王利超,胡文瑄,2,王小林,2,曹 劍,2,吳海光,廖志偉,萬 野
(1.南京大學(xué) 內(nèi)生金屬礦床成礦機(jī)制研究國(guó)家重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210023;2.南京大學(xué) 能源科學(xué)研究院,江蘇 南京 210023)
?
白云巖化過程中鍶含量變化及鍶同位素分餾特征與意義
王利超1,胡文瑄1,2,王小林1,2,曹劍1,2,吳海光1,廖志偉1,萬野1
(1.南京大學(xué) 內(nèi)生金屬礦床成礦機(jī)制研究國(guó)家重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210023;2.南京大學(xué) 能源科學(xué)研究院,江蘇 南京 210023)
白云巖的87Sr/86Sr值是判識(shí)其形成流體性質(zhì)及來源的重要指標(biāo),也被廣泛用于古海水87Sr/86Sr值演化和地層學(xué)研究。因此,白云巖化作用對(duì)87Sr/86Sr有無影響及其影響程度直接關(guān)系到對(duì)87Sr/86Sr值地質(zhì)意義的解釋,但目前尚未見到對(duì)這一問題的系統(tǒng)研究。下?lián)P子地區(qū)宜興葛山剖面發(fā)育灰?guī)r、白云質(zhì)灰?guī)r、灰質(zhì)白云巖及白云巖的系列層序,為研究白云巖化過程中鍶的地球化學(xué)行為提供了良好素材。通過對(duì)該剖面鍶元素含量及鍶同位素組成系統(tǒng)分析,發(fā)現(xiàn)隨白云巖化程度的增強(qiáng),鍶含量顯著降低,從1 358 μg/g一直下降到94 μg/g,而87Sr/86Sr值卻不斷升高,由0.708 019升高到0.708 182。分析前人發(fā)表的數(shù)據(jù),發(fā)現(xiàn)這種演化特征具有一定的普遍性,因此這很可能與鍶在白云巖化過程中的地球化學(xué)行為有關(guān)。進(jìn)一步分析認(rèn)為,在白云巖化過程中,隨著Ca被Mg的大量交代,以類質(zhì)同像形式存在的Sr也隨之流失,導(dǎo)致Sr含量降低。另一方面,受質(zhì)量效應(yīng)的制約,在上述過程中,質(zhì)量偏輕的86Sr更易遷出,從而造成87Sr/86Sr值相對(duì)增大。因此,在應(yīng)用白云巖的87Sr/86Sr值判斷白云巖化流體來源、建立古海水87Sr/86Sr演化曲線和分析白云巖地層年代時(shí),必須考慮白云巖化作用對(duì)碳酸鹽巖87Sr/86Sr的影響,才能得到符合客觀實(shí)際的認(rèn)識(shí)。
鍶含量;87Sr/86Sr值;白云巖化;鍶同位素地層學(xué);下?lián)P子地區(qū)
鍶在海水中的滯留時(shí)間(約百萬年)遠(yuǎn)大于海水的混合時(shí)間(約千年),因此,通常認(rèn)為在任一給定的地質(zhì)時(shí)代,全球范圍內(nèi)的海水鍶同位素組成是均一的[1-2 ]。Ca2+與Sr2+同屬+2價(jià)并具有相近的離子半徑,在海相碳酸鹽巖沉積過程中Sr會(huì)以類質(zhì)同像的方式取代Ca,進(jìn)入碳酸鹽巖的晶格。由于海水的87Sr/86Sr值在此過程中沒有明顯的分餾[3],因此,前人通常應(yīng)用未受改造或弱改造的海相碳酸鹽巖中的鍶同位素組成來反演海水中87Sr/86Sr值的長(zhǎng)期變化[4-8],并以此為基礎(chǔ),開展了大量鍶同位素地層學(xué)的研究[9-12]。在此過程中,由于有些時(shí)代的地層灰?guī)r不發(fā)育(特別是時(shí)代比較老的地層),就不得不選擇改造程度較弱的白云巖樣品開展上述研究[13-14]。但是,由于白云巖成因復(fù)雜,大部分是由灰?guī)r經(jīng)白云巖化而形成的,如若再疊加成巖后期的改造作用,其中的鍶同位素能否反映原始海水特征就值得質(zhì)疑。
對(duì)前人研究資料分析發(fā)現(xiàn),在碳酸鹽巖成巖過程中,Sr含量呈降低的趨勢(shì)[15-16]。另外,白云巖中的Sr含量通常小于同時(shí)期的灰?guī)r樣品[16,17-19],這表明成巖后期變化及白云巖化過程對(duì)碳酸鹽巖中的Sr是有顯著影響的。但是,這種現(xiàn)象沒有引起重視,對(duì)碳酸鹽巖中Sr含量變化的機(jī)理和規(guī)律幾乎沒有系統(tǒng)研究。進(jìn)而推之,如果Sr含量發(fā)生變化,相應(yīng)的Sr同位素是否也會(huì)變化?迄今為止未見相關(guān)研究。如果不會(huì)引起變化,則前人的研究是扎實(shí)可信的;如果鍶同位素隨著白云巖化等作用會(huì)發(fā)生明顯變化,那么,利用白云巖的87Sr/86Sr值來恢復(fù)古海水87Sr/86Sr特征和進(jìn)行地層學(xué)對(duì)比研究就會(huì)出現(xiàn)誤差,顯然這是一個(gè)非常重要的理論問題。
實(shí)際上,在碳酸鹽巖研究領(lǐng)域,87Sr/86Sr值是被經(jīng)常用到的地球化學(xué)指標(biāo)。除了用于古海水性質(zhì)及地層學(xué)對(duì)比研究[7, 20]外,還常作為示蹤指標(biāo)用來分析白云巖化流體的來源與遷移路徑[18, 21-22]。Compton等(2001)[21]認(rèn)為納米比亞海岸更新世白云巖中高87Sr/86Sr值是由攜帶高87Sr含量的陸源水參與白云巖化造成的。陳軒等(2013)[23]通過對(duì)比川西南地區(qū)漢深1井和周公1井中灰?guī)r和白云巖的87Sr/86Sr值,認(rèn)為白云巖中高87Sr/86Sr值是由富含87Sr組分的熱液流體參與白云巖化造成的。Machel等(1996)[24]通過對(duì)比加拿大西部盆地中早期白云石和后期鞍狀白云石的87Sr/86Sr值的差異,認(rèn)為鞍狀白云石中的高87Sr/86Sr值是由重結(jié)晶作用造成的。因此,白云巖化作用對(duì)87Sr/86Sr值有無影響及其影響程度,直接關(guān)系到對(duì)復(fù)雜地質(zhì)樣品中87Sr/86Sr地質(zhì)意義的解釋。
下?lián)P子地區(qū)宜興葛山剖面中三疊統(tǒng)周沖村組發(fā)育保存完好的不同白云巖化程度的巖石序列,自下而上依次發(fā)育灰?guī)r、白云質(zhì)灰?guī)r、灰質(zhì)白云巖,直至純的白云巖,顯示了白云巖化程度由弱到強(qiáng)的完整系列[25-26]。加之時(shí)代較新,后期改造很弱,基本保留了“原始”面貌,為研究白云巖化過程中鍶的地球化學(xué)行為及巖石學(xué)記錄提供了良好素材。筆者為此開展了比較系統(tǒng)的研究,結(jié)果發(fā)現(xiàn)白云巖化過程中碳酸鹽巖的Sr含量顯著降低[26],87Sr/86Sr值卻逐步升高,顯示了規(guī)律的變化。本文將報(bào)道這些結(jié)果,并對(duì)其變化機(jī)理進(jìn)行討論分析,進(jìn)而探討其對(duì)白云巖成因及鍶同位素地層學(xué)研究的啟示。
下?lián)P子區(qū)在晚古生代—早中生代期間位于華北古陸與江南海隆之間的東特提斯洋,被陸表海所覆蓋,沉積了一套以碳酸鹽巖為主的厚層海相沉積物,是國(guó)內(nèi)外海相地質(zhì)研究的重要基地[27-30]。三疊紀(jì),下?lián)P子區(qū)在印支運(yùn)動(dòng)影響下,區(qū)域構(gòu)造體系從特提斯域轉(zhuǎn)化為太平洋域[31]。在早三疊世,沉積環(huán)境為正常的淺海相碳酸鹽巖臺(tái)地;中三疊世為海陸過渡時(shí)期,沉積環(huán)境為碳酸鹽潮坪和咸化潟湖;晚三疊世則為海陸交互時(shí)期,沉積環(huán)境主要為近海的湖泊和陸相沼澤[32-33]。因此,下?lián)P子區(qū)在中三疊世處于從正常淺海沉積向陸相沉積過渡的時(shí)期。
本文所研究的葛山剖面位于江蘇宜興張渚鎮(zhèn),由下往上出露周沖村組灰?guī)r、白云質(zhì)灰?guī)r、灰質(zhì)白云巖和白云巖四種不同白云巖化程度的巖性[25-26],為研究白云巖化過程中Sr的地球化學(xué)行為提供了優(yōu)選素材。
葛山剖面的野外出露情況如圖1所示。剖面底部為深灰色灰?guī)r夾薄層淺灰色白云巖(圖1c),局部夾肉紅色白云巖(圖1b)。剖面中部為不同類型和不同程度的白云巖化,局部白云質(zhì)灰?guī)r與灰質(zhì)白云巖之間有明顯界限(圖1d),有些地方可見白云巖化殘留的深灰色灰?guī)r(圖1e),而有些地方表現(xiàn)為斑狀白云巖化(如1f)。剖面頂部為淺肉紅色-淺灰白色白云巖(圖1g,1h)。
圖1 下?lián)P子地區(qū)宜興葛山剖面野外露頭照片F(xiàn)ig.1 Photos of Geshan outcrop in Yixing County of Lower Yangtze regiona.取樣位置;b.底部灰?guī)r與白云巖接觸處,圖中較粗糙且顏色較深部分為灰?guī)r,而相對(duì)較平滑且顏色較淺部分為白云巖;c.底部灰?guī)r中夾的淺肉紅色白云巖;d.底部深灰色灰?guī)r中夾薄層淺灰色白云巖;e.中部白云質(zhì)灰?guī)r與灰質(zhì)白云巖之間明顯的界限;f.中部白云巖化殘留的深灰色 灰?guī)r;g.中部斑狀白云巖化的產(chǎn)物;h.頂部塊狀淺肉紅色-淺灰白色白云巖;i.頂部淺肉紅色白云巖手標(biāo)本
根據(jù)野外考察、鏡下鑒定和巖石主微量元素的分析,確認(rèn)了下?lián)P子地區(qū)宜興葛山剖面中三疊統(tǒng)周沖村組出露完整的灰?guī)r、白云質(zhì)灰?guī)r、灰質(zhì)白云巖和白云巖四種巖石類型。樣品重結(jié)晶作用不明顯,成巖期后改造作用很弱,因此其地球化學(xué)組成可以反映形成時(shí)的原始地球化學(xué)特征[26]。
鍶同位素分析在南京大學(xué)內(nèi)生金屬礦床成礦機(jī)制研究國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。分析測(cè)試流程如下:稱取200目以下的粉末樣品50 mg,加入5 mL濃度1M的醋酸溶解樣品(2h),離心并取上層清液,蒸干,加1 mL濃硝酸溶解,重復(fù)2次以清除醋酸。再次蒸干后,加5mL濃度1M的硝酸溶解形成待測(cè)溶液。采用儀器型號(hào)為Neptune Plus的MC-ICP-MS測(cè)定,Sr 987標(biāo)樣的測(cè)試精度為0.710 289±0.000 015(2σ,n=14)。主微量元素的測(cè)定在中科院地球化學(xué)研究所礦床地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成,其中CaO和MgO含量采用傳統(tǒng)EDTA絡(luò)合滴定分析方法測(cè)得,Sr等微量元素含量采用儀器型號(hào)為Elan DRC-e的ICP-MS測(cè)定,具體分析流程和測(cè)試條件見Qi等(2000)[37]。
Sr含量和同位素測(cè)定結(jié)果見表1,誤差以σ(±)表示。表1中同時(shí)列出了CaO和MgO含量的分析結(jié)果,據(jù)此也可以判斷灰?guī)r、白云質(zhì)灰?guī)r、灰質(zhì)白云巖、白云巖4種不同程度白云巖化的巖性演化系列?;?guī)r樣品的87Sr/86Sr值變化范圍為0.708 008~0.708 039,平均值為0.708 019。白云質(zhì)灰?guī)r樣品的87Sr/86Sr值變化范圍為0.708 007~0.708 126,平均值為0.708 060。灰質(zhì)白云巖樣品中的87Sr/86Sr值變化范圍為0.708 107~0.708 365,平均值為0.708 176。白云巖樣品的87Sr/86Sr值變化范圍為0.708 056~0.708 301,平均值為0.708 182??梢姡S著白云巖化程度的加強(qiáng),碳酸鹽巖的87Sr/86Sr值在不斷升高。
在87Sr/86Sr值隨白云巖化程度加強(qiáng)不斷升高的同時(shí),Sr含量呈先急劇降低后緩慢降低的變化趨勢(shì)。如表1所示,灰?guī)r的Sr含量最高,為892~2 096 μg/g,平均值為1 358 μg/g。白云質(zhì)灰?guī)r的Sr含量急劇降低,為110~673 μg/g,平均值為257 μg/g;灰質(zhì)白云巖中Sr含量的變化范圍為79~182 μg/g,平均值為114 μg/g。白云巖的Sr含量最低,為76~110 μg/g,平均值為94 μg/g。
由上述分析結(jié)果可知,隨著白云巖化程度的加強(qiáng),宜興葛山剖面的灰?guī)r-白云巖樣品的Sr含量顯著降低,而同時(shí)87Sr/86Sr值增大。為清晰展示白云巖化過程中樣品Sr含量和87Sr/86Sr的演化特征,選取可以表征白云巖化強(qiáng)度的MgO含量為橫坐標(biāo)進(jìn)行投點(diǎn),如圖2所示,隨樣品中MgO含量的升高,亦即隨白云巖化程度的增強(qiáng),樣品中Sr含量明顯降低,而87Sr/86Sr值增大,表明白云巖化過程中可能伴隨著Sr的分餾。
表1 宜興葛山剖面不同白云巖化程度樣品中的主量元素、微量元素和鍶同位素分析結(jié)果Table 1 Major elements, trace elements and Sr isotope data in carbonate samples of various dolomitization degrees from Geshan outcrop
圖2 宜興葛山剖面灰?guī)r和白云巖中Sr含量與MgO含量(a)以及87Sr/86Sr值與Sr含量(b)相關(guān)關(guān)系Fig.2 Sr content vs. MgO content (a) and 87Sr/86Sr ratio vs. Sr content (b) of limestone and dolomite samples from Geshan outcrop
筆者分析了國(guó)內(nèi)外其他研究實(shí)例,發(fā)現(xiàn)宜興葛山剖面反映出來的白云巖化過程中Sr含量和87Sr/86Sr值的變化規(guī)律可能具有普適性。本文將以西伯利亞前寒武紀(jì)/寒武紀(jì)界線剖面和川東三疊紀(jì)剖面為例,討論白云巖化過程中Sr的地球化學(xué)行為,并分析其與宜興葛山剖面的異同。
4.1西伯利亞前寒武紀(jì)/寒武紀(jì)界線剖面
寒武紀(jì)生命大爆發(fā)意味著從前寒武紀(jì)末期到寒武紀(jì)早期存在全球性的環(huán)境和生態(tài)變化,這一重大科學(xué)問題促使人們尋找完整的前寒武紀(jì)/寒武紀(jì)界線剖面來剖析當(dāng)時(shí)全球大氣和海洋環(huán)境的變化[38]。西伯利亞臺(tái)地西北緣和南緣均發(fā)育海相碳酸鹽巖,巖石地層時(shí)代跨越了前寒武紀(jì)末期和早寒武世,成為開展上述研究的重要基地。Nicholas(1996)[13]分析了這些剖面中87Sr/86Sr值演化特征,尤其著重分析了前寒武紀(jì)-寒武紀(jì)界線附近的87Sr/86Sr值變化規(guī)律。根據(jù)他們所報(bào)道的62件樣品數(shù)據(jù)(包括37件灰?guī)r樣品和25件白云巖樣品),發(fā)現(xiàn)灰?guī)r樣品的Sr含量最小值為148 μg/g,最大值為1 397 μg/g,平均值為378 μg/g,而白云巖樣品中的Sr含量最小值為54 μg/g,最大值為249 μg/g,平均值為133.12 μg/g,灰?guī)r樣品中的Sr含量遠(yuǎn)高于白云巖(圖3a)。而灰?guī)r的87Sr/86Sr值要低于白云巖,其中,灰?guī)r樣品中的87Sr/86Sr值最小值為0.708 087,最大值為0.709 869,平均值為0.708 555,白云巖樣品的87Sr/86Sr值的最小值為0.708 499,最大值為0.710 039,平均值為0.708 918(圖3b)。灰?guī)r和白云巖中Sr含量和87Sr/86Sr值的變化趨勢(shì)與宜興葛山剖面類似。
4.2川東三疊系飛仙關(guān)組
川東三疊系飛仙關(guān)組是我國(guó)迄今發(fā)現(xiàn)的最大規(guī)模的海相天然氣儲(chǔ)集層,其中的儲(chǔ)集巖主要為結(jié)晶白云巖[39-41],因此,川東三疊系飛仙關(guān)組白云巖的成因成為近年來的研究熱點(diǎn)[17,41-42]。根據(jù)黃思靜等(2006)[8]所報(bào)道的37件樣品數(shù)據(jù)(包括3件灰?guī)r樣品和34件白云巖樣品),灰?guī)r樣品的Sr含量變化范圍為682~2 200 μg/g,平均值為1 544 μg/g,而白云巖樣品的Sr含量變化范圍為90~2 570.9 μg/g,平均值為180 μg/g?;?guī)r樣品的Sr含量遠(yuǎn)高于白云巖樣品(圖4a)。
87Sr/86Sr值在灰?guī)r和白云巖樣品中也有較大差異,后者較高。如圖4b所示,灰?guī)r樣品的87Sr/86Sr值的變化范圍為0.707 348~0.707 507,平均值為0.707 449,白云巖樣品的87Sr/86Sr值的變化范圍為0.707 406~0.710 414,平均值為0.707 865。上述特征與宜興葛山剖面也是類似的。此外,川東飛仙關(guān)組白云巖樣品中包括微晶白云巖、粒屑白云巖和結(jié)晶白云巖等不同類型的白云巖,不同類型的白云巖可能由不同的白云巖成因模式即不同性質(zhì)的白云巖化流體作用形成,但三種類型白云巖的87Sr/86Sr值均不同程度地高于同期海水,表明從灰?guī)r到白云巖,87Sr/86Sr值的變化與年代效應(yīng)無關(guān)。
圖3 西伯利亞前寒武紀(jì)/寒武紀(jì)界線剖面灰?guī)r和白云巖中Sr含量與Mg/Ca值(a)以及87Sr/86Sr值與 Sr含量(b)相關(guān)關(guān)系(數(shù)據(jù)來自Nicholas,1996[13])Fig.3 Sr content vs. Mg/Ca ratio (a) and 87Sr/86Sr ratio vs. Sr content (b) of limestone and dolomite samples from the Precambrian/Cambrian boundary, Siberia (data from Nicholas,1996[13])
圖4 川東三疊系飛仙關(guān)組灰?guī)r和白云巖中Sr含量與MgO含量(a)以及87Sr/86Sr值與 Sr含量(b)相關(guān)關(guān)系(數(shù)據(jù)來自黃思靜等, 2006[8])Fig.4 Sr content vs. Mg/Ca ratio (a) and 87Sr/86Sr ratio vs. Sr content (b) of limestone and dolomite samples from the Triassic Feixianguan Formation in East Sichuan Basin(data from Huang Sijing et al., 2006[8])
5.1鍶及其同位素變化機(jī)理
通過上述分析,可以發(fā)現(xiàn)白云巖的87Sr/86Sr值明顯高于同期灰?guī)r?,F(xiàn)有的解釋分為三類:一是具有高87Sr/86Sr值的淡水參與了白云石的形成,表明白云巖化發(fā)生在相對(duì)開放的成巖體系中[21];二是白云巖化流體為蒸發(fā)海水或者封存在地層中海水演化的流體,海水的蒸發(fā)作用過程中留在流體中的87Sr含量會(huì)增加[43-44];三是穿過富含87Sr地層的熱液流體參與形成了白云巖,熱液流體中高含量的87Sr導(dǎo)致白云巖中87Sr含量增加[24-45]。
然而,在沒有大氣水參與,白云巖化流體也不是濃縮海水或者封存在地層中的海水演化的流體的情況下,白云巖化過程中87Sr/86Sr值的變化規(guī)律是一致的[46-48],因此,我們推出白云巖化過程中碳酸鹽巖Sr含量降低的同時(shí)可能也伴隨著Sr同位素的分餾。結(jié)合國(guó)內(nèi)外研究實(shí)例,根據(jù)宜興葛山剖面白云巖化過程中87Sr/86Sr值的演化特征,發(fā)現(xiàn)白云巖化作用會(huì)導(dǎo)致87Sr/86Sr值升高,其數(shù)量級(jí)在10-4左右,而由流體性質(zhì)所導(dǎo)致的87Sr/86Sr值變化數(shù)量級(jí)通常在10-3甚至更高[24,45-46]。
根據(jù)上述討論,在白云巖化初期,如果白云巖化前驅(qū)物為文石,由于晶系的改變,碳酸鹽巖中Sr的含量急劇降低,而白云巖化后期,不穩(wěn)定的文石礦物量很少,因此隨著白云巖化程度繼續(xù)加強(qiáng),碳酸鹽礦物從方解石向白云石轉(zhuǎn)變,其晶體中Ca含量減少而Mg含量增加,取代Ca的Sr含量也相對(duì)減少,呈現(xiàn)出碳酸鹽巖的Sr含量緩慢降低。白云巖化過程中Sr含量的減少是非常明顯的,可以從幾千μg/g減少到幾十μg/g(圖2a,圖3a,圖4a),這也可能是很少應(yīng)用碳酸鹽巖的Sr含量來反演古海洋地球化學(xué)變化,而只能用于判斷成巖流體性質(zhì)的一個(gè)重要原因[4]。在Sr含量隨白云巖化加強(qiáng)而降低的過程中,在Sr元素遷移的同時(shí),由于輕重同位素分子的擴(kuò)散速度和反應(yīng)速度不同,輕的86Sr組分更活躍,容易從礦物中遷出,因此保留在白云巖中的87Sr組分較多,從而導(dǎo)致白云巖中87Sr/86Sr值升高,即白云巖化作用會(huì)導(dǎo)致Sr的分餾。
5.2鍶同位素分餾的地質(zhì)意義
白云巖的形成過程伴隨著晶體結(jié)構(gòu)和化學(xué)組成的復(fù)雜變化,其形成過程可能包括:海水-海水中直接沉淀的礦物(文石/高鎂方解石)-低鎂方解石-白云巖[4,56-61]。我們的研究發(fā)現(xiàn),在白云巖化過程中Sr含量與同位素組成會(huì)發(fā)生規(guī)律性變化,具體表現(xiàn)為Sr含量降低和87Sr/86Sr值升高,這對(duì)我們今后的研究有兩方面的重要啟示。
首先,在缺乏“原始”碳酸鹽巖樣品而不得不選擇白云巖作為“原始”樣品來反映古海水87Sr/86Sr演化特征以進(jìn)行Sr同位素地層學(xué)研究時(shí)[13-14],應(yīng)當(dāng)考慮白云巖化對(duì)碳酸鹽巖87Sr/86Sr值的影響。這在古老地層碳酸鹽巖研究中尤為重要,因?yàn)榈刭|(zhì)歷史時(shí)期形成的碳酸鹽巖,尤其是古生代和中生代的碳酸鹽巖,大都經(jīng)歷了一定程度的成巖改造,文石/高鎂方解石等不穩(wěn)定礦物成分不易于保存下來,而以低鎂方解石為主要造巖礦物的灰?guī)r和以白云石為主要造巖礦物的白云巖更為常見[51,62-63]。這些保存下來的灰?guī)r和白云巖樣品,其初始Sr的含量和87Sr/86Sr值本身就有很大差異。在白云巖化過程中,Sr含量明顯降低,而87Sr/86Sr值也有一定程度的升高。前者變化幅度較大,可從數(shù)千μg/g到數(shù)十μg/g,因此不推薦使用,而后者變化幅度相對(duì)較小,在實(shí)際研究時(shí)可考慮使用,但必須考慮到白云巖化導(dǎo)致的Sr同位素分餾作用,背景值可能在10-4左右。
其次,過去通常借助白云巖的Sr同位素組成反演白云巖化流體來源,當(dāng)白云巖的Sr同位素組成偏離同期海水Sr同位素時(shí),通常認(rèn)為是不同性質(zhì)的流體作用造成的[64]。白云巖化流體中的87Sr/86Sr值由海水Sr、殼源Sr(主要來自于大陸古老巖石風(fēng)化)和幔源Sr(主要來自于洋中脊熱液系統(tǒng))3個(gè)Sr源的控制[65]。當(dāng)白云巖樣品中87Sr/86Sr值高于同期古海水值時(shí),通常認(rèn)為受大氣淡水?dāng)y帶高87Sr/86Sr值殼源鍶的影響,而當(dāng)樣品的87Sr/86Sr值低于同期古海水值時(shí),則認(rèn)為受熱液的作用帶來的低87Sr/86Sr值的幔源Sr的影響[21,66]。然而,根據(jù)本文研究結(jié)果,在應(yīng)用87Sr/86Sr值判識(shí)白云巖化流體性質(zhì)和來源時(shí),不能將白云巖較高的87Sr/86Sr值直接解釋為大氣淡水參與的混合水白云巖化或者與蒸發(fā)濃縮海水有關(guān)的成因模式。此外,在研究白云巖深部成巖作用,尤其是在研究熱液白云巖化作用時(shí),也不能簡(jiǎn)單的應(yīng)用白云巖的87Sr/86Sr值來反映流體來源及運(yùn)移路徑,要根據(jù)具體的研究實(shí)例加以分析。在確定白云巖的87Sr/86Sr值分析結(jié)果可靠的前提下,分析結(jié)果比同期保存完好的灰?guī)r或者海水的87Sr/86Sr值高10-4以上時(shí),則白云巖成因或者成巖可能受攜帶殼源鍶的流體的影響;當(dāng)分析結(jié)果與同期保存完好的灰?guī)r或海水的87Sr/86Sr值相近時(shí),需要結(jié)合其他指標(biāo)來探討流體性質(zhì)與來源。
1) 白云巖化過程中,隨白云巖化程度的增加,Sr含量先急劇降低后緩慢減少,變化幅度較大,從數(shù)千到數(shù)十μg/g。同時(shí),87Sr/86Sr值升高,由0.708 019升高到0.708 182,由白云巖化引起的87Sr/86Sr值變化的數(shù)量級(jí)在10-4左右。
2) 在選擇白云巖樣品作為“原始”樣品反演古海洋87Sr/86Sr值演化或通過白云巖中87Sr/86Sr值推斷白云巖的地層時(shí)代時(shí),由于白云巖化作用本身對(duì)Sr同位素組成的影響,要慎重選擇樣品,以免引起誤判。
3) 在應(yīng)用白云巖Sr同位素組成進(jìn)行白云巖化流體研究時(shí),可以10-4為界,當(dāng)白云巖中87Sr/86Sr值比同期保存完好的灰?guī)r或者海水的高10-4以上時(shí),白云巖成因或者成巖可能受攜帶殼源Sr的流體的影響;當(dāng)白云巖中87Sr/86Sr值與同期保存完好的灰?guī)r或海水的87Sr/86Sr值相近時(shí),需要結(jié)合其他指標(biāo)來探討流體性質(zhì)與來源。
[1]Veizer J,Compston W.87Sr/86Sr composition of seawater during the Phanerozoic [J].Geochimica et Cosmochimica Acta,1974,38:1461-1484.
[2]Burke W,Denison R,Hetherington E,et al,Variation of seawater87Sr/86Sr throughout Phanerozoic time [J].Geology,1982,10:516-519.
[3]Banner J L,Kaufman J.The isotopic record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks,Illinois and Missouri [J].Geological Society of America Bulletin,1994,106:1074-1082.
[4]Brand U,Veizer J.Chemical diagenesis of a multicomponent carbo-nate system-1:Trace elements [J].Journal of Sedimentary Research,1980,50(4):1219-1236.
[5]Brand U,Veizer J.Chemical diagenesis of a multicomponent carbo-nate system-2:Stable isotopes [J].Journal of Sedimentary Research,1981,51(3):987-997.
[6]Brand U.Strontium isotope diagenesis of biogenic aragonite and low-Mg calcite [J].Geochimica et Cosmochimica Acta,1991,55:505-513.
[7]Brand U.Carbon,oxygen and strontium isotopes in Paleozoic carbo-nate components:an evaluation of original seawater-chemistry proxies [J].Chemical Geology,2004,204:23-44.
[8]黃思靜,Qing H,裴昌蓉,等.川東三疊系飛仙關(guān)組白云巖鍶含量、鍶同位素組成與白云石化流體 [J].巖石學(xué)報(bào),2006,22(8):2123-2132.
Huang Sijing,Qing H,Pei Changrong,et al.Strontium concentration,isotope composition and dolomitization fluids in the Feixianguan Formation of Triassic,Eastern Sichuan of China [J].Acta Petrologica Sinica,2006,22(8):2123-2132.
[9]McArthur J.Recent trends in strontium isotope stratigraphy [J].Terra nova,1994,6:331-358.
[10]Veizer J,Buhl D,Diener A,et al.Strontium isotope stratigraphy:potential resolution and event correlation [J].Palaeogeography,Palaeoclimatology,Palaeoecology,1997,132:65-77.
[11]Veizer J,Ala D,Azmy K,et al.87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater [J].Chemical Geology,1999,161:59-88.
[12]Wang X,Hu W,Yao S,et al.Carbon and strontium isotopes and glo-bal correlation of Cambrian Series 2-Series 3 carbonate rocks in the Keping area of the northwestern Tarim Basin,NW China [J].Marine and Petroleum Geology,2011,28:992-1002.
[13]Nicholas C.The Sr isotopic evolution of the oceans during the 'Cambrian Explosion' [J].Journal of the Geological Society,1996,153:243-254.
[14]黃思靜,Qing H,黃培培,等.晚二疊世-早三疊世海水的鍶同位素組成與演化—基于重慶中梁山海相碳酸鹽的研究結(jié)果 [J].中國(guó)科學(xué)(D輯:地球科學(xué)),2008,38(3):273-283.
Huang Sijing,Qing H,Huang Peipei,et al.Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates,Zhongliang Mountain,Chongqing,China [J].Science in China Series D:Earth Sciences,2008,38(3):273-283.
[15]Denison R,Koepnick R,Fletcher A,et al.Criteria for the retention of original seawater87Sr/86Sr in ancient shelf limestones [J].Chemical Geology,1994,112:131-143.
[16]Warren J.Dolomite:occurrence,evolution and economically important associations [J].Earth-Science Review,2000,52:1-81.
[17]鄭榮才,文華國(guó),鄭超,等.川東北普光氣田下三疊統(tǒng)飛仙關(guān)組白云巖成因—來自巖石結(jié)構(gòu)與Sr同位素和Sr含量的證據(jù) [J].巖石學(xué)報(bào),2009,25(10):2459-2468.
Zheng Rongcai,Wen Huaguo,Zheng Chao,et al.Genesis of dolostone of the Feixianguan Formation,Lower Triassic in the NE Sichuan basin:Evidences from rock structure and strontium content and isotopic composition [J].Acta Petrologica Sinica,2009,25(10):2459-2468.
[18]Brand U,Azmy K,Tazawa J,et al.Hydrothermal diagenesis of Paleozoic seamount carbonate components [J].Chemical Geology,2010,278:173-185.
[19]胡作維,黃思靜,張超,等.碳酸鹽白云化作用模式研究進(jìn)展 [J].海洋地質(zhì)前沿,2011,27(10):1-13.
Hu Zuowei,Huang Sijing,Zhang Chao,et al.A review of dolomitization models of carbonates [J].Marine Geology Frontiers,2011,27(10):1-13.
[20]Korte C,Kozur H W,Bruckschen P,et al.Strontium isotope evolution of Late Permian and Triassic seawater [J].Geochimica et Cosmochimica Acta,2003,67(1):47-62.
[21]Compton J,Harris C,Thompson S.Pleistocene dolomite from the Namibian Shelf:High87Sr/86Sr and18O values indicate an evaporative,mixed-water origin [J].Journal of Sedimentary Research,2001,71(5):800-808.
[22]Qing H,Bosence D W,Rose E P.Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates,Gibraltar,western Mediterranean [J].Sedimentology,2001,48:153-163.
[23]陳軒,趙文智,劉銀河,等.川西南地區(qū)中二疊統(tǒng)熱液白云巖特征及勘探思路 [J].石油學(xué)報(bào) 2013,34(3):460-466.
Chen Xuan,Zhao Wenzhi,Liu Yinhe,et al.Characteristics and exploration strategy of the Middle Permian hydrothermal dolomite in southwestern Sichuan Basin[J].Acta Petrolei Sinica,2013,34(3):460-466.
[24]Machel H,Cavell P,Patey K.Isotopic evidence for carbonate cementation and recrystallization,and for tectonic expulsion of fluids into the Western Canada Sedimentary Basin [J].Geological Society of America Bulletin,1996,108(9):1108-1119.
[25]Wang L,Hu W,Wang X,et al.Seawater normalized REE patterns of dolomites in Geshan and Panlongdong sections,China:Implications for tracing dolomitization and diagenetic fluids [J].Marine and Petroleum Geology,2014,56:63-73.
[26]王利超,胡文瑄,王小林.下?lián)P子宜興葛山三疊系周沖村組白云巖化過程及元素地球化學(xué)響應(yīng) [J].地球化學(xué),2014,43(3):255-266.
Wang Lichao,Hu Wenxuan,Wang Xiaolin.Dolomitization procedd and its effect on thebehavior of trace elements of carbonate rocks from Triassic Zhouchongcun Formation of Geshan section in Yixing County,Lower Yangtze [J].Geochimica,2014,43(3):255-266.
[27]王文彬,劉澤均.下?lián)P子盆地早、中三疊世古地理及其演化 [J].地層學(xué)雜志,1992,16(4): 282-286.
Wang Wenbin,Liu Zejun.The paleogeography and its revolution of early-middle Triassic in the Lower Yangtze platform [J].Journal of Stratigraphy,1992,16(4):282-286.
[28]王紅偉,段宏亮.下?lián)P子區(qū)三疊系青龍組沉積相研究 [J].復(fù)雜油氣藏,2009,2(3):5-10.
Wang Hongwei,Duan Hongliang.Sedimentary facies of Qinglong Formation in lower Yangtze region [J].Complex Hydrocarbon Reservoirs,2009,2(3):5-10.
[29]Zhao M,Zheng Y.Marine carbonate records of terrigenous input into paleotethyan seawater:geochemical constraints from Carboniferous limestones [J].Geochimica et Cosmochimica Acta,2014,141:508-531.
[30]Zhao M,Zheng Y.The intensity of chemical weathering:Geochemical constraints from marine detrital sediments of Triassic age in South China [J].Chemical Geology 2015,391:111-122.
[31]程日輝,白云風(fēng),李艷博.下?lián)P子區(qū)三疊紀(jì)古地理演化 [J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2004,34(3):367-371.
Cheng Rihui,Bai Yunfeng,Li Yanbo.Evolution of paleogeography of Triassic of Lower Yangtze area [J].Journal of Jilin University(Earth Science Edition),2004,34(3):367-371.
[32]錢邁平,郭佩霞.下?lián)P子區(qū)三疊紀(jì)古生物和古地理變遷及其主要原因 [J].江蘇地質(zhì),1996,20(3):156-165.
Qian Maiping,Guo Peixia.The evolution of paleonotologic and paleogeographic faces in Triassic Period in the LowerYangtzeValley and its Essential Cause [J].Jiangsu Geology,1996,20(3):156-165.
[33]童金南,殷鴻福.下?lián)P子區(qū)海相三疊系層序地層研究 [J].中國(guó)科學(xué)(D輯:地球科學(xué)),1997,27(5):407-411.
Tong Jinnan,Yin Hongfu.The Marine Triassic sequence stratigraphy of Lower Yangtze [J].Science in China,Series D,1997,27(5):407-411.
[34]胡光明,紀(jì)友亮,蔡進(jìn)功,等.中下?lián)P子區(qū)T1-2膏鹽層位差異的構(gòu)造意義 [J].天然氣工業(yè),2008,28(5):32-34,139.
Hu Guangming,Ji Youliang,Cai Jingong,et al.Tectonics signification of time difference of gypsum-salt layer in Lower-Middle Triassic in Middle-Lower Yangtze region.[J].Natural Gas Industry,2008,28(5):32-34,139.
[35]畢仲其.論下?lián)P子地區(qū)中三疊統(tǒng)白云巖類型及形成環(huán)境 [J].江蘇地質(zhì),1993,17(1):17-22.
Bi Zhongqi.On the types and forming conditions of the Middle Triassic dolostone in the Lower Reaeh of Yangtze River [J].Jiangsu Geo-logy,1993,17(1):17-22.
[36]許正龍,翟愛軍.蘇皖下?lián)P子區(qū)震旦紀(jì)—中三疊世海相層序地層 [J].沉積與特提斯地質(zhì),2002,22(2):64-69.
Xu Zhenglong,Zhai Aijun.Sequence stratigraphic division of the Sinian-Middle Triassic marine strata in the Lower Yangtze area of the Jiangsu-Anhui zone [J].Sedimentary Geology and Tethyan Geology,2002.22(2):64-69.
[37]Qi L,Jing H,Gregoire D C.Determination of trace elements in gra-nites by inductively coupled plasma mass spectrometry [J].Talanta,2000,51:507-513.
[38]Ling H,Feng H,Pan J,et al.Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations,South China:Implications for chemostratigraphy and paleoenvironmental change [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254:158-174.
[39]王一剛,劉劃一,文應(yīng)初,等.川東北飛仙關(guān)組鮞灘儲(chǔ)層分布規(guī)律、勘探方法與遠(yuǎn)景預(yù)測(cè) [J].天然氣工業(yè),2002,22(增刊):14-19,12.
Wang Yigang,Liu Huayi,Wen Yingchu,et al.Distribution law,exploration method and prospectiveness prediction of the oolitic beach reservoirs in Feixianguan formation in Northeast Sichuan Basin[J].Natural Gas Industry,2002,22(s):14-19,12.
[40]王一剛,文應(yīng)初,洪海濤,等.川東北三疊系飛仙關(guān)組深層鮞灘氣藏勘探目標(biāo) [J].天然氣工業(yè),2004,24(12):5-9,181.
Wang Yigang,Wen Yingchu,Hong Haitao,et al.Exploration target of the deep oolitic beach gas reservoir of the Triassic system Feixianguan formation in Northeast part of Sichuan Basin[J].Natural Gas Industry,2004,24(12):5-9,181.
[41]魏國(guó)齊,楊威,張林,等.川東北飛仙關(guān)組鮞灘儲(chǔ)層白云石化成因模式 [J].天然氣地球科學(xué),2005,16(2):162-166.
Wei Guoqi,Yang Wei,Zhang Lin,et al.Dolomitization genetic model of Feixianguan Group oolitic beach reservoir in Northeast Sichuan Basin[J].Natural Gas Geoscience,2005,16(2):162-166.
[42]強(qiáng)子同,曾德銘,王興志,等.川東北下三疊統(tǒng)飛仙關(guān)組鮞粒灘白云巖同位素地球化學(xué)特征 [J].古地理學(xué)報(bào),2012,14(1):13-20.
Qiang Zitong,Zeng Deming,Wang Xingzhi,et al.Isotopic geochemical characteristics of oolitic bank dolostones in the Lower Triassic Feixianguan Formation in northeastern Sichuan Province [J].Journal of Palaeogeography,2012,14(1):13-20.
[43]Mountjoy E W,Machel H G,Green D,et al.Devonian matrix dolomites and deep burial carbonate cements:a comparison between the Rimbey-Meadowbrook reef trend and the deep basin of west-central Alberta [J].Bulletin of Canadian Petroleum Geology,1999,47(4):487-509.
[44]Green D G,Mountjoy E W.Fault and conduit controlled burial dolomitization of the Devonian west-central Alberta Deep Basin [J].Bulletin of Canadian Petroleum Geology,2005,53(2):101-129.
[45]Jones C E,Jenkyns H C.Seawater strontium isotopes,oceanic anoxic events,and seafloor hydrothermal activity in the Jurassic and Cretaceous [J].American Journal of Science,2001,301:112-149.
[46]Nasir S,Al-Saad H,Alsayigh A,et al.Geology and petrology of the Hormuz dolomite,Infra-Cambrian:Implications for the formation of the salt-cored Halul and Shraouh islands,Offshore,State of Qatar [J].Journal of Asian Earth Sciences,2008,33:353-365.
[47]Li D,Shields-Zhou G,Ling H,et al.Dissolution methods for strontium isotope stratigraphy:Guidelines for the use of bulk carbonate and phosphorite rocks [J].Chemical Geology,2011,290:133-144.
[48]Wang G,Li P,Hao F,et al.Origin of Dolomite in the Third Member of Feixianguan Formation(Lower Triassic)in the Jiannan area,Sichuan Basin,China [J].Marine and Petroleum Geology,2015,63:127-141.
[49]Sibley D F,Dedoes R E,Bartlett T R.Kinetics of dolomitization [J].Geology,1987,15:1112-1114.
[50]赫云蘭,劉波,秦善.白云石化機(jī)理與白云巖成因問題研究 [J].北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,2:53-63.
He Yunlan,Liu Bo,Qin Shan.Study on the dolomitization and dolostone genesis[J].Acta Scientiarum Naturalium Universitaties Pe-kinensis,2010,2:53-63.
[51]Vahrenkamp V C,Swart P K.New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites [J].Geology,1990,18:387-391.
[52]Katz A,Matthews A.The dolomitization of CaCO3:an experimental study at 252-295°C [J].Geochimica et Cosmochimica Acta,1977,41:297-308.
[53]Kretz R.A model for the distribution of trace elements between calcite and dolomite [J].Geochimica et Cosmochimica Acta,1982,46:1979-1981.
[54]李志明,徐二社,范明,等.普光氣田長(zhǎng)興組白云巖地球化學(xué)特征及其成因意義 [J].地球化學(xué),2010,39(4):371-380.
Li Zhiming,Xu Ershe,Fan Ming,et al.Geochemical characteristics and formation of dolostones from the Changxing Formation at Puguang gas field in Sichuan Basin [J].Geochimica,2010,39(4):371-380.
[55]Kinsman D J,Holland H.The co-precipitation of cations with CaCO3-IV.The co-precipitation of Sr2+with aragonite between 16℃ and 96℃ [J].Geochimica et Cosmochimica Acta,1969, 33:1-17.
[56]Longman M W.Carbonate diagenetic textures from nearsurface diagenetic environments [J].AAPG Bulletin,1980,64(4):461-487.
[57]James N P,Choquette PW.Diagenesis 9.Limestones-the meteoric diagenetic environment [J].Geoscience Canada,1984,11(4):161-194.
[58]Brand U.Chemical diagenesis and dolomitization of Paleozoic high-Mg calcite crinoids [J].Carbonates and Evaporites,1990,5(2):179-196.
[59]Dickson J.Transformation of echinoid Mg calcite skeletons by heating [J].Geochimica et Cosmochimica Acta,2001,65(3):443-454.
[60]張學(xué)豐,胡文瑄,張軍濤.白云巖成因相關(guān)問題及主要形成模式 [J].地質(zhì)科技情報(bào),2006,25(5):32-40.
Zhang Xuefeng,Hu Wenxuan,Zhang Juntao.Critical Problems for Dolomite Formation and Dolomitization Models [J].Geological Science and Technology Information,2006,25(5):32-40.
[61]黃思靜,張雪花,劉麗紅,等.碳酸鹽成巖作用研究現(xiàn)狀與前瞻 [J].地學(xué)前緣,2009,16(5):219-231.
Huang Sijing,Zhang Xuehua,Liu Lihong,et al.Progress of research on carbonate diagenesis[J].Earth Science Frontiers,2009,16(5):219-231.
[62]Melim L,Westphal H,Swart P,et al.Questioning carbonate diagene-tic paradigms:evidence from the Neogene of the Bahamas [J].Marine Geology,2002,185:27-53.
[63]Azmy K,Brand U,Sylvester P,et al.Biogenic and abiogenic low-Mg calcite(bLMC and aLMC):Evaluation of seawater-REE composition,water masses and carbonate diagenesis [J].Chemical Geology,2011,280:180-190.
[64]Azmy K,Veizer J,Misi A,et al.Dolomitization and isotope stratigraphy of the Vazante Formation,S?o Francisco Basin,Brazil [J].Precambrian Research,2001,112:303-329.
[65]Elderfield H.Strontium isotope stratigraphy [J].Palaeogeography,Palaeoclimatology,Palaeoecology,1986,57:71-90.
[66]Hitzman M,Allan J,Beaty D.Regional dolomitization of the Waulsortian limestone in southeastern Ireland:Evidence of large-scale fluid flow driven by the Hercynian orogeny [J].Geology,1998,26(6):547-550.
(編輯張亞雄)
Variation of Sr content and87Sr/86Sr isotope fractionation during dolomitization and their implications
Wang Lichao1,Hu Wenxuan1,2,Wang Xiaolin1,2,Cao Jian1,2,Wu Haiguang1,Liao Zhiwei1,Wan Ye1
(1.StateKeyLaboratoryforMineralDepositResearch,NanjingUniversity,Nanjing,Jiangsu210023,China;2.InstituteofEnergySciences,NanjingUniversity,Nanjing,Jiangsu210023,China)
87Sr/86Sr ratio of dolomite is an important indicator for identifying source and characteristics of fluids related to formation and evolution of dolomite.Meanwhile,the ratio has been widely used in study of seawater87Sr/86Sr ratio evolution of fossil seawater and strontium isotope stratigraphy.Thus,the existence and degree of influence of dolomitization on the87Sr/86Sr ratio is crucial to understand the geologic significances of87Sr/86Sr ratio of dolomite.However,no systematic research of this issue has been published.The Geshan section in Yixing County of Lower Yangtze region has excellent outcrops of carbonates including limestone,dolomitic limestone,calcite dolomite and dolomite,providing a chance to study the geochemical behaviors of strontium during dolomitization.In this study,we systematically analyzed the Sr contents and87Sr/86Sr ratios of these carbonates.The Sr contents of these carbonates decrease significantly with enhancing dolomitization degree,from 1 358 μg/g of limestone to 94 μg/g of dolomite,while the87Sr/86Sr ratios increase from 0.708 019 to 0.708 182.An analysis of the relevant published data shows that the evolution feature of Sr is common to some degree,indicating that it may be attributed to the habitual behaviors of Sr during dolomitization.As Ca is replaced by Mg during dolomitization,the isomorphous Sr is lost simultaneously,leading to the lowering Sr content.In addition,lighter86Sr emigrates from the process due to the constrint of mass effect,resulting in higher87Sr/86Sr ratio.Therefore,the influences of dolomitization on87Sr/86Sr ratio must be considered when identifying the source of dolomitization fluids,establishing the87Sr/86Sr evolution curve of fossil seawater and analyzing the age of dolomite,so as to obtain correct understandings.
Sr content,87Sr/86Sr ratio,dolomitization,strontium isotope stratigraphy,Lower Yangtze region
2015-03-10;
2016-06-20。
王利超(1988—),女,博士研究生,礦物學(xué)、巖石學(xué)與礦床學(xué)。E-mail:wanglichaohappy@126.com。
簡(jiǎn)介:胡文瑄(1959—),男,教授,沉積學(xué)及油氣地質(zhì)學(xué)。E-mail:huwx@nju.edu.cn。
國(guó)家科技重大專項(xiàng)(2011ZX05005-002-008HZ)。
0253-9985(2016)04-0464-09
10.11743/ogg20160402
P597
A