beijing Institute of Technology,Beijing 100081)
D-1,2,4- butanetriol(BT)is a chiral polyhydric alcohol with four carbon. As an important and valuable intermediate in organic synthesis,BT has a lot of industrial applications,particularly in the military and the medical field. Currently industrialized production of BT mainly employs chemical synthesis,which has many drawbacks,such as harsh reaction conditions,low yield,more byproducts,severe environment contamination and so on. In recent years,with the development of synthetic biology,the safe and efficient biosynthesis method to produce chemicals has become a research hotspot. The main synthetic methods for 1,2,4-butanetriol,including chemical synthesis and biosynthesis,were reviewed in this paper,in order to provide a theoretical basis for 1,2,4-butanetriol synthesis.
D-1,2,4-Butanetriol; Biosynthesis; Environmentally Friendly Synthesize
Q81 [Document Code] A
10. 11967/ 2016140402
中圖分類法:Q81ADOI : 10. 11967/ 2016140402
楊萌(1988-),女,碩士研究生,主要研究方向:微生物代謝,Email:liuguangyexue1106@163.com。