黨衛(wèi)杰,姚凱月,黃梽煥,丁奇杰,蘇顯龍,李襄宏(國家民族事務(wù)委員會催化與材料科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,中南民族大學(xué),湖北武漢 430074)
?
基于環(huán)金屬釕(II)配合物的亞硝酸鹽比色傳感器
黨衛(wèi)杰,姚凱月,黃梽煥,丁奇杰,蘇顯龍,李襄宏*
(國家民族事務(wù)委員會催化與材料科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,中南民族大學(xué),湖北武漢 430074)
摘要:金屬釕配合物Ru(ppy)(bpy)2+(1,bpy=2,2'-二聯(lián)吡啶,Hppy=2-苯基吡啶)可用于檢測水溶液中的亞硝酸鹽。在pH<5.8的緩沖溶液中,該配合物在400 nm到700 nm范圍內(nèi)的強(qiáng)吸收因亞硝酸根的加入而淬滅,溶液的顏色由深紅色變?yōu)闇\黃色。這種明顯的顏色變化表明它可以作為亞硝酸根的比色傳感器,檢測限為22 μmol/L。
關(guān)鍵詞:環(huán)金屬釕配合物;比色法檢測;亞硝酸鹽;化學(xué)傳感器
亞硝酸鹽,作為肥料和食品的防腐添加劑,對健康有害且有致癌作用[1]。另外,亞硝酸鹽還可以轉(zhuǎn)換為NO。這是一個重要的信號分子,涉及到如血壓調(diào)節(jié)、免疫、內(nèi)分泌反應(yīng)、神經(jīng)傳遞、細(xì)胞死亡等生理過程[2]。因此,亞硝酸鹽的檢測在食品、環(huán)境、藥物和生物分析領(lǐng)域頗為重要。光化學(xué)傳感器因操作簡單,制樣方便,響應(yīng)速度快而被廣泛應(yīng)用于小分子及離子的檢測。目前,一些利用有機(jī)分子的吸收[3-6]和熒光光譜[3,7-11]變化來識別亞硝酸根的光傳感器已經(jīng)被設(shè)計(jì)出來。但是,他們大多是在強(qiáng)酸性介質(zhì)中進(jìn)行,實(shí)際應(yīng)用有一定困難。因此,設(shè)計(jì)合成具有寬pH范圍內(nèi)識別亞硝酸根的化學(xué)傳感器十分必要。
環(huán)金屬Ru(II)多吡啶配合物因Ru-C鍵的引入而表現(xiàn)出比Ru(bpy)32+類釕(II)配合物更為豐富的光物理化學(xué)性質(zhì)[12-13],可作為能量受體[14]、電子轉(zhuǎn)移敏化劑[15]以及染料敏化太陽能電池的敏化劑[16-17]。值得一提的是,此類配合物的MLCT態(tài)吸收明顯紅移,使其在分子、離子的識別中表現(xiàn)出了理想的吸收光譜變化和溶液顏色變化[18-20],易于實(shí)現(xiàn)可視化。最近,Cheng等[21-22]關(guān)于NO+可插入環(huán)金屬釕配合物中的Ru-C鍵,形成C-硝酰釕(II)配合物的報(bào)道引起了關(guān)注。由于此過程中Ru-C鍵的斷裂,必然會引起配合物MLCT態(tài)吸收的變化;另一方面,酸性環(huán)境中NO可由亞硝酸鹽原位釋放,而NO和NO+是相似分子,這使得環(huán)金屬釕配合物成為一個潛在的亞硝酸鹽化學(xué)傳感器。
基于此,實(shí)驗(yàn)合成了以2-(2苯基)吡啶(Hppy)為C,N-配體,2,2'-二聯(lián)吡啶(bpy)為N,N-配體的環(huán)金屬釕配合物Ru(ppy)(bpy)2+(1,結(jié)構(gòu)如圖1所示)。在pH2~pH12范圍內(nèi)研究了其對亞硝酸鹽的識別性能。實(shí)驗(yàn)結(jié)果表明:在pH<5.8時,該配合物對亞硝酸根具有很好的顯色效應(yīng),能實(shí)現(xiàn)可視化檢測。
圖1 Ru(ppy)(bpy)2+(1)的結(jié)構(gòu)示意圖Fig.1 The structures of Ru(ppy)(bpy)2+(1)
1.1試劑與儀器
配合物1按文獻(xiàn)[23]合成并通過NMR及MS表征。紫外可見吸收光譜在UV-2550 UV/Vis型紫外可見分光光度計(jì)(Shimadzu公司)上測得,紅外光譜在NEXUS-470型紅外光譜儀 (KBr壓片)上測得。溶液的pH值在pHS-3B pH計(jì)上測定。
1.2溶液的配制
實(shí)驗(yàn)中所用的水均為蒸餾水,首先將配合物1溶解在乙腈中得1.0 mmol/L的儲備液,然后用Briton-Robinson緩沖液稀釋至20 μmol/L。所有的配合物1的緩沖液均保持乙腈∶乙醇∶緩沖液為1∶4∶45(體積比)。各陰離子 (Cl-、Br-、I-、NO3-、SO42-、HPO42-、H2PO4-、CO32-、HCO3-、ClO4-、Ac-、PO43-、SO32-、HSO3-)水溶液均用其相應(yīng)的鈉鹽或鉀鹽配得。
2.1配合物的吸收光譜
配合物1在乙腈/乙醇/水 (V/V/V=2∶8∶90)體系中表現(xiàn)出良好的溶解性,其吸收光譜如圖2所示。可以看到,配位后,配合物1的紫外-可見吸收光譜與配體是完全不同的。其中,位于294 nm的強(qiáng)吸收峰歸屬于配體的π→π*躍遷吸收。在488 nm處的吸收帶屬于Ru(dπ)→ppy(π*)電荷轉(zhuǎn)移躍遷吸收,而在540 nm處的吸收帶源于Ru (dπ)→bpy(π*)電荷轉(zhuǎn)移躍遷吸收[23]。
圖2 配合物1和配體在溶劑乙腈/乙醇/水(V/V/V=2∶8∶90)中的可見-吸收光譜Fig.2 The absorption spectra of 1((20 μmol/L)),bpy(20 μmol/L)and Hppy(20 μmol/L)in CH3CN/etanol/buffer (V/V/V=2∶8∶90)
2.2pH條件試驗(yàn)
考慮pH值對NO2-的影響,研究了在不同pH值的條件下,配合物1對亞硝酸鹽的響應(yīng)情況。
如圖3所示,NO2-和1的緩沖溶液混合后,僅在pH<5.8時才會產(chǎn)生明顯的吸收變化。當(dāng)緩沖溶液的pH值在5.8以上時,不論是否存在NO2-,配合物1的吸收強(qiáng)度都不發(fā)生變化。這可能是由于在酸性條件下原位釋放NO的原因。
2.3亞硝酸根響應(yīng)時間
選擇在pH值為4.80的條件下,研究配合物1對不同濃度的NO2-的響應(yīng)時間。如圖4所示,在沒有NO2-存在的條件下,配合物1的吸收強(qiáng)度幾乎不變。而隨著亞硝酸鹽含量的增加,反應(yīng)時間迅速縮短。尤其是,當(dāng)亞硝酸鹽的濃度達(dá)到100當(dāng)量時,配合物1在540 nm處的吸收強(qiáng)度明顯下降,5 min內(nèi)即可完成。這表明,配合物1可用于亞硝酸鹽的快速檢測。這一實(shí)驗(yàn)結(jié)果與圖3實(shí)驗(yàn)所描述的結(jié)果是一致的。
2.4亞硝酸根的滴定
圖5詳細(xì)表明了1溶液中隨亞硝酸鹽濃度增加的紫外可見光譜變化。隨NO2-濃度的增加,在488和540 nm處的吸收強(qiáng)度均在逐步下降,同時在310 nm處形成一個新的峰包。與此同時,1溶液的顏色由深紅色變成淡黃色 (如圖5中a插圖)。這種明顯的顏色變化表明,配合物1可以“裸眼”檢測亞硝酸鹽。另外,配合物1和NO2-相互作用變化曲線(Job-Plot分析曲線,插圖b)表明配合物與NO2-的結(jié)合比列為1∶1。
對不同濃度亞硝酸根存在下的配合物1的紫外可見光譜的跟蹤發(fā)現(xiàn):在0~250 μmol/L范圍內(nèi),配合物在540 nm處的吸光度變化與亞硝酸根的濃度呈現(xiàn)良好的線性關(guān)系(圖6),經(jīng)計(jì)算其檢測限為22 μmol/L。2.5陰離子的選擇性和干擾性
圖3 不同pH條件下,配合物1在乙腈/乙醇/水(V/V/V=2∶8∶90)溶劑中對NO2-(2 mmol/L)響應(yīng)的pH變化圖,在30 min內(nèi)pH值對其吸收強(qiáng)度的影響Fig.3 Effects of pH values on the absorption intensity of 1 (20 μmol/L)incubated with NO2-(2 mmol/L)in CH3CN/etanol/buffer(V/V/V=2∶8∶90)for 30 min
圖4 不同亞硝酸根濃度下,在乙腈/乙醇/水(V/V/V=2∶8∶90,pH4.80)溶液中配合物1(20 μmol/L)位于540 nm處的吸光強(qiáng)度隨時間的變化Fig.4 Time dependence of the absorption intensity of 1 (20 μmol/L)at 540 nm in CH3CN/etanol/buffer (V/V/V=2∶8∶90,pH4.80)in the presence of nitrite
圖5 配合物1(20 μmol/L)在乙腈/乙醇/緩沖溶液(V/V/ V=2∶8∶90,pH4.80)逐漸增加NO2-濃度時的吸收光譜變化。插圖a)有或無NO2-時,配合物1的顏色照片;插圖b)配合物1和在乙腈/乙醇/緩沖溶液(V/V/V=2∶8∶90,pH4.80)中的NO2-相互作用變化曲線。[1]+[NO2-]=8.0×10-5mol/LFig.5 Changes of absorption spectra of 1(20 μmol/L)in CH3CN/etanol/buffer solution(V/V/V=2∶8∶90,pH=4.80)with increasing amounts of NO2-.Inset:a)Color changes of complex 1 in the absence or presence of nitrite;b)Job's plot for 1 and NO2-in CH3CN/ethanol/buffer solution (V/V/V=2∶8∶90,pH4.80),[1]+[NO2-]=8.0×10-5mol/L
圖6 配合物1在540 nm處吸光度變化與亞硝酸根濃度的線性關(guān)系Fig.6 Linear absorption responses of△A540nmto concentrations of nitrite
在pH4.80條件下,考察配合物1對一系列陰離子如Cl-、Br-、I-、NO3-、SO42-、HPO42-、H2PO4-、CO32-、HCO3-、ClO4-、Ac-、PO43-、SO32-、HSO3-的響應(yīng)情況。如圖7所示,這些離子的存在對配合物1的吸收幾乎沒有影響。只有NO2-存在時,才會引起配合物1的吸收光譜發(fā)生顯著變化。所以,1在檢測NO2-中顯示出了很好的選擇性。另外,在其他常見陰離子存在的情況下,亞硝酸根的加入仍然可以引起配合物1溶液的吸收光譜發(fā)生顯著變化。這表明:1對NO2-的識別并不受這些常見的共存陰離子的干擾。2.6機(jī)理分析
圖7 pH4.80時,配合物1與一些常見陰離子混合后的吸收光譜變化柱狀圖Fig.7 The absorption spectra changes of 1 upon mixing with some common anions at pH4.80
值得一提的是,在亞硝酸鹽存在時,這種戲劇性變化的吸收只發(fā)生在酸性和弱酸性水溶液中。這表明很可能是因?yàn)樗峄膩喯跛猁}能產(chǎn)生NO,NO進(jìn)一步與配合物1發(fā)生反應(yīng)。圖5中b插圖中的Job-plot圖表明配合物1與亞硝酸根是按1∶1進(jìn)行相互作用的,因而可以判定配合物與亞硝酸根的實(shí)際結(jié)合形式是Ru-NO,這就意味其中可能解離掉一個配位點(diǎn)從而維持Ru(II)配合物穩(wěn)定的八面體構(gòu)型。但圖2和圖5表明,Ru-NO的吸收光譜與兩種配體的吸收是完全不同的,因此,完全分解的可能性被排除。把配合物1與亞硝酸鹽混合的反應(yīng)液與KBr研磨壓片得到IR圖。如圖8所示,vNO在近1872 cm-1處的特征紅外吸收證明了該配合物和NO2-的作用形式確實(shí)是Ru-NO[24-26]的配位形式,這種形式與文獻(xiàn)報(bào)道的NO插入模式完全不同[21-22]。
圖8 配合物1和配合物1與NO2-共存時的IR圖Fig.8 IR spectra of 1 in the absence or presence of nitrite
環(huán)金屬釕配合物[Ru(II)(bpy)2(ppy)]PF6可用于弱酸性條件下亞硝酸根的識別。反應(yīng)條件溫和,顏色變化明顯并能實(shí)現(xiàn)裸眼識別,這主要?dú)w因于原位產(chǎn)生的NO與釕(II)配位生成了Ru-NO類配合物,導(dǎo)致吸收光譜發(fā)生明顯變化。該方法對亞硝酸根表現(xiàn)出良好的選擇性、pH范圍較寬、測定操作簡單且檢測響應(yīng)快速,具有良好的應(yīng)用前景。
參考文獻(xiàn)
[1]Wolff I,Wasserman A.Nitrates,nitrites and nitrosamines [J].Science,1972,177(4043):15-19.
[2]Ignarro L J.Nitric oxide:biology and pathobiology[M]. USA:Academic press,2000.
[3]Kumar V,Banerjee M,Chatterjee A.A reaction based turn-on type fluorogenic and chromogenic probe for the detection of trace amount of nitrite in water[J].Talanta,2012,99:610-615.
[4]Adarsh N,Shanmugasundaram M,Ramaiah D.Efficient reaction based colorimetric probe for sensitive detection,quantification,and on-site analysis of nitrite ions in natural water resources[J].Analytical chemistry,2013,85 (21):10008-10012.
[5]Dey R,Chatterjee T,Ranu B C.Facile cyclization of 2-arylethynyl aniline to 4(1H)-cinnolones:a new chemodosimeter for nitrite ions[J].Tetrahedron Letters,2011,52(3):461-464.
[6]Qinghai S,Bats J W,Schmittel M.Two closely related iridium(III)complexes as colorimetric and fluorometric chemodosimeters for nitrite in aqueous solution operating along different modes of action[J].Inorganic chemistry,2011,50(21):10531-10533.
[7]Mahapatra A K,Hazra G,Mukhopadhyay S K,et al.A new selective turn-on fluorogenic dipodal-cobalt(II)ensemble probe for nitrite ion detection and live cell imaging[J].Tetrahedron Letters,2013,54(9):1164-1168.
[8]Jiao C-X,Niu C-G,Huan S-Y,et al.A reversible chemosensor for nitrite based on the fluorescence quenching of a carbazole derivative[J].Talanta,2004,64(3):637-643.
[9]Wang L,Li B,Zhang L,et al.Fabrication and characterization of a fluorescent sensor based on Rh 6G-functionlized silica nanoparticles for nitrite ion detection[J].Sensors and Actuators B:Chemical,2012,171:946-953.
[10]Gu B,Huang L,Hu J,et al.Highly selective and sensitive fluorescent probe for the detection of nitrite[J].Talanta,2016,152:155-161.
[11]Zhang T,F(xiàn)an H,Jin Q.Sensitive and selective detection of nitrite ion based on fluorescence superquenching of conjugated polyelectrolyte[J].Talanta,2010,81(1):95-99.
[12]Djukic J P,Sortais J B,Barloy L,et al.Cycloruthenated compounds-synthesis and applications[J].European Journal of Inorganic Chemistry,2009,2009(7):817-853.
[13]Labat L,Lamère J F,Sasaki I,et al.Synthesis,Crystal Structure,and Second‐Order Nonlinear Optical Properties of Ruthenium(II)Complexes with Substituted Bipyridine and Phenylpyridine Ligands[J].European journal of inorganic chemistry,2006,2006(15):3105-3113.
[14]Ott S,Borgstr?m M,Hammarstr?m L,et al.Rapid energy transfer in bichromophoric tris-bipyridyl/cyclometallated ruthenium(II)complexes[J].Dalton Transactions,2006,11:1434-1443.
[15]Borgstr?m M,Ott S,Lomoth R,et al.Photoinduced energy transfer coupled to charge separation in a Ru(II)-Ru (II)-acceptor triad[J].Inorganic chemistry,2006,45 (12):4820-4829.
[16]Bessho T,Yoneda E,Yum J-H,et al.New paradigm in molecular engineering of sensitizers for solar cell applications[J].Journal of the American Chemical Society,2009,131(16):5930-5934.
[17]Bomben P G,Robson K C,Koivisto B D,et al.Cyclometalated ruthenium chromophores for the dye-sensitized solar cell[J].Coordination Chemistry Reviews,2012,256 (15):1438-1450.
[18]Li X,Su X,Shi Z,et al.Highly selective and reversible colorimetric detection of mercury ions by a hydrophilic cycloruthenated complex in water[J].Sensors and Actuators B:Chemica,2014,201:343-350.
[19]Wade C R,Gabbai FoP.Cyanide anion binding by a triarylborane at the outer rim of a cyclometalated ruthenium (II)cationic complex[J].Inorganic chemistry,2009,49 (2):714-720.
[20]Cheng X,Li J,Li X,et al.A highly sensitive sensor based on hollow particles for the detection,adsorption and removal of Hg2+ions[J].Journal of Materials Chemistry,2012,22(45):24102-24108.
[21]Chan S-C,Pat P-K,Lau T-C,et al.Facile direct insertion of nitrosonium ion(NO+)into a ruthenium-aryl bond [J].Organometallics,2011,30(6):1311-1314.
[22]Chan S-C,Cheng H-Y,Wong C-Y.Ruthenium complexes containing 2-(2-nitrosoaryl)pyridine:structural,spectroscopic,and theoretical studies[J].Inorganic chemistry,2011,50(22):11636-11643.
[23]Reveco P,Cherry W,Medley J,et al.Cyclometalated complexes of ruthenium.3.Spectral,electrochemical and two-dimensional proton NMR of[Ru(bpy)2(cyclometalating ligand)]+[J].Inorganic Chemistry,1986,25(11): 1842-1845.
[24]Ghosh K,Kumar S,Kumar R,et al.Oxidative Cyclization of a Phenolic Schiff Base and Synthesis of a Cyclometalated Ruthenium Nitrosyl Complex:Photoinduced NO Release by Visible Light[J].Inorganic chemistry,2010,49(16):7235-7237.
[25]da Rocha Z N,Marchesi M S P,Molin J C,et al.The inducing NO-vasodilation by chemical reduction of coordinated nitrite ion in cis-[Ru(NO2)L(bpy)2]+complex[J]. Dalton Transactions,2008,32:4282-4287.
[26]Hadadzadeh H,DeRosa M C,Yap G P,et al.Cyclometalated ruthenium chloro and nitrosyl complexes[J].Inorganic chemistry,2002,41(24):6521-6526.
*通信聯(lián)系人,Tel/Fax:027-67842752,E-mail:lixhchem@mail.scuec.edu.cn
基金項(xiàng)目:中南民族大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(SCX15001),國家自然科學(xué)基金(21301196)
Colorimetric detection of nitrite by a cyclometallated ruthenium(II)complex in aqueous solution
Dang Wei-jie,Yao Kai-yue,Huang Zhi-huan,Ding Qi-jie,Su Xian-long,Li Xiang-hong*
(Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission&Ministry of Education,South-Central University for Nationalities,Wuhan 430074,China)
Abstract:A cyclometallated ruthenium complex Ru(ppy)(bpy)2+(1,bpy=2,2'-bipyridine,Hppy=2-phenylpyridine)was synthesized and used as a chemo-sensor to detect nitrite in aqueous system.It is interesting that complex 1 exhibited almost entire disappearance of MLCT absorptions in the range of 400 nm to 700 nm upon adding nitrite to the buffer solutions(pH<5.8)of complex 1.Moreover,a remarkable color change from deep-red to light-yellow was observed,indicating that it can serve as a sensitive“naked-eye”indicator for nitrite.The limit of detection of nitrite was calculated as 22 μmol/L.
Key words:cyclometallated ruthenium complex;colorimetric detection;nitrite;chemo-sensor