盛 豐,張利勇,吳 丹
(長沙理工大學水利工程學院,長沙 410114;水沙科學與水災(zāi)害防治湖南省重點實驗室,長沙 410114)
土壤優(yōu)先流模型理論與觀測技術(shù)的研究進展
盛 豐,張利勇,吳 丹
(長沙理工大學水利工程學院,長沙 410114;水沙科學與水災(zāi)害防治湖南省重點實驗室,長沙 410114)
優(yōu)先流是土壤中常見的和重要的水流運動和溶質(zhì)運移形式。由于土壤優(yōu)先流的形成和影響因素眾多、表現(xiàn)形式多樣,加之土壤優(yōu)先流的快速非平衡特征明顯以及土壤高度的空間變異性,準確描述和模擬土壤優(yōu)先流的時空變化特征一直以來都是土壤水文學界的熱點問題和難點問題。該文從優(yōu)先流的定義、表現(xiàn)類型、形成和影響因素、模型理論與觀測技術(shù)等5個方面綜述了土壤優(yōu)先流的研究進展,指出該領(lǐng)域今后的主要研究方向為建立土壤優(yōu)先流的統(tǒng)一判別標準、提升優(yōu)先流模型理論的有效性、發(fā)展優(yōu)先流的專用觀測技術(shù)設(shè)備。文章對深入研究土壤優(yōu)先流具有參考價值。
土壤;水;模型;優(yōu)先流;大孔隙流;指流;模型理論;觀測技術(shù)
盛 豐,張利勇,吳 丹.土壤優(yōu)先流模型理論與觀測技術(shù)的研究進展[J].農(nóng)業(yè)工程學報,2016,32(6):1-10.doi:10.11975/j.issn.1002-6819.2016.06.001 http://www.tcsae.org
Sheng Feng,Zhang Liyong,Wu Dan.Review on research theories and observation techniques for preferential flow in unsaturated soil[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6):1-10.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.001 http://www.tcsae.org
優(yōu)先流(preferential flow),又稱優(yōu)勢流、非均勻流,是土壤中常見的和重要的水流運動和溶質(zhì)運移形式。國內(nèi)外對優(yōu)先流有多種定義,但直到現(xiàn)在也沒有完全統(tǒng)一的標準。通常認為非均勻水流或優(yōu)先流有2個重要特征[1]:一是水流運動過程中,部分濕潤鋒能以較快的速度發(fā)展到一定深度而繞過大部分土壤基質(zhì)和孔隙;二是水流非平衡特征(non-equilibrium nature),因為各種原因,相比土壤基質(zhì)孔隙中慢速運動的剩余水,以優(yōu)先流形式出現(xiàn)的滲透水沒有充分的時間達到平衡。國內(nèi)外眾多的研究成果表明,優(yōu)先流在土壤中是廣泛存在的而非特例。目前,優(yōu)先流研究涉及農(nóng)田生態(tài)系統(tǒng)、濕地生態(tài)系統(tǒng)、草原生態(tài)系統(tǒng)、森林生態(tài)系統(tǒng)、農(nóng)林牧復(fù)合生態(tài)系統(tǒng)等多種生態(tài)系統(tǒng)[2];研究尺度從單個孔隙、單個土體塊到區(qū)域水平上的集水區(qū)[3];研究的內(nèi)容包括殺蟲劑[4]、氮磷元素[5]、膠體[6]、非水相流體[7]、營養(yǎng)物[8]、微生物[9]等;研究的土壤類型擴展到凍土[10]、黑土[11]、碎石土[12]等多種特殊土壤;研究的地貌類型也已擴展到山地[13]、喀斯特巖溶地貌[14]、黃土丘陵地貌[15]等多種特殊地貌。入滲水和溶質(zhì)在局部優(yōu)先流通道中的快速遷移和運動,增大了農(nóng)業(yè)灌水和施肥的滲漏損失、縮短了污染物在土壤中的反應(yīng)與降解時間、減少了土壤顆粒及有機質(zhì)對污染物的吸附和截留,從而加劇了地下水受污染的風險[16-17]。此外,優(yōu)先流改變了降雨在地表和地下的分配,影響地表徑流和地下徑流過程,是泥石流、山體滑坡和崩塌及水土流失等環(huán)境地質(zhì)災(zāi)害的誘發(fā)因素之一[18]。因此,準確地模擬和預(yù)測優(yōu)先流的時空變化規(guī)律對于農(nóng)業(yè)灌水和施肥的高效利用、地表水和地下水污染控制以及地質(zhì)災(zāi)害防治等都有重要的意義。本文著重介紹土壤優(yōu)先流研究的模型理論與觀測技術(shù),旨在為全面了解和深入研究優(yōu)先流提供參考。
優(yōu)先流的形成因素眾多、表現(xiàn)形式多樣,主要的和目前研究比較多的有大孔隙流(macropore flow)和不穩(wěn)定指流(也稱指流或指狀流,finger flow)。其它一些優(yōu)先流形態(tài),如管流(pipe flow)、溝槽流(channel flow)、漏斗流(funnel flow)、環(huán)繞流(bypass flow)、擺動流(oscillatory flow)、短路流(short circuiting flow)、異質(zhì)流(heterogeneitydriven flow)、地下強徑流(subsurface storm flow)、部分置換流(partial displacement flow)、低洼再蓄滿流(depressionfocused recharge flow) 及非飽和重力流(gravity-driven unstable flow),也因其所引起的各種水文和環(huán)境地質(zhì)問題而被研究者所關(guān)注[18]。
1.1 大孔隙流
大孔隙流是指入滲水和溶質(zhì)繞過土壤基質(zhì)而直接通過土壤中的大孔隙通快速遷移到深層土壤甚至是地下水的非均勻水流運動現(xiàn)象[19]。Lawes等[20]于1882年發(fā)表的論述降雨與排水的數(shù)量和成分關(guān)系的文章,就是針對于現(xiàn)今所說的“大孔隙流”展開的。Lawes等發(fā)現(xiàn),施加到土壤表面上的水有很大一部分通過大孔隙快速遷移,而幾乎不與土壤本身所含水分發(fā)生作用,隨后排出的水才是經(jīng)由土壤飽和孔隙排出的。這是大孔隙流的最初發(fā)現(xiàn),同時也是土壤優(yōu)先流的最初發(fā)現(xiàn)。此后,諸多的室內(nèi)外試驗均觀測到了大孔隙流,但當時都未引起人們的重視,非飽和土壤中的水分運動一直被視為是一種相對均勻和平衡的流動。直到20世紀七八十年代發(fā)生的幾次“怪異”現(xiàn)象,大孔隙流才逐漸引起人們的高度關(guān)注。1980年,在美國長島東部約一千口飲用水井中發(fā)現(xiàn)了殺蟲劑涕滅威(aldicarb)。當?shù)毓芾聿块T對這種殺蟲劑如此快速的遷移到地下水位且濃度如此之高感到十分不解。但在長島發(fā)生的污染現(xiàn)象并不是個例,之后又在其它地方發(fā)生了多起此類現(xiàn)象,對人類的生存環(huán)境造成了嚴重的威脅。造成這類現(xiàn)象的主要原因就是土壤大孔隙對入滲水和溶質(zhì)的快速傳導(dǎo)作用[20]。
田間土壤中的大孔隙結(jié)構(gòu)通常由土壤裂縫和裂隙、土壤管道和蟲洞等組成。螞蟻活動產(chǎn)生的大孔隙直徑一般在2~50 mm[21],蚯蚓孔隙深度可達1.2~1.4 m[22]。裂隙主要存在于粘土層中,常由凍融和干濕變化所引起[23]。裂隙的存在破壞了土體的完整性并導(dǎo)致尺度不均勻,所以水平和垂向滲透系數(shù)[24]、初始入滲率和飽和時的穩(wěn)定入滲率[25]差異比較明顯,都可達1~2個數(shù)量級。目前,學術(shù)界對土壤大孔隙的定義和孔徑范圍界定尚未統(tǒng)一,研究者根據(jù)其研究提出了如下幾種界定土壤大孔隙的方法:1)大孔隙的空間尺寸(如,Luxmoore[26]認為孔徑>1 mm的為大孔隙,而Beven和Germann[27]則將孔徑在0.03~3 mm范圍內(nèi)的孔隙界定為大孔隙;張家明等[28]指出無論是定性還是定量,僅從孔隙尺寸來界定大孔隙是不充分的,還需要考慮大孔隙的三維幾何形態(tài));2)排空大孔隙內(nèi)全部水量時所需要施加的壓力(<5 kPa)[29];3)土壤導(dǎo)水率的大?。?~10 mm/h)[30]。
1.2 指流
在均質(zhì)土壤中,由于入滲濕潤鋒在發(fā)展過程中不穩(wěn)定,可使得原來均勻的濕潤鋒被“撕裂”成一個個柱狀流動路徑,從而形成優(yōu)先流運動[31]。這種由濕潤鋒不穩(wěn)定性而引起的優(yōu)先流被稱作指流。Mabuchi[32]、Miller和Gardner[33]等為研究入滲濕潤鋒的不穩(wěn)定性所開展的試驗是指流的早期研究。但直到Hill和Parlange[34]通過試驗來系統(tǒng)研究指流的發(fā)展、尺寸和濕潤鋒的遷移速度之后,指流的研究才受到更多的重視。
指流常產(chǎn)生于細質(zhì)地土壤覆蓋粗質(zhì)地土壤的2層土壤中[35]。由于相同基質(zhì)吸力條件下細土層的含水率高于粗土層的含水率,因此,入滲水在2層土壤交界面的上方聚集并使得入滲濕潤鋒變得不穩(wěn)定,從而導(dǎo)致指流在粗土層中形成。進一步的試驗研究表明,當入滲通量小于土壤的飽和導(dǎo)水率時,指流也可在均質(zhì)土壤中形成,而并不局限在2層土壤中[36]。后來的多次試驗分析表明,土壤介質(zhì)的非均質(zhì)性和濕潤鋒的不穩(wěn)定性(但土壤可能均質(zhì))都可導(dǎo)致指流現(xiàn)象的形成。前者形成的指流通常與小孔隙或中孔隙相伴出現(xiàn)在粘土中;后者形成的指流常出現(xiàn)在斥水性沙土中。Raats[37]最早發(fā)現(xiàn)土壤的斥水性可導(dǎo)致優(yōu)先水流路徑的形成,由于斥水性土壤表面張力和毛管力分布不均勻使得入滲濕潤鋒不穩(wěn)定而引起水分和溶質(zhì)呈“指狀”或“舌狀”流動,從而形成指狀流。一些田間試驗研究結(jié)果[38-39]也顯示,土壤斥水性也是水流鋒面不穩(wěn)定的主要原因之一,大多出現(xiàn)在質(zhì)地較粗糙的砂性土壤,并容易形成斥水土層;當土壤濕度增加或溫度升高時,斥水性降低甚至消失;當濕度減小時,其斥水性較強且水力傳導(dǎo)度較小,容易發(fā)生指流[40]。所以,一般認為指流的形成主要有2個機制:重力作用和土壤的斥水特性。但對不同條件下(如土質(zhì)、入滲水量和土壤初始含水率等)指流的發(fā)生和發(fā)育的基本規(guī)律仍需進一步的系統(tǒng)研究。
優(yōu)先流的形成和影響因素很多,土壤結(jié)構(gòu)和質(zhì)地、入滲的初始條件和邊界條件以及水流運動的非穩(wěn)定性(非線性)都能導(dǎo)致優(yōu)先流的產(chǎn)生并影響優(yōu)先流的發(fā)展。
2.1 土壤質(zhì)地和結(jié)構(gòu)
土壤動物和植物根系活動、土壤自身干縮開裂等因素在土壤中形成的大孔隙是土壤優(yōu)先流的重要通道[41]。因此,大孔隙的開啟程度、彎曲程度和連通程度等對土壤優(yōu)先流的形成與發(fā)展有顯著影響[42-43]。土壤水在大孔隙中的運動是非線性的,具有比基質(zhì)流大得多的流速[44],因此,當入滲水流攜帶污染物時將引起更顯著的地下水污染。大孔隙結(jié)構(gòu)對土壤優(yōu)先流的形成和發(fā)展主要起3個方面的作用[45]:1)大孔隙對流動的土壤水流起毛細屏蔽作用,使水和溶質(zhì)僅能沿大孔隙通道運動而不能進入土壤基質(zhì);2)大孔隙對基質(zhì)流和優(yōu)先流起分離作用,限制基質(zhì)中的土壤水流是穩(wěn)定的,同時允許大孔隙中形成高速的不穩(wěn)定流動;3)大孔隙能為深部補給提供點源。
土壤質(zhì)地也能影響優(yōu)先流的產(chǎn)生和發(fā)展。在砂質(zhì)等粗質(zhì)地土壤中,土壤斥水性影響優(yōu)先流[38]。由于斥水性土壤難以被水濕潤,導(dǎo)致優(yōu)先水流路徑的形成,使得水和溶質(zhì)經(jīng)由優(yōu)勢通道運移通過非飽和帶[37]。其它一些研究表明大孔隙流通常出現(xiàn)在粉砂和粘質(zhì)土壤中[46];非飽和重力流及指流常出現(xiàn)在砂質(zhì)或質(zhì)地較細的斥水性土壤中[47];漏斗流[48-49]通常發(fā)生在細質(zhì)地土壤剖面夾雜一個或幾個粗質(zhì)地斜層的土壤中;在具有高度空間變異性的土壤中較容易發(fā)生各向異性流現(xiàn)象[50]。
2.2 入滲初始條件和邊界條件
土壤初始含水率主要影響土壤水的入滲深度和優(yōu)先流的非均勻程度。Flury等[51]將亮藍染色劑應(yīng)用到初始“濕潤”和“干燥”土壤,發(fā)現(xiàn)一種情況是亮藍在濕潤土遷移更深,另一種情況是初始含水量對亮藍的分布沒有明顯的影響。Merdun等[52]研究表明,當土壤初始含水率較低時,優(yōu)先流的非均勻程度更高、優(yōu)先運移效果較明顯。De Rooij[53]和盛豐等[54]的研究則表明,土壤初始含水率對優(yōu)先流的影響只有在土壤初始含水率很低情況下才比較明顯。
灌水速率或降雨強度超過土壤水入滲速率的時候,優(yōu)先流就開始發(fā)生,較大的降水強度會使化學物質(zhì)快速遷移[55]。但邊界條件對優(yōu)先流的影響也有不一致的觀點。例如,Ghodrati和Jury[56]為研究田間條件下優(yōu)先流的發(fā)生情況在壤質(zhì)砂土中分別進行了10 cm高度水頭單一積水滲透和噴撒灌溉5 d 2種試驗,結(jié)果發(fā)現(xiàn)在積水條件下染料的滲透深度比噴撒灌溉條件下要淺;而Ren等[57]的試驗研究則表明,噴灌條件下溶質(zhì)的移速度要大于積水條件下溶質(zhì)的遷移速度。Sheng等[58]通過不同入滲水量條件下的示蹤試驗指出優(yōu)先流的非均勻特征隨著入滲水量的增加而呈現(xiàn)規(guī)律性的變化:當入滲水量很小時,土壤非均勻流未來得及充分發(fā)展便停止運動,流動總體上相對比較均勻;當入滲水量較高時,土壤非均勻流在橫向和縱向上均充分發(fā)展,指流通道的數(shù)量也增加,流動的非均勻程度很高;當入滲水量充分增大時,由于優(yōu)先流通道在橫向上的擴張和聯(lián)結(jié),使得流動整體上又變得相對比較均勻。
2.3 土壤水流自身運動的非穩(wěn)定性
非結(jié)構(gòu)性土壤中即使不存在大孔隙,由于入滲濕潤鋒不穩(wěn)定也能在土壤中形成指狀的優(yōu)先流通道[59]。Raats[37]最初描述指狀水流的形成及持續(xù)特征時指出,當鋒面的壓力梯度與水流方向的壓力梯度相反時,濕潤鋒的非穩(wěn)定就會出現(xiàn)。其后,Philip[60-61]與Parlange和Hill[62]等的進一步研究表明,如果濕潤鋒的遷移速度隨著入滲深度增加,則入滲過程中的微小擾動將使得鋒面變得不穩(wěn)定,開始呈均勻狀態(tài)的濕潤鋒將增長并最終形成優(yōu)先流通道。
Nguyena等[63]提出指流在以下幾種條件下都有可能產(chǎn)生:1)不易被水濕潤的和非常干的土壤條件,2)水力傳導(dǎo)度隨土壤深度增加,3)濕潤鋒前部空氣壓力增加。但這些因素對指流的產(chǎn)生是必要而非充分條件,另外的一個條件是水分特征曲線的滯后性[64]。Nieber[65]提出,如果在主要的濕潤曲線進入毛管壓力的水小于排水曲線進入毛管壓力的氣時,初始不穩(wěn)定濕潤鋒將產(chǎn)生。Ritsema和Dekker[66]通過理論分析和模型模擬指出,指流由土壤水分特征曲線的滯后作用形成,指流的形成特征取決于水分特征曲線的濕潤曲線和排水曲線;指流一旦形成,滯后作用在降雨過程中將引起指流沿著相同路徑再發(fā)生。
3.1 連續(xù)性模型理論
基于試驗尺度和均勻介質(zhì)假設(shè)條件下建立的連續(xù)性模型理論是描述土壤水運動和溶質(zhì)運移的主要理論方法。在連續(xù)性模型理論中,土壤水動力參數(shù)是影響和控制水及溶質(zhì)遷移和傳輸?shù)年P(guān)鍵資料。對于介質(zhì)空間變異條件下水和溶質(zhì)的運動與傳輸?shù)哪M,很多研究都是在分析水動力參數(shù)空間變異性的基礎(chǔ)上進行的,通過連續(xù)性方程模擬水流和溶質(zhì)運動及分布的非均勻性和不確定性[67]。近年來,隨機模擬方法被用來直接考慮自然界的各向異性,模擬非均勻介質(zhì)條件下的水流運動[68]。應(yīng)用隨機模擬方法,比如蒙特卡洛方法,關(guān)鍵的一步就是確定所研究單元的運移參數(shù)和土壤性質(zhì)的統(tǒng)計量,即均值、方差和空間變異結(jié)構(gòu)[69]。在結(jié)構(gòu)參數(shù)確定后,采用條件或者非條件的方法產(chǎn)生水動力隨機分布場,作為數(shù)值模型的輸入?yún)?shù)分布,模擬土壤水和溶質(zhì)在非均勻介質(zhì)中的運動、分析流動的統(tǒng)計特性。針對土壤水動力參數(shù)的空間變異特性[70]和尺度特性[71]也均相應(yīng)的進行了大量的試驗研究和理論分析。但是,野外條件下的土壤水動力參數(shù)的測量是相當困難、昂貴和耗時的,并且大尺度范圍條件下的水動力參數(shù)更加難于獲得。
連續(xù)性模型中,不論是在整個多孔介質(zhì)中,還是在細網(wǎng)格尺度上都具有相同的幾何維數(shù)。在應(yīng)用三維模型時,人為的將幾何維數(shù)設(shè)定為3。然而,對于單獨的優(yōu)先流通道,其幾何維數(shù)接近1,導(dǎo)致模型模擬流速要小于實際流速,從而造成對于優(yōu)先流通道中高速運動水流特性模擬偏差的增大。為了克服這種缺陷,一些研究[1,72]認為,土壤中的結(jié)構(gòu)孔隙是流體快速運動的主要原因;研究區(qū)域可劃分成由土壤團聚體間孔隙、大孔隙和裂隙構(gòu)成的優(yōu)先域和由小孔隙(團聚體內(nèi)部孔隙)構(gòu)成的基質(zhì)域,2個區(qū)域相互影響和作用;優(yōu)先流運動和基質(zhì)流運動共同存在于同一位置,實際水流運動是2種流動在某種程度上的耦合。目前,對于基質(zhì)域中的水流運動,一般都采用Darcy定律和Richard方程來描述,而對于如何描述優(yōu)先域中的水流運動則還未達成一致的觀點;許多研究者根據(jù)自己的研究成果,對優(yōu)先域中的水流運動提出了不同的簡化模型和經(jīng)驗公式,但由于參數(shù)較多且缺乏標準的測定方法,目前為止,這些模型和公式仍局限在理論和室內(nèi)控制條件下的研究[1]。此外,目前的連續(xù)性模型都還無法很好地解釋和預(yù)測指流的形成和發(fā)展過程[73]。
由于流體運動的各向異性、尺度效應(yīng)和非線性(不穩(wěn)定性),傳統(tǒng)的連續(xù)性模型假設(shè)土壤水和溶質(zhì)在均勻介質(zhì)條件下運移的理論和方法不能用于解決非均勻介質(zhì)中的水流運動問題[74]。與連續(xù)性模型的模擬結(jié)果相比,非均勻介質(zhì)中水流運動和溶質(zhì)運移表現(xiàn)出更復(fù)雜的特性,因此,在田間尺度或更大的觀測尺度下,連續(xù)性模型理論也不能用于描述介質(zhì)中水流運動和溶質(zhì)運移的行為[75]。Wood和Norrell[76]的研究就表明,在100、101以及102 m2甚至更大的觀測尺度上,流動均表現(xiàn)出非均勻性和動力傳輸?shù)姆蔷€性(或非穩(wěn)定性)。Wood等[77]運用連續(xù)性模型模擬裂隙結(jié)構(gòu)中的水流運動,結(jié)果表明即使對在更小的室內(nèi)尺度下進行的非均勻水流運動和溶質(zhì)傳輸試驗,連續(xù)性模型仍不能取得較滿意的結(jié)果。Busenberg等[78]對地下水中化學物質(zhì)含量的監(jiān)測結(jié)果也表明,水流通過非飽和區(qū)補給地下水的速度比連續(xù)性模型的模擬預(yù)測結(jié)果要快很多。
3.2 離散模型理論
針對連續(xù)性模型基礎(chǔ)和實際應(yīng)用中所面臨的各種難于解決的問題,近年來離散模型逐漸被用于描述非均勻水流運動。不同于連續(xù)性模型,離散模型將土壤中的水體作為具有一定形狀和包含一定信息的“粒子”結(jié)構(gòu)體,通過某種簡單的運動規(guī)則使這些“粒子”結(jié)構(gòu)體產(chǎn)生復(fù)雜的空間分布,所產(chǎn)生的分布模式與土壤水流的非均勻運動模式從統(tǒng)計意義上來說具有某種相似性[79],彌散限制聚合(diffusion limited aggregation,DLA)模型[80]和入侵滲透(invasion percolation,IP)模型[81]都屬于這類方法。
DLA模型的一個典型特征是能產(chǎn)生具有分形特性的“叢”(cluster)。最初的DLA模型以點源作為源粒子,現(xiàn)今的研究中大多運用Meakin[82]引入的線源DLA模型,他運用該模型模擬了溶質(zhì)遷移試驗的邊界條件。通過改變粒子在不同方向上的行走概率,DLA模型既能模擬均勻分布的化學物質(zhì)(如活塞流動),也能模擬由于大孔隙和指狀流引起的復(fù)雜的分布[83]。該模型已成功地應(yīng)用于描述優(yōu)先流產(chǎn)生的試驗結(jié)果[84]。此外,DLA模型已用于水文動態(tài)非飽和混合置換的粘性指狀分析[85]。
IP模型最早由Wilkinson和Willemsen[81]提出,他們用該模型模擬了濕潤區(qū)為穩(wěn)定壓力勢的滲透。Glass[86]用改進的入侵滲透模型(modified invasion percolation,MIP)模擬水流速度很小、在孔隙尺度只考慮重力(忽略粘滯力)作用時,受重力驅(qū)動的指流形成及濕潤鋒結(jié)構(gòu)。IP模型模擬指狀流時不存在明顯可見的長度尺度,而MIP模型模擬重力指流時,長度尺度可按指流的寬度大小順序定義[86]。基于IP理論構(gòu)建的模型,如元胞自動機動態(tài)模型和晶格結(jié)構(gòu)氣體模型,已運用于水流和溶質(zhì)傳輸規(guī)律研究[87]。
目前,DLA模型已被成功地用來描述小尺度的試驗結(jié)果,但是這種模型的計算工作量大,還不能用來解決大尺度的問題;同時,用這種模型來描述非飽和水流及溶質(zhì)的運移時,還缺乏完整的理論基礎(chǔ)[79]。IP模型主要被用來描述孔隙尺度的流體運動過程,也取得了一定成功,但是這種模型的物理意義尚不明確,同樣還無法用來解決大尺度的實際問題[79]。
3.3 分形模型理論
分形是自然現(xiàn)象的普遍特征。近年來的研究表明優(yōu)先流具有明顯的分形特征[58]。如,F(xiàn)lury和Flühler[59]采用DLA模型模擬了溶質(zhì)的運動模式,研究結(jié)果表明優(yōu)先流不僅表現(xiàn)出分形特征,并且描述分形特征的參數(shù)也表現(xiàn)出一定的規(guī)律性;Persson等[84]觀測到染色劑在土壤中的運動路徑具有分形特征;Wang等[88]對砂土條件下的優(yōu)先流進行了一系列的染色示蹤試驗,并采用分形理論對流動模式進行了模擬,結(jié)果也顯示用于描述優(yōu)先流特征的參數(shù)表現(xiàn)一定的隨入滲條件變化的規(guī)律性。Liu等[89]指出離散模型之所以能捕捉到優(yōu)先流的細部特征,正是在于這類模型能夠產(chǎn)生與優(yōu)先流相似的分形(多重分形)結(jié)構(gòu),并在此基礎(chǔ)上建立了用于描述裂隙介質(zhì)中水和溶質(zhì)輸移過程的活動裂隙模型(active fracture model,AFM)[89]。
為描述非飽和帶土壤中的水流和溶質(zhì)運動過程,Liu等[79]在AFM基礎(chǔ)上根據(jù)土壤介質(zhì)特性和流體運動特征建立了活動流場模型(active region model,ARM)。ARM模型參數(shù)為優(yōu)先流運動分形維數(shù)的函數(shù),從而抓住了優(yōu)先流的細部(分形)特征。Sheng等[58]的試驗研究證明ARM有效的捕捉到了多種入滲條件下優(yōu)先流運動的整體非均勻信息,并且ARM模型參數(shù)(可用于描述和比較優(yōu)先流的非均勻特征)也表現(xiàn)出一定的標度不變性。然而,相對于土壤介質(zhì)的物理和水動力性質(zhì)的分形研究而言,土壤優(yōu)先流分形性質(zhì)的研究才剛起步,分形模型建立的理論基礎(chǔ)、模型參數(shù)確定、模型參數(shù)與土壤介質(zhì)性質(zhì)之間的關(guān)系以及模型對于非均勻流動描述的效果等問題都還需進一步的研究。
研究優(yōu)先流發(fā)展變化的特征和規(guī)律,關(guān)鍵的一步就是要確定優(yōu)先流流場和流場內(nèi)土壤含水率的分布。近年來許多新方法和新技術(shù)被用于優(yōu)先流的室內(nèi)外觀測中。其中,染色示蹤技術(shù)和離子顯色示蹤技術(shù)由于它們能直觀的顯示優(yōu)先流分布模式且無需大量的經(jīng)費投入而得到廣泛應(yīng)用[90]。
4.1 染色示蹤技術(shù)
染色示蹤技術(shù)是通過隨入滲水流滲入到土壤中的染色劑來顯示土壤優(yōu)先流現(xiàn)象的一種試驗技術(shù)[91]。由于其顏色鮮明、價格低廉、與土壤基質(zhì)顏色差異明顯、試驗耗時短等優(yōu)點,染色示蹤技術(shù)已成為判斷和研究優(yōu)先流的結(jié)構(gòu)和動力學特征的常用方法[92]。染色劑溶液通常采用人工模擬降雨的方式播撒至土壤表面,在野外也可以用噴壺等它工具來噴灑染色劑溶液[93],或用矩形或圓形入滲框(環(huán))在土壤表面形成瞬間或恒定積水入滲[94]。待入滲完成后,通過開挖土壤剖面(水平剖面或垂直剖面),可獲得土壤優(yōu)先流路徑的直接分布,從而為進一步分析土壤中水分和溶質(zhì)的運移模式提供依據(jù)。
可用于優(yōu)先流示蹤研究的染色劑種類很多。如,Bouma等[95]和Natano[97]應(yīng)用亞甲基藍(methylene blue)作為染色劑分別觀測了野外粘土中溶質(zhì)的運移狀況和土壤中大孔隙的形態(tài)特征;Sollins和Radulovich[96]運用羅丹明(rhodamine,WT)作為染色劑研究了土壤中植物根孔對優(yōu)先水流和溶質(zhì)運移過程的影響;Flury等[98]和Forrer等[99]利用亮藍(brilliant blue,F(xiàn)CF)作為染色劑研究了不同類型土壤中大孔隙流的差異性;Noguchi等[100]利用丙烯酸纖維樹脂乳劑(acrylic resin emulsion)作為染色劑研究了馬來西亞熱帶雨林土壤的物理特征與優(yōu)先流路徑。王康[101]在其專著《多孔介質(zhì)非均勻流動顯色示蹤技術(shù)與模擬方法》中列出了可用于非飽和帶土壤水流運動示蹤研究的染色劑的一些信息,包括染色劑種類、商用命名、通用名、色調(diào)、熒光性和用途等;指出亮藍、若丹明、亞甲基藍和酸性紅(acid,IU)等是土壤優(yōu)先流示蹤研究最為常用的染色劑。
Flury和Flühler[59]與Flury和Wai[102]指出,作為土壤水流運動示蹤的理想染色劑應(yīng)當具備以下特征:1)具有鮮明的顏色,以便于被人工或計算機軟件識別出來;2)在水中有較高的溶解度,且具有與水流相一致或接近一致的遷移特征,以便能準確顯示土壤水流運動的范圍;3)這種染色劑本身及其衍生物應(yīng)當是無毒或低毒的,以免造成環(huán)境影響或破壞;4)染色劑本身在自然環(huán)境中的本底值較低,以便能從背景環(huán)境中被方便的識別出來;5)染色劑對土壤溶液化學性質(zhì)的變化不敏感,其遷移轉(zhuǎn)化不受溶液的酸堿度和離子影響。近年來大量的研究[97]表明,亮藍(brilliant blue,F(xiàn)CF,顏色索引:42090)是同時具有以上特征的理想染色劑:亮藍的顏色極為鮮明,且藍色與土壤基質(zhì)顏色(磚紅色、灰色或黃色)反差大、易于識別;亮藍在水中的溶解度高,隨水流遷移的一致性較好(尤其是在沙土中);亮藍是一種食品添加劑,在其使用的濃度范圍內(nèi),幾乎不具有毒性;亮藍在自然環(huán)境中的本底值為0,且其化學性質(zhì)極為穩(wěn)定。此外,亮藍價格相對便宜,這也有利于其廣泛使用,尤其適用于開展大尺度的野外試驗。但需要注意的是,土壤粘粒(特別是粘粒含量較高時)對亮藍分子的吸附作用會導(dǎo)致亮藍染色劑的示蹤范圍明顯滯后于入滲濕潤鋒的實際遷移范圍[103]。
4.2 離子顯色示蹤技術(shù)
與染色示蹤劑不同,用于優(yōu)先流示蹤研究的離子顯色示蹤劑自身一般不具有顏色,需要通過附加的顯色反應(yīng)(如I-經(jīng)氧化劑氧化成I2后與淀粉生成藍紫色的反應(yīng))才能指示出優(yōu)先流路徑。Cl-、Br-和I-等無機負離子由于其幾乎不被土壤粘粒(帶負電荷)所吸附[102],因此,這些離子即使在粘性土壤條件下也具有與土壤水入滲濕潤鋒相一致的遷移速特征。其中,I-由于其溶解度高、毒性低、經(jīng)顯色反應(yīng)生成的藍紫色易于識別等優(yōu)點,特別適用于粘性土壤條件下的優(yōu)先流示蹤研究[104-105]。由于需要附加的顯色反應(yīng),碘-淀粉顯色示蹤技術(shù)相對以亮藍為示蹤劑的染色示蹤技術(shù)而言要復(fù)雜和耗時。具體選擇哪一種示蹤技術(shù),主要取決于試驗土壤的性質(zhì)。
碘-淀粉顯色示蹤方法在優(yōu)先流運動模式和非均勻特征分析[84]、灌水均勻性分析及灌水效率分析[92]等方面都取得了較好的效果。但是,對于示蹤劑溶液中I-的合適濃度卻仍有不同的觀點:Lu和Wu[106]使用2~3 g/L的I-溶液來示蹤細質(zhì)地土壤中的優(yōu)先流結(jié)構(gòu),而在研究粗質(zhì)地土壤中的優(yōu)先流結(jié)構(gòu)時,示蹤溶液中的I-濃度為3~4 g/L;考慮到土壤中的陽離子(如粘土礦物中的Fe3+、Al3+)對帶負電荷的碘離子的吸附作用可能導(dǎo)致入滲方向上I-濃度減小,越來越多的研究[107-108,58]使用高濃度的(15~30 g/L)的I-溶液來示蹤細質(zhì)地土壤中的優(yōu)先流結(jié)構(gòu)。由于過高的I-濃度可能導(dǎo)致I-通過擴散作用進入到非流動區(qū)域(non-flow region)的土壤孔隙中,因此,很少有研究中使用濃度高于30 g/L的I-溶液來示蹤土壤優(yōu)先流運動[105]。
近年來,越來越多的試驗研究中同時采用多種無機離子來示蹤非飽和帶土壤中的水流運動和溶質(zhì)輸移過程[109]。在這些研究中,土壤水的入滲過程通常被分為幾個連續(xù)階段順序進行,每個階段入滲水中的示蹤離子不同。入滲完成后,通過剖面開挖和采樣分析,可以獲得不同階段注入的示蹤劑離子分布,在此基礎(chǔ)上可以研究流動過程中水流運動和溶質(zhì)輸移之間的相互關(guān)系、流動過程中土壤大孔隙和土壤基質(zhì)之間水和溶質(zhì)的交換作用,以及土壤大孔隙和指流通道對水和溶質(zhì)輸移與分布的影響[110]。
4.3 其它觀測技術(shù)
土壤優(yōu)先流研究的其它觀測技術(shù)還有微張力測量技術(shù)、聲波探測技術(shù)、穿透曲線技術(shù)、非侵入影像獲得技術(shù)、地下雷達探測技術(shù)和電阻率層析成像技術(shù)等。這些技術(shù)通常需要專門的儀器設(shè)備且使用方法復(fù)雜[19],因此,在優(yōu)先流(尤其是田間尺度條件下的優(yōu)先流全局性流動)的研究中相對不如示蹤成像技術(shù)廣泛。由于相關(guān)文獻[18,23,41,111]對這些觀測技術(shù)均有較詳細的和系統(tǒng)的介紹,在此僅對這些觀測技術(shù)做簡要說明。
微張力測量技術(shù)所采用的典型儀器設(shè)備是時域反射儀(time-domain reflector,TDR)。TDR既可以測量土壤水分含量,也可以測量溶質(zhì)含量;具有對土壤結(jié)構(gòu)擾動少、效率高、精度高、勞力消耗低、操作簡易和攜帶方便等優(yōu)點[111]。TDR的連續(xù)監(jiān)測性和靈敏性有助于優(yōu)先流的定量化研究,是獲得優(yōu)先流模型建立所需參數(shù)的重要工具[112]。但TDR探頭的探測范圍有限,如果探頭布設(shè)的數(shù)量較少,則可能探測不到優(yōu)先流;而如果探頭布設(shè)的過多,則對被監(jiān)測的土壤會產(chǎn)生較大的擾動、破壞土壤的原狀結(jié)構(gòu)。
聲波探測技術(shù)是無損檢測的主要方法之一。雖然聲波探測技術(shù)很早就被用于多孔介質(zhì)中的優(yōu)先流傳播速度的研究,但由于該技術(shù)的探測深度有限,前期較少涉及到水分和溶質(zhì)在多孔介質(zhì)中分布的定量研究[113],而主要用于研究聲波在多孔介質(zhì)中的傳播速度、頻率以及溶質(zhì)和水分對聲波傳播的影響。直到近些年,聲波探測技術(shù)與TDR技術(shù)[114]或染色示蹤技術(shù)[115]相結(jié)合,才被廣泛地運用于測定水分和溶質(zhì)在非飽和帶土壤中的分布。
穿透曲線技術(shù)探測土壤優(yōu)先流時常在土壤表面投放示蹤劑溶液,通過收集并分析不同深度土層中的示蹤劑溶液濃度和性質(zhì)隨時間的變化關(guān)系生成穿透曲線。當測得的穿透時間小于(基于菲克等溫吸附定律的)對流-彌散方程所預(yù)測的穿透時間時,表明土壤中有優(yōu)先流產(chǎn)生。盡管不同吸附系數(shù)下的對流-彌散方程預(yù)測的穿透時間有所差異,但在優(yōu)先流條件下,土壤的吸附性能對穿透時間并無影響[116]。穿透曲線的拖尾和雙峰現(xiàn)象以及曲線的不對稱性可以清晰地表示土壤大孔隙的半徑范圍、個數(shù)及分布情況,結(jié)合Poiseuille方程則可以計算土壤大孔隙直徑與密度之間的關(guān)系[117]。雖然穿透曲線技術(shù)具有簡單、快速、成本少的特點,但有時耗費時間長,且涉及優(yōu)先流的重要計算常常比較復(fù)雜,需要統(tǒng)一標準的方法和數(shù)據(jù)作對比研究[23]。
非侵入影像獲得技術(shù)是一種不擾動試驗土壤內(nèi)部結(jié)構(gòu)而直接對土壤進行圖像獲取和分析的無損測量技術(shù)[111]。常用的有計算機X線斷層攝像(X-ray computed tomography, CT)技術(shù)和磁共振影像(magnetic resonance imaging,MRI)技術(shù)。CT技術(shù)和MRI技術(shù)具有直觀(直接研究孔隙三維結(jié)構(gòu)、直接顯示水分和溶質(zhì)的運動過程)、掃描快速方便和無損測量等優(yōu)點[118-119]。為使優(yōu)先流路徑更直觀和清晰以便于研究,CT技術(shù)和MRI技術(shù)也常結(jié)合示蹤成像技術(shù)一起使用[120]。盡管CT技術(shù)和MRI技術(shù)對優(yōu)先流定量分析極具潛力,但目前還沒有針對土壤優(yōu)先流研究的專用CT掃描儀和MRI掃描儀,試驗樣品通常需要外送到醫(yī)院進行掃描,儀器軟件需要校正,試驗分析費用高,檢測分析過程繁瑣且結(jié)果可能不準確[18]。
地下雷達探測技術(shù)是一種用于測定地下介質(zhì)分布的廣譜電磁(1 MHz~1 GHz)技術(shù),常用來探測地下水水位、土壤風化層面以及結(jié)構(gòu)構(gòu)造等[121]。近年來,地下雷達探測技術(shù)已經(jīng)被成功地應(yīng)用于探測和描繪優(yōu)先流現(xiàn)象[122],但目前相關(guān)的研究仍然較少。這主要是因為地下雷達的探測深度有限、測量尺度大,而土壤優(yōu)先流的尺度相對較小、發(fā)生位置可深達幾米。
電阻率層析成像技術(shù)是通過在不同方向觀測激發(fā)電場的電阻率分布來反演計算探測區(qū)滲流過程的一種地球物理方法[122]。電阻率層析成像技術(shù)具有成像分辨率高、探測深度大、探測費用較低等優(yōu)點,因而廣泛運用于地下水、土壤水和溶質(zhì)遷移等研究中[111]。但由于該方法獲得的數(shù)據(jù)僅局限于二維平面內(nèi),加之反演計算過程中一些問題的欠定性,增加了使用該方法的難度[123]。
優(yōu)先流是土壤中常見的和重要的但又難于被捕捉和描述的水流運動和溶質(zhì)運移形式。大孔隙流和指流是目前研究較多的2種優(yōu)先流形態(tài),其它一些優(yōu)先流形態(tài)也因其所引起的各種水文和環(huán)境地質(zhì)問題而被人們關(guān)注和研究。優(yōu)先流的形成和影響因素很多,土壤結(jié)構(gòu)和質(zhì)地、入滲的初始條件和邊界條件以及水流運動的非穩(wěn)定性(非線性)都能導(dǎo)致優(yōu)先流的產(chǎn)生并影響優(yōu)先流的發(fā)展。為準確模擬和預(yù)測土壤優(yōu)先流的時空變異特征,國內(nèi)外研究者提出了眾多的模型理論和試驗方法,其中連續(xù)性模型理論、離散模型理論和分形模型理論等是目前較為常用的優(yōu)先流模型理論方法;染色示蹤技術(shù)、離子顯色示蹤技術(shù)、微張力測量技術(shù)、聲波探測技術(shù)、穿透曲線技術(shù)、非侵入式影像獲得技術(shù)、地下雷達探測技術(shù)、電阻率層析成像技術(shù)等是目前較為常用的優(yōu)先流觀測技術(shù)。盡管近些年國內(nèi)外許多研究者對土壤優(yōu)先流進行了大量研究,但直到現(xiàn)在也沒有完全統(tǒng)一定義和判別標準。由于優(yōu)先流的形成和影響因素眾多、表現(xiàn)形式多樣,加之優(yōu)先流的快速非平衡特征明顯以及土壤高度非均勻特征,目前土壤優(yōu)先流研究的模型理論和觀測技術(shù)都不完善。因此,建立土壤優(yōu)先流的統(tǒng)一判別標準、提升優(yōu)先流模型理論的有效性、發(fā)展優(yōu)先流的專用觀測技術(shù)設(shè)備等是當前土壤優(yōu)先流研究的主要方向和亟需解決的主要問題。
[2]Benegas L,Ilstedt U,Roupsard O,et al.Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in Central America Agriculture[J].Ecosystems and Environment,2014,183:185-196.
[3]Ghafoor A,Koestel J,Larsbo M,et al.Soil properties and susceptibility to preferential solute transport in tilled topsoil at the catchment scale[J].Journal of Hydrology,2013,492:190-199.
[4]Lindahl A M L,Bockstaller C.An indicator of pesticide leaching risk to groundwater[J].Ecological Indicators,2012,23:95-108.
[5]Ronkanen A K,Kl?ve B.Long-term phosphorus and nitrogen removal processes and preferential flow paths in Northern constructed peatlands[J].Ecological Engineering,2009,35: 843-855.
[6]Cey E E,Rudolph D L,Passmore J.Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils[J].Journal of Contaminant Hydrology,2009,107:45-57.
[7]李慧穎,杜曉明,楊賓,等.多孔介質(zhì)中NAPLs流體毛細管指進形態(tài)及分形表征[J].環(huán)境科學,2013,34(10):4058-4065. Li Huiying,Du Xiaoming,Yang Bin,et al.Fractal characteristics of capillary finger flow for NAPLs infiltrated in porous media[J]. Environmental Science,2013,34(10):4058-4065.(in Chinese with English abstract)
[8]van der Heijden G,Legout A,Pollier B,et al.Tracing and modeling preferential flow in a forest soil-potential impact on nutrient leaching[J].Geoderma,2013,195-196:12-22.
[9]Murphy E M,Ginn T R.Modeling microbial processes in porous media[J].Hydrogeology Journal,2000,8:142-158.
[10]常曉麗,金會軍,王永平,等.植被對多年凍土的影響研究進展[J].生態(tài)學報,2012,32(24):7981-7990. Chang Xiaoli,Jin Huijun,Wang Yongping,et al.Influences of vegetation on permafrost:a review[J].Acta Ecologica Sinica, 2012,32(24):7981-7990.(in Chinese with English abstract)
[11]蔣小金,王恩姮,陳祥偉,等.典型黑土耕地土壤優(yōu)先流環(huán)繞特征[J].應(yīng)用生態(tài)學報,2010,21(12):3127-3132. Jiang Xiaojin,Wang Enheng,Chen xiangwei,et al.Surrounding characteristics of preferential flow in cultivated typical black soils of northeast China[J].Chinese Journal of Applied Ecology, 2010,21(12):3127-3132.(in Chinese with English abstract)
[12]沈輝,羅先啟,李顯平.碎石土斜坡優(yōu)先流滲流特征試驗[J].水利水電科技進展,2012,32(2):57-62. Shen Hui,Luo Xianqi,Li Xianpin.Exoerimental study on seepage characteristics of preferential flow in the gravel slope[J]. Advances in Science and Technology of Water Resources,2012, 32(2):57-62.(in Chinese with English abstract)
[13]劉目興,杜文正.山地土壤優(yōu)先流路徑的染色示蹤研究[J].土壤學報,2013,50(5):871-880. Liu Muxing,Du Wenzheng.To investigate soil preferential flow path in mountain area using dye tracer[J].Acta Pedologica Sinica,2013,50(5):871-880.(in Chinese with English abstract)
[14]Sohrt J,Ries F,Sauter M,et al.Significance of preferential flow at the rock soil interface in a semi-arid karst environment[J]. Catena,2014,123:1-10.
[15]Lipiec J,Turski M,Hajnos M,et al.Pore structure,stability and water repellency of earthworm casts and natural aggregates in loess soil[J].Geoderma,2015,243-244:124-129.
[16]Chen C C,Roseberg R J,Selker J S.Using micro-sprinkler irrigation to reduce leaching in a shrink/swell clay soil[J]. Agriculture Water Management,2002,54:159-171.
[17]Reichenberger S,Amelung W,Laabs V,et al.Pesticide displacement along preferential flow pathways in a Brazilian Oxisol[J].Geoderma,2002,110:63-86.
[18]牛健植,余新曉,張志強.優(yōu)先流研究現(xiàn)狀及發(fā)展趨勢[J].生態(tài)學報,2006,26(1):231-242. Niu Jianzhi,Yu Xinxiao,Zhang Zhiqiang.The present and future research on preferential flow[J].Acta Ecologica Sinica, 2006,26(1):231-242.(in Chinese with English abstract)
[19]Allaire E S,Roulier S,Cessna A J.Quantifying preferential flow in soils:A review of different techniques[J].Journal of Hydrology, 2009,378:179-204.
[20]Lawes J B,Gilbert J H,Warington R.On the amount and composition of the rain and drainage water collected at Rothamsted[M].Williams,Clowes and Sons,Lt,London,1882.
[21]Green R D,Askew G P.Observations on the biological development of macropores in soils of Romney Marsh[J].Journal of Soil Science,1965,16(2):342-344.
[22]Cey E E,Rudolph D L.Field study of macropore flow processes using tension infiltration of a dye tracer in partially saturatedsoils[J].Hydrological Processes,2009,23(12):1768-1779.
[23]張中彬,彭新華.土壤裂隙及其優(yōu)先流研究進展[J].土壤學報,2015,52(3):477-488.Zhang Zhongbin,Peng Xinhua.A review of researches on soil cracks and their impacts on preferential flow[J].Acta Pedologica Sinica,2015,52(3):477-488.(in Chinese with English abstract)
[24]Li T Y,Zhu X,Zhao Y,et a1.The wave propagation and vibrational energy flow characteristics of a plate with a partthrough surface crack[J].International Journal of Engineering Science,2009,47:1025-1037.
[25]馬佳.裂土優(yōu)勢流與邊坡穩(wěn)定性分析方法[D].武漢:中國科學院研究生院,2007.Ma Jia.Preferential Flow and Stability Analysis Method for Fissure Clay Slopes[D].Wuhan:Chinese Academy of Science, 2007.(in Chinese with English abstract)
[26]Luxmoore R J.Micro-,meso-,and macroporosity of soils[J].Soil Science Society of America Journal,1981,45:671-672.
[27]Beven K,Germann P.Macropores and water flow in soils[J]. Water Resource Research,1982,18(5):1311-1325.
[28]張家明,徐則民,裴銀鴿.植被發(fā)育斜坡非飽和帶大孔隙[J].山地學報,2012,30(4):439-449.Zhang Jiaming,Xu Zheming,Pei Yingge.Macropores in vadose zone of well vegetated slopes[J].Journal of Mountain Science, 2012,30(4):439-449.(in Chinese with English abstract)
[29]秦耀東,任理,王濟.土壤中大孔隙流研究進展與現(xiàn)狀[J].水科學進展,2000,11(2):203-207.Qin Yaodong,Ren Li,Wang Ji.Review on the study of macropore flow in soil[J].Advances in Water Science,2000,11 (2):203-207.(in Chinese with English abstract)
[30]Chen C,Wagenet R J.Simulation of water and chemicals in macropore soils Part I.Representation of the equivalent macropore influence and its effect on soil-water flow[J].Journal of Hydrology,1992,130:105-126.
[31]Glass R J,Steenhuis T S,Parlange J Y.Wetting front instability as a rapid and far-reaching hydrologic process in the vadose zone[J].Journal of Contaminant Hydrology,1988,3:207-226.
[32]Mabuchi T.Infiltration and ensuing percolation in columns of laggard glass particles packed in laboratory[J].Transaction of Agriculture Engineering Society of Japan,1961,13-19.
[33]Miller D E,Gardner W H.Water infiltration into stratified soil [J].Soil Science of American Proceeding,1962,26:115-119.
[34]Hill D E,Parlange J Y.Wetting front instability in layered soils [J].Soil Science of American Proceeding,1972,36:697-702.
[35]Rezanezhad F,Vogel H J,Roth K.Experimental study of fingered flow through initially dry sand[J].Hydrology and Earth System Science Discussions,2006,3:2595-2620.
[36]劉亞平,陳川.土壤非飽和帶中的優(yōu)先流[J].水科學進展,1996,7(1):85-89.Liu Yaping,Chen Chuan.Introduction to preferential flow in unsaturated soil[J].Advances in Water Science,1996,7(1):85-89.(in Chinese with English abstract)
[37]Raats P A C.Unstable wetting fronts in uniform and non-uniform soils[J].Soil Science Society of America Proceeding,1973,37: 681-685.
[38]Ritsema C J,Dekker L W,Hendricrx J M H.Preferential flow mechanism in a water repellent sandy soil[J].Water Resources Research,1993,29(7):2183-2193.
[39]Dekker L W,Ritsema C J.How water moves in a water repellent sandy soil[J].Water Resources Research,1994,30(9):2507-2517.
[40]De Rooij G H.A three-region analytical model of solute leaching in a soil with a water repellent top layer[J].Water Resources Research,1995,31:2701-2707.
[41]高朝俠,徐學選,趙嬌娜,等.土壤大孔隙流研究現(xiàn)狀與發(fā)展趨勢[J].生態(tài)學報,2014,34(11):2801-2811.Gao Zhaoxia,Xu Xuexuan,Zhao Jiaona,et al.Review on macropore flow in soil[J].Acta Ecologica Sinica,2014,34(11): 2801-2811.(in Chinese with English abstract)
[42]Allaire-Leung S E,Gupta S C,Moncrief J F.Water and solute movement in soil as influenced by macropore characteristics. Macroporecontinuity[J].JournalofContaminantHydrology,2000, 41:283-301.
[43]Allaire-Leung S E,Gupta S C,Moncrief J F.Water and solute movement in soil as influenced by macropore characteristics. Macropore tortuosity[J].Journal of Contaminant Hydrology, 2000,41:303-315.
[44]程竹華,張佳寶,徐紹輝.黃淮海平原三種土壤中優(yōu)勢流現(xiàn)象的試驗研究[J].土壤學報,1999,36(2):154-161.Cheng Zhuhua,Zhang Jiabao,Xu Shaohui.Experimental studies on preferential flow in three soils in Huang-Huai-Hai plain[J]. Acta Pedologica Sinica,1999,36(2):154-161.(in Chinese with English abstract)
[45]Bouma J.Influence of soil macroporosity on environmental quality[J].Advanced in Agronomy,1991,46:1-36.
[46]Beven K,Germann P.Water flow in soil macropores[J].1981, 32:15-29.
[47]Dekker L W,Ritsema C J.Preferential flow paths in a water repellentclaysoilwithgrasscover[J].Water Resources Research, 1996,32:1239-1249.
[48]Kung K J S.Preferential flow in a sandy vadose zone soil.1. Field observation[J].Geoderma,1990,46:51-58.
[49]Kung K J S.Preferential flow in a sandy vadose zone soil.2. Mechanism and implications[J].Geoderma,1990,46:59-71.
[50]Roth K.Steady state flow in an unsaturated,two dimensional, macroscopically homogeneous,Miller-similar medium[J].Water Resources Research,1995,31:2127-2140.
[51]Flury M,Flühler H,Jury W A,et al.Susceptibility of soils to preferential flow of water:A field study[J].Water Resources Research,1994,30(7):1945-1954.
[52]Merdun H,Meral R,Riza D A.Effect of the initial soil moisture content on the spatial distribution of the water retention[J]. Eurasian Soil Science,2008,41(10):1098-1106.
[53]De Rooij G H.Modeling fingered flow of water in soils owing to wetting front instability:a review[J].Journal of Hydrology,2000, 231-232:277-294.
[54]盛豐,方妍.土壤水非均勻流動的碘-淀粉染色示蹤研究[J].土壤,2012,44(1):144-148.Sheng Feng,Fang Yan.Study on preferential soil water flow using iodine-starch staining method[J].Soils,2012,44(1):144-148.(in Chinese with English abstract)
[55]Edwards W M,Shipitalo M J,Owens L B,et al.Rainfall intensity affects transport of water and chemicals through macropores in non-till soil[J].Soil Science Society of America Journal,1992, 56:52-58.
[56]Ghodrati M,Jury W A.A field study using dyes to characterize preferential flow of water[J].Soil Science Society of America Journal,1990,54(6):1558-1563.
[57]Ren G L,Izadi B,King B,et al.Preferential transport of bromide in undisturbed cores under different irrigation methods[J].Soil Science,1996,161(4):214-225.
[58]Sheng F,Wang K,Zhang R,et al.Characterizing soil Preferential flow using iodine-starch staining experiments and the active region model[J].JournalofHydrology,2009,367:115-124.
[59]Flury M,Flühler H.Modeling solute leaching in soils by diffusion-limited aggregation:Basic concepts and applications to conservative solutes[J].Water Resource Research,1995,31: 2443-2452.
[60]Philip J R.Stability analysis of infiltration[J].SoilScience Society of America Proceeding,1975,39:1042-1049.
[61]Philip J R.The growth of disturbances in unstable infiltration flows[J].Soil Science Society of America Proceeding,1975,39: 1049-1053.
[62]Parlange J Y,Hill D E.Theoretical analysis of wetting front instability in soils[J].Soil Science,1976,122:236-239.
[63]Nguyena H V,Nieber J L,Ritsemab C J,et al.Modeling gravity driven unstable flow in a water repellent soil[J].Journal of Hydrology,1999,215:202-214.
[64]Glass R J,Steenhuis T S,Parlange J Y.Mechanism for finger persistence in homogeneous unsaturated porous media:Theory and verification[J].Soil Science,1989,148:60-70.
[65]Nieber J L.Modeling finger development and persistence in initial dry porous media[J].Geoderma,1996,70:209-229.
[66]Ritsema C J,Dekker L W.Modeling and field evidence of finger formation and finger recurrence in a water repellent sandy soil [J].Water Resources Research,1998,34:555-567.
[67]賈宏偉,康紹忠,張富倉,等.土壤水力學特征參數(shù)空間變異的研究方法評述[J].西北農(nóng)林科技大學學報(自然科學版),2004(32):97-102.Jia Hongwei,Kang Shaozhong,Zhang Fucang,et al.A review of study methods on spatial variability of soil hydraulic properties [J].Journal of Northwest Science Technology University of Agriculture and Forestry (Nature Science Edition),2004(32): 97-102.(in Chinese with English abstract)
[68]Tompson A F B,Gelhar L W.Numerical simulation of solute transport in three-dimensional,randomly heterogeneous porous media[J].Water Resources Research,1990,26:2541-2562.
[69]Feyen J,Jacques D,Timmerman A,et al.Modelling water flow and solute transport in heterogeneous soils:a review of recent approaches[J].Journal of Agricultural Engineering Research, 1998,70:231-256.
[70]黃冠華.土壤水力特性空間變異的試驗研究進展[J].水科學進展,1999,10(4):450-457.Huang Guanhua.A review of experimental study on spatial variability of soil hydraulic properties[J].Advances in Water Science,1999,10(4):450-457.(in Chinese with English abstract)
[71]薛緒掌,張仁鐸,桂勝祥.測定尺度對所測土壤導(dǎo)水參數(shù)及其空間變異性的影響[J].水土保持通報,2001,21(3):47-51.Xue Xuzhang,Zhang Renduo,Gui Shengxiang.Effect of measurement scales on measured soil hydraulic properties and their spatial variability[J].Bulletin of Soil and Water Conservation, 2001,21(3):47-51.(in Chinese with English abstract)
[72]Jarvis N J.A review of non-equilibrium water flow and solute transport in soil macropores:principles,controlling factors and consequences for water quality[J].European Journal of Soil Science,2007,58:523-546.
[73]Liu H H,Doughty C,Bodvarsson G S.An active fracture model for unsaturated flow and transport in fractured rocks[J].Water Resources Research,1998,34:2633-2646.
[74]王康,張仁鐸,周祖昊,等.多孔介質(zhì)中非均勻流動模式示蹤試驗與彌散限制聚合分形模型的應(yīng)用[J].水利學報,2007,38 (6):690-696.Wang Kang,Zhang Renduo,Zhou Zuhao,et al.Experimental study on heterogeneous flow in porous media by tracing technology and application of diffusion-limited aggregation fractal modeling[J].Journal of Hydraulic Engineering,2007,38 (6):690-696.(in Chinese with English abstract)
[75]Flint A L,Flint L E,Bodvarsson G S,et al.Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain,Nevada[J].Journal of Hydrology,2001,247:1-30.
[76]Wood T R,Norrell G T.Integrated large-scale aquifer pumping and infiltration tests:groundwater pathways,OU 7-06:Summary Report[R].Idaho National Engineering Laboratory,Environmental Restoration Department,Lockheed Martin Idaho Technologies Company,1996.
[77]Wood T R,Podgorney R K,Faybishenko B.Small scale field tests of water flow in a fractured rock vadose zone.Case study to chapter 3[M]//Looney B,Falta R.Vadose Zone Science and Technology Solutions.Battelle Press,Columbus,OH,2000.
[78]Busenberg E,Weeks E P,Plummer L N,et al.Age dating ground water by use of chlorofluorocarbons(CCl3F and CCl2F2), and distribution of chlorofluorocarbons in the unsaturated zone, Snake RiverPlain aquifer,Idaho NationalEngineering Laboratory,Idaho[R].Water-Resources Investigations.Report 93-4054(DOE/ID-22107).U.S.Geological Survey,Res ton,VA, 1993.
[79]Liu H H,Zhang R,Bodvarsson G S.An active region model for capturing fractal flow patterns in unsaturated soils:Model development[J].Journal of Contaminant Hydrology,2005,80: 18-30.
[80]Witten T A,Sander L M.Diffusion-limited aggregation:A kinetic critical phenomenon[J].Physics Review Letter,1981,47: 1400-1430.
[81]Wilkinson D,Willemsen J F.Invasion percolation:A new form of percolation theory[J].Journal of Physics A,1983,16:3365-3376.
[82]Meakin P.Diffusion-controlled deposition on fibers and surfaces [J].Physical Review A,1983,27:2616-2623.
[83]Flury M,Leuenberger J,Studer B,et al.Transport of anions and herbicides in a loamy and sandy field soil[J].Water Resources Research,1995,31:823-835.
[84]Persson M,Yasuda H,AlbergeI J,et al.Modeling plot scale dye penetration by a diffusion limited aggregation(DLA)model[J]. Journal of Hydrology,2001,250:98-105.
[85]PatersonL.Diffusionlimitedaggregationandtwo-fluid displacements in porous media[J].Physics Review Letter,1984,52(18):1621-1624.
[86]Glass R J,Yarrington L.Simulation of gravity fingering in porousmedia using a modified invasion percolation model[J].Geoderma, 1996,70:231-252.
[87]Klafter J,Shlesinger M F,Zumofen G.Beyond Brownian motion [J].Physics Today,1996,49(2):33-39.
[88]Wang K,Zhang R,Yasuda H.Characterizing heterogeneity of soil water flow by dye infiltration experiments[J].Journal of Hydrology,2006,328:559-571.
[89]Liu H H,Zhang G,Bodvarsson G S.The active fracture model: Its relation to fractal flow behavior and a further evaluation using field observations[J].Vadose Zone Journal,2003,2:259-269.
[90]盛豐,王康,張仁鐸,等.田間尺度下土壤水流非均勻運動特征的染色示蹤研究[J].水利學報,2009,40(1):101-108. Sheng Feng,Wang Kang,Zhang Renduo,et al.Study on heterogeneous characteristics of soil water flow in field[J]. Journal of Hydraulic Engineering,2009,40(1):101-108.(in Chinese with English abstract)
[91]Morris C,Mooney S J.A high-resolution system for the quantification of preferential flow in undisturbed soil using observations of tracers[J].Geoderma,2004,118:133-143.
[92]Weiler M,Flühler H.Inferring flow types from dye patterns in macroporous soils[J].Geoderma,2004,120:137-153.
[93]Wang K,Zhang R,Sheng F.Effects of irrigation efficiency on chemical transport processes[J].Science in China Series E: Technological Science,2009,52(11):1-6.
[94]Yasuda H,Berndtsson R,Persson H,et al.Characterizing preferential transport during flood irrigation of a heavy clay soil using the dye Vitasyn Blua[J].Geoderma,2001,100:49-66.
[95]Bouma J,Dekker L W,W?sten J H M.A case study on infiltration into dry clay soil II.Physical measurements[J]. Geoderma,1978,20(1):41-51.
[96]Sollins P,Radulovich R.Effects of soil physical structure on solute transport in a weathered tropical soil[J].Soil Science Society of America Journal,1988,52:1168-1173.
[97]Natano R,Kawamura N,Ikda J,et al.Evaluation of the effect morphological features of flow paths on solute transport by using fractaldimensionsofmethylene blue staining pattern[J]. Geoderma,1992,53:31-44.
[98]Flury M,Flühler H.Brilliant Blue FCF as a dye tracer for solute transportstudies-A toxicologicaloverview[J].Journal of Environmental Quality,1994,23:1108-1112.
[99]Forrer I,Parrita A,Kasteel R,et al.Quantifying dye tracers in soil profiles by image processing[J].European Journal of Soil Science,2000,51:313-322.
[100]Noguchi S,Rahim N A,Baharuddin K,et al.Soil physical properties and preferential flow pathways in tropical rain forest, Bubit Tarek,Peniusular,Malaysia[J].Journal of Forest Research, 1997,2:115-120.
[101]王康.多孔介質(zhì)非均勻流動顯色示蹤技術(shù)與模擬方法[M].北京:科學出版社,2009.
[102]Flury M,Wai N N.Dyes as tracers for vadose zone hydrology[J]. Reviews of Geophysics,2003,41,doi:10.1029/2001RGooo109.
[103]Nobles M M,Wilding L P,Lin H S.Flow pathways of bromide and Brilliant Blue FCF tracers in caliche soils[J].Journal of Hydrology,2010,393:114-122.
[104]Bogner C,Wolf B,Schlather M,et al.Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics[J].European Journal of Soil Science,2008,59 (1):103-113.
[105]Wang K,Zhang R.Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine [J].Journal of Hydrology,2011,397(1-2):105-117.
[106]Lu J,Wu L.Visualizing bromide and iodide water tracer in soil profiles by spray methods[J].Journal of Environmental Quality, 2003,32:363-367.
[107]Van Ommen H C,Dekker L W,Dijksma R,et al.A new technique for evaluating the presence of preferential flow paths in non-structured soils[J].Soil Science Society of America Journal,1988,52:1192-1193.
[108]Hangen E,Gerke H H,Schaaf W,et al.Flow path visualization in a lignitic mine soil using iodine-starch staining[J].Geoderma, 2004,120:121-135.
[109]Posadas D A N,Tannús A,Panepucci H,et al.Magnetic resonance imaging as a non-invasive technique for investigating 3-D preferential flow occurring within stratified soil samples[J]. Computers and Electronics in Agriculture,1996,14(4):255-267.
[110]Sheng F,Liu H H,Wang K,et al.Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model[J].Journal of Hydrology,2014,508:137-146.
[111]徐宗恒,徐則民,曹軍尉,等.土壤優(yōu)先流研究現(xiàn)狀與發(fā)展趨勢[J].土壤,2012,44(6):905-916. Xu Zongheng,Xu Zemin,Cao Junwei,et al.Present and future research of preferential flow in soil[J].Soils,2012,44(6):905-916.(in Chinese with English abstract)
[112]Germann P F,Di Pietro L.Scales and dimensions of momentum dissipation during preferential flow in soils[J].Water Resources Research,1999,35(5):1443-1454.
[113]Brandt H.A study of the speed of sound in porous granular media[J].Journal of Applied Mechanics,1954,22:479-486.
[114]Blum A,Flamme I,Friedli T,et al.Acoustic tomography applied to water flow in unsaturated soils[J].Soil Science Society of America,2004,3:288-299.
[115]Flammer I,Blum A,Leiser A,et al.Acoustic assessment of flow patterns in unsaturated soil[J].Journal of Applied Geophysics, 2001,46(2):115-128.
[116]陳風琴,石輝.岷江上游三種典型植被下土壤優(yōu)勢流現(xiàn)象的染色法研究[J].生態(tài)科學,2006,25(1):69-73. Chen Fengqin,Shi Hui.A study on soil preferential flow under three vegetations in the upper reach of MinJiang River by brilliant blue dye[J].Ecologic Science,2006,25(1):69-73.(in Chinese with English abstract)
[117]Radulovich R,Solorzano E,Sollins P.Soil macropore size distribution from water breakthrough curves[J].Soil Science Society of America Journal,1989,53(2):556-559.
[118]Mooney S J,Morris C.Morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray computed tomography[J].Catena,2008,73(2):204-211.
[119]Paola F.Magnetic resonance for fluids in porous media at the University of Bologna[J].Magnetic Resonance Imaging,2005, 23(2):125-131.
[120]馮杰,郝振純.CT掃描確定土壤大孔隙分布[J].水科學進展,2002,13(5):611-617. Feng Jie,Hao Zhenchun.Distribution of soil macroporescharacterized by CT[J].Advances in Water Science,2002,13 (5):611-617.(in Chinese with English abstract)
[121]Gómez-Ortiz D,Martín-Crespo T,Rodríguez I,et al.The internal structure of modern barchan dunes of the Ebro River Delta(Spain)from ground penetrating radar[J].Journal of Applied Geophysics,2009,68(2),159-170.
[122]Kung K J S,Donohue S V.Improved solute sampling protocol in a sandy vadose zone using ground-penetrating radar.[J].Soil Science Society of America Journal,1991,55:1543-1545.
[123]Vanderborght J,Kemna A,Hardelauf H,et al.Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies:A synthetic case study[J]. Water Resource Research,2005,41,W06013,doi:10.1029/ 2004WR003774.
Review on research theories and observation techniques for preferential flow in unsaturated soil
Sheng Feng,Zhang Liyong,Wu Dan
(School of Hydraulic Engineering,Changsha University of Science&Technology,Changsha 410114,China;Hunan Provincial Key Laboratory of Water&Sediment Science and Water Hazard Prevention,Changsha University of Science&Technology,Changsha 410114)
Preferential flow,which contributes to the rapid water flow and solute transport,is common rather than exceptional in natural unsaturated soils.Preferential flow allows irrigated water and applied agriculture chemicals to move through unsaturated zone to groundwater table quickly with limited degradation and filtration,increasing the losses of applied resources and energy,and making the groundwater under high contamination risks.There are different kinds of preferential flow,Macropore flow and finger flow are two of the most importance and receive tremendous of studies.Pipe flow,channel flow,funnel flow,bypass flow,oscillatory flow,short circuiting flow,heterogeneity-driven flow,subsurface storm flow,partial displacement flow,depression-focused recharge flow,and gravity-driven unstable flow also receive a lot of research interests because of the environmental problems and risks they induced.There are a number of factors to induce preferential flow.Soil structure and texture,the initial and boundary conditions,incorporating with the instability of infiltration front,affect the generation and development of preferential flow patterns.Because of the variety of preferential flow generating and impacting factors,and the diversity of preferential flow patterns,incorporated with the high-speed and non-equilibrium characteristics of preferential flow,the description and simulation of preferential flow is always the hot topic and big question in vadose zone hydrology.A variety of modeling approaches have been developed to describe preferential flow in soil.These are mainly continuum,discrete,and fractal approaches.The continuum approaches are relatively simple and straightforward to implement,but they are incapable of characterizing preferential flow paths caused by fingering and the spatial variability of soil properties.On the contrary,the discrete approaches have been successfully used to represent field observations of preferential flow.However,the discrete approaches are limited to small-scale applications and the physical mechanisms underlying these approaches are still not totally clarified.To properly characterize heterogeneous water flow processes in the soil and benefit from the combined advantages of the continuum and discrete approaches,models based on fractal theory are developed recently.While some previous field studies support the fractal approaches,in-depth studies have not yet been conducted on physical mechanisms underlying these approaches, determination of the fractal parameters,relation between fractal parameters and soil characteristics,and efficiency of applying fractal approaches for representing practical preferential flow processes.To study the characteristics of preferential flow and to evaluate the efficiency of numerical models for representing preferential flow,it is essential to visualize preferential flow from flow background.For this purpose,a variety of experimental approaches,such as micro-tension measurement,acoustic sounding,breakthrough-curves,non-invasion tomography,ground penetrating radar,and electrical resistance tomography,have been developed.However,these approaches either require very expensive and preferential machines or consume too much of time and labor.With the advantages of low price,distinct visibility,high water solubility, and requiring no special detecting machines,tracing(e.g.dye tracing and iodine-starch staining tracing)experiments are increasingly applied to study the detail characteristics of preferential flow in both field and laboratory.Within all the dyes, the food-grade dye pigment Brilliant Blue FCF,which is with some other advantages as limited toxicity and inactive,is most commonly used.However,as the dye is adsorbed by soils with high clay and organic carbon contents,iodine-starch staining tracing experiment is determined as a much more effective technique to visualize preferential flow pathways,as the anionic properties of iodide ion with high mobility and low adsorption even in heavy clay soils.Although preferential flow has received increasing studies these years,it is still far behind fully studied.Unifying the discrimination standard,increasing modeling efficiency and developing special equipments for preferential flow study are the main research directions in this field.
soil;water;models;preferential flow;macropore flow;finger flow;research theories;observation techniques
10.11975/j.issn.1002-6819.2016.06.001
S152.7
A
1002-6819(2016)-06-0001-10
2015-09-28
2016-01-26
國家自然科學基金資助項目(51579020,51109017);湖南省自然科學基金資助項目(13JJ3069)
盛 豐,男,漢族,湖南株洲人,副教授,博士,主要從事非飽和帶土壤水動力學與水土環(huán)境方面的研究。長沙 長沙理工大學水利工程學院,410114。Email:fsaint8586@163.com