李海燕,張文君*,何金海,王亞蘭
(1.南京信息工程大學(xué) 氣象災(zāi)害預(yù)報(bào)預(yù)警與評估協(xié)同創(chuàng)新中心 氣象災(zāi)害教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 南京210044)
?
李海燕1,張文君1*,何金海1,王亞蘭1
(1.南京信息工程大學(xué) 氣象災(zāi)害預(yù)報(bào)預(yù)警與評估協(xié)同創(chuàng)新中心 氣象災(zāi)害教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 南京210044)
摘要:利用Hadley中心逐月海表溫度、歐洲中心ERA-40的10 m風(fēng)場及CMAP降水資料探討了年循環(huán)對熱帶太平洋El Ni?o海氣相互作用過程的影響。盡管El Ni?o對應(yīng)的海表溫度異常主要出現(xiàn)在赤道東太平洋,經(jīng)向上呈南北對稱分布,然而其對應(yīng)的大氣響應(yīng)在El Ni?o年衰減階段卻有著強(qiáng)的向南移動(dòng)特征。在El Ni?o發(fā)展年的11月之前,強(qiáng)的西風(fēng)和降水異常主要出現(xiàn)在赤道中太平洋;在12月份之后,赤道上的西風(fēng)和降水異常迅速南移至5°S,隨后西風(fēng)一直維持在該位置直至衰亡。同時(shí),西太平洋負(fù)降水和反氣旋異常向北移動(dòng)。這種SST異常與其大氣響應(yīng)的經(jīng)向移動(dòng)不一致,主要是由熱帶中太平洋氣候態(tài)SST的季節(jié)性南移導(dǎo)致的。由于對流與海溫之間存在非線性關(guān)系,即當(dāng)總SST超過一定的閾值,對流降水才會(huì)迅速增強(qiáng);因此相應(yīng)的對流響應(yīng)也隨著總海溫的南移而南移,風(fēng)場響應(yīng)也同時(shí)南移。此外,南半球增強(qiáng)的對流會(huì)通過經(jīng)向環(huán)流進(jìn)一步抑制北半球的降水,從而使西太平洋負(fù)降水和反氣旋異常增強(qiáng)并北移。通過分析有/無年循環(huán)的兩組數(shù)值試驗(yàn)結(jié)果驗(yàn)證了上述結(jié)論,即有年循環(huán)的試驗(yàn)較真實(shí)地模擬出了觀測中異常西風(fēng)南移和西北太平洋反氣旋異常的出現(xiàn);無年循環(huán)試驗(yàn)盡管能模擬出El Ni?o年赤道中太平洋的西風(fēng)異常,但其卻沒有南北向的移動(dòng),西北太平洋的反氣旋也沒有出現(xiàn)。因此,熱帶中太平洋氣候態(tài)暖海溫的季節(jié)循環(huán)對El Ni?o事件大氣響應(yīng)有著至關(guān)重要的作用。
關(guān)鍵詞:El Ni?o;年循環(huán);大氣響應(yīng)南移
1引言
自從Bjerknes[9]把大尺度海氣相互作用聯(lián)系起來形成ENSO現(xiàn)象的概念后,大氣和海洋科學(xué)家圍繞ENSO的觀測特征、循環(huán)機(jī)理和可預(yù)報(bào)性等開展了廣泛的研究[10—13]。過去幾十年,對于ENSO海氣相互作用過程,尤其是ENSO循環(huán)機(jī)理的物理解釋逐步趨于完善[14—25]。Bjerknes[9]最早提出的正反饋理論很好地解釋了ENSO發(fā)展階段海表溫度(SST)距平快速增長的機(jī)理,但是不能解釋ENSO冷、暖事件的循環(huán)發(fā)生。20世紀(jì)80年代延遲振子理論[15]引入了負(fù)反饋機(jī)制來解釋El Nio和La Nia事件之間的循環(huán),其機(jī)理主要考慮了熱帶海洋波動(dòng)在ENSO循環(huán)中的作用。在海氣耦合過程中,熱帶海洋受到異常西風(fēng)強(qiáng)迫時(shí),除了激發(fā)向東的暖性Kelvin波,同時(shí)也產(chǎn)生向西傳播的冷性Rossby波,這種冷性Rossby波傳至西太平洋沿岸,反射成為冷性Kelvin東傳,冷性Kelvin波將赤道西太平洋的冷異常信號(hào)帶到赤道中東太平洋,導(dǎo)致El Nio事件的終止,La Nia事件的發(fā)展。然而有學(xué)者指出太平洋西邊界并不存在一個(gè)嚴(yán)格意義上的剛壁邊界[26—27],因此Rossby波的反射也不一定成立。在此基礎(chǔ)上,Jin[17—18]提出了充放電(熱)振子理論。根據(jù)Sverdrup理論,在El Nio時(shí)期,赤道太平洋的西風(fēng)異常會(huì)產(chǎn)生從赤道向兩極的經(jīng)向質(zhì)量輸送,將赤道地區(qū)暖水向赤道外輸送,從而使得赤道溫躍層不斷抬升變淺,當(dāng)其深度淺于氣候態(tài)時(shí),異常冷的次表層海溫通過東太平洋上翻作用使得SST降低并轉(zhuǎn)為負(fù)距平,根據(jù)Bjerknes正反饋理論,此SST負(fù)距平將會(huì)快速增強(qiáng),最終形成La Nia事件,反之亦然。后來的一些研究引入了其他的負(fù)反饋機(jī)制作為補(bǔ)充,使得ENSO循環(huán)理論得到不斷地完善[19—20]。
盡管ENSO的循環(huán)機(jī)理已被很好地解釋,但是由于ENSO的復(fù)雜性和多變性[11,28—29],人們對ENSO的認(rèn)識(shí)仍在很多方面有待加強(qiáng)。例如,過去對ENSO經(jīng)向尺度特征及其作用機(jī)理一直都沒有很好地理解,最近幾年的研究發(fā)現(xiàn),ENSO經(jīng)向尺度存在著冷暖事件的不對稱性和顯著的年代際變化特征,并從理論上解釋了這個(gè)觀測的特征[30—33]。ENSO緯向位置也發(fā)生了明顯的變異,一類新的El Nio事件在觀測中被發(fā)現(xiàn),其中心不像傳統(tǒng)的El Nio處于赤道東太平洋,而是位于赤道中太平洋日界線附近[34—42]。這類新的El Nio事件引起的氣候異常與傳統(tǒng)事件差異顯著,有些區(qū)域甚至相反[43—55]。盡管兩類El Nio的存在已被科學(xué)界接受,然而La Nia是否也可分為兩類,目前仍有爭議[56—62]。
ENSO現(xiàn)象中還存在著一個(gè)目前未被很好理解的現(xiàn)象,那就是ENSO季節(jié)鎖相問題。一般而言,El Nio事件通常開始于北半球春季或者夏季,在秋季、冬季達(dá)到成熟,于第二年春季快速衰減。ENSO顯著的季節(jié)鎖相現(xiàn)象說明ENSO變率與季節(jié)循環(huán)存在著強(qiáng)的相互作用。盡管一些可能的機(jī)理被嘗試用來解釋ENSO的季節(jié)鎖相問題,如赤道太平洋海洋波動(dòng)的季節(jié)增幅[63]和熱帶西北太平洋大氣響應(yīng)的負(fù)反饋機(jī)制[64],但目前對于ENSO季節(jié)鎖相的物理機(jī)制仍不清楚。伴隨著El Nio的衰亡,對應(yīng)于El Nio異常暖海溫的赤道中太平洋西風(fēng)異常迅速移動(dòng)至赤道以南5°S左右,這一觀測事實(shí)早在20世紀(jì)80年代就被發(fā)現(xiàn)[65—66]。這種西風(fēng)異常南移主要與西太平洋背景暖海表溫度隨著太陽輻射的季節(jié)性南移相關(guān)[67—72]。許多工作指出El Nio年西風(fēng)異常的南移現(xiàn)象是El Nio迅速衰亡的一個(gè)主要原因[67,70—71,73—75]。南移的異常西風(fēng)使得赤道上的西風(fēng)異常減弱,從而有利于赤道溫躍層向正常狀態(tài)調(diào)整,使得赤道東太平洋的海表溫度異??焖傧?。El Nio年西風(fēng)異常南移現(xiàn)象能被赤道表面風(fēng)經(jīng)驗(yàn)正交函數(shù)分解(Empirical Orthogonal Function)的第二模態(tài)所反映,與第一模態(tài)(即ENSO模態(tài))相互獨(dú)立[70—71,76];觀測的頻譜分析和數(shù)值試驗(yàn)已證明,異常西風(fēng)南移模態(tài)是由ENSO相關(guān)的變率和熱帶太平洋暖海溫季節(jié)循環(huán)的非線性相互作用而產(chǎn)生[71—72]。由此可見,熱帶太平洋背景暖海溫年循環(huán)對El Nio海氣過程的緯向風(fēng)有重要的影響,這不僅影響著與El Nio相關(guān)的海氣相互作用,而且會(huì)通過遙相關(guān)影響全球尺度的氣候異常。
為了進(jìn)一步探索年循環(huán)在ENSO相關(guān)的海氣異常中所起的作用,我們將通過觀測和數(shù)值試驗(yàn)來研究熱帶太平洋SST年循環(huán)的季節(jié)移動(dòng)是如何影響El Nio所對應(yīng)的大氣響應(yīng)過程,并著重討論對熱帶太平洋局地海氣過程中風(fēng)場和降水場的影響。本文首先通過對觀測資料的診斷分析來揭示熱帶中太平洋地區(qū)海表溫度異常和相應(yīng)的大氣環(huán)流異常的南移現(xiàn)象,再利用GFDL AM2.1大氣模式設(shè)計(jì)有/無年循環(huán)作用的兩組試驗(yàn)來探討熱帶太平洋SST季節(jié)性移動(dòng)對El Nio局地海氣相互作用過程的影響。
2資料和方法
2.1資料
本文所用資料包括:(1)英國Hadley中心提供的月平均海表溫度(HadISST)資料[77],水平分辨率為1°×1°;(2)歐洲中心(The European Centre for Medium-Range Weather Forecasts)的ERA-40月平均10 m風(fēng)場[78],水平分辨率為2.5°×2.5°;(3)NOAA的CPC (Climate Prediction Center) CMAP (Merged Analysis of Precipitation)月平均降水資料[79],分辨率為2.5°×2.5°。除了降水資料時(shí)間為1979年1月至2001年12月外,其他資料時(shí)間跨度皆取1961年1月至2001年12月。
2.2模式介紹與試驗(yàn)設(shè)計(jì)
AM2.1全球大氣模式是地球動(dòng)力試驗(yàn)室GFDL(Geophysical Fluid Dynamics Laboratory)為氣候研究和預(yù)測而發(fā)展的地球系統(tǒng)模式中的大氣模式,該模式集成了過去GFDL所用的模型,它包含了新的格點(diǎn)大氣動(dòng)力核[81]。模式垂直方向上采用混合坐標(biāo),由近地的sigma坐標(biāo)逐漸轉(zhuǎn)為250 hPa以上的p坐標(biāo),垂直分為24層,最低層約為30 m,近地面(低于1.5 km)有9層。高層分辨率較粗,對流層上部間隔約2 km,平流層有5層,模式頂氣壓為3 hPa,水平分辨率(lat×lon)為2°×2.5°。此模式已被應(yīng)用到大量的海氣相互作用的研究當(dāng)中,并且能較好地模擬出東亞季風(fēng)及ENSO相關(guān)的大氣異常結(jié)構(gòu)[71,82]。
(1)第一組試驗(yàn),記為EX_AC(有年循環(huán)試驗(yàn)):替換了熱帶海洋地區(qū)(20°S~20°N)的海表溫度,該地區(qū)的海溫是在氣候態(tài)海表溫度上疊加與ENSO變率相關(guān)的海表溫度異常(SSTA),ENSO相關(guān)的SSTA是由基于表征ENSO事件強(qiáng)度的Nio3.4指數(shù)獲得,具體是把1961-2001年月平均Nio3.4指數(shù)回歸到熱帶地區(qū),得到的回歸系數(shù)乘以標(biāo)準(zhǔn)化的Nio3.4指數(shù),那么所得到的月平均SSTA就是ENSO相關(guān)的海溫變率。注意,這里的氣候態(tài)海溫是包含季節(jié)循環(huán)的,而熱帶外僅采用氣候態(tài)海溫強(qiáng)迫模式。
(2)第二組試驗(yàn),記為EX_NO_AC(無年循環(huán)試驗(yàn)):熱帶海洋地區(qū)的海表溫度只包含ENSO相關(guān)的SSTA,而沒有與年循環(huán)相關(guān)的氣候態(tài)海溫。同第一組敏感性試驗(yàn)不一樣的是,把氣候態(tài)海溫固定在9月份(9月份太陽直射點(diǎn)在赤道上,赤道中太平洋日界線附近海溫呈近似赤道對稱分布),此時(shí),熱帶太平洋的海溫沒有季節(jié)變化特征,只包含ENSO相關(guān)的海溫變率。
再次說明的是,兩組試驗(yàn)中唯一不同的是熱帶海洋地區(qū)SST有/無季節(jié)變化,那么模式中大氣環(huán)流的差異即由SST年循環(huán)季節(jié)移動(dòng)引起,因此可以通過對比兩組試驗(yàn)來研究海溫年循環(huán)對El Nio局地海氣相互作用的影響。
圖1 El Nio事件合成的中太平洋(160°E~160°W)海表溫度距平(a)(單位:℃)、緯向10 m風(fēng)場距平(b)(矢量,陰影為西風(fēng)異常大小,單位:m/s)和降水距平(c)(單位:mm/d)的緯度-時(shí)間的季節(jié)演變(橫坐標(biāo)表示El Nio當(dāng)年7月至翌年7月)Fig.1 Composite latitude-time seasonal evolution of SST anomalies (a) (unit: ℃),10 m wind anomalies (b) (shading indicates westerly wind anomalies,unit: m/s),and precipitation anomalies (c) (unit: mm/d) over the central Pacific (160°E-160°W) during the El Nio events. The abscissa indicates a period from July of year 0 to July of year 1
圖2 El Nio事件合成的當(dāng)年9-12月平均(a)和翌年1-4月平均(b)的10 m風(fēng)場距平(矢量,通過90%顯著性檢驗(yàn),單位:m/s)、降水距平(等值線,間隔為1 mm/d,零線省略;單位:mm/d)及海表溫度距平(陰影,單位:℃)的空間分布 Fig.2 El Nio composite SST anomalies (shading in ℃),precipitation anomalies (black contours at intervals of 1 mm/d with zero contours omitted),and 10 m wind anomalies (vector in m/s,shown when westerly and easterly anomalies exceeding the 90% confidence level) for September(0) to December(0) (a) and January(1) to April(1) (b) average
季節(jié)演變(圖1)和空間季節(jié)差異(圖2)一致表明了El Nio年海表溫度異常和其大氣響應(yīng)場在經(jīng)向移動(dòng)上的差異。有關(guān)El Nio年冬末的西風(fēng)異常南移現(xiàn)象早在20世紀(jì)80年代就被注意[66]。但西太平洋也存在著負(fù)降水和反氣旋異常往北的移動(dòng)并沒有被注意到,西太平洋負(fù)降水異常的北移對東亞的影響很大,因?yàn)橹袊幱谄湮鞅眰?cè),對應(yīng)負(fù)異常降水的反氣旋異常有利于熱帶洋面上的暖濕水汽往東亞輸送。盡管局地的海氣相互作用有利于增強(qiáng)反氣旋異常[82],最近一些工作指出反氣旋是伴隨著中太平洋異常西風(fēng)南移而出現(xiàn)的[71-72],我們在下一部分的數(shù)值試驗(yàn)也支持這一觀點(diǎn)。
然而,有一個(gè)科學(xué)問題有待解決,那就是為什么經(jīng)向分布對稱的異常海溫強(qiáng)迫出來的大氣異常場卻有南北向的移動(dòng),尤其在El Nio年翌年的冬末春初,大氣異常響應(yīng)場的中心移到了5°S有研究指出這種南移現(xiàn)象是由于背景暖海溫隨著太陽的季節(jié)南移引起的[67,70-71,73—75]。為了尋求背景暖海溫季節(jié)南移如何引起El Nio翌年1-4月西風(fēng)及降水異常的南移,首先查看一下熱帶中太平洋地區(qū)1961-2001年平均氣候態(tài)海表溫度的經(jīng)向分布季節(jié)演變特征(圖3a)。從圖3a中可以看出,熱帶中太平洋平均的氣候態(tài)高海溫在1-4月份位于赤道以南(5°~10° S),赤道以南的區(qū)域基本都超過了28℃,中心達(dá)到了29℃,而赤道以北區(qū)域海表溫度基本低于28℃。從5月份開始,隨著太陽加熱不斷向北移動(dòng),中太平洋赤道以北區(qū)域海表溫度不斷增加,最大值出現(xiàn)在9-10月份5°~10° N之間,海表溫度超過28.5℃;南半球海溫有所減小,但是海表溫度最低也能超過28℃,在9-10月海表溫度基本上成赤道對稱分布;10月以后暖海溫中心又向南移動(dòng)。這種海溫的南北季節(jié)移動(dòng)特征是由于太陽直射點(diǎn)的季節(jié)性移動(dòng)引起的。1-4月太陽直射點(diǎn)位于南半球時(shí),使得熱帶中太平洋氣候態(tài)SST也從北半球移到赤道以南,這也是一年中南北海溫非對稱最強(qiáng)的季節(jié),這與El Nio翌年1-4月西風(fēng)及降水異常明顯南移的季節(jié)一致。對選取的6次強(qiáng)El Nio事件熱帶中太平洋海表溫度合成(圖3b)發(fā)現(xiàn),El Nio發(fā)展年7-10月,赤道南北半球都出現(xiàn)了高海溫(大于29℃);而隨著季節(jié)推進(jìn),高海溫區(qū)不斷地向南移動(dòng),El Nio年翌年的1月份后穩(wěn)定在南半球,直至衰減。其中在El Nio次年1-4月份,赤道南北海溫非對稱性最顯著,此時(shí)赤道以北的海溫最低,28.5℃高海溫區(qū)被限制在5° N 以南。結(jié)合圖1a,由于異常海溫在El Nio發(fā)生發(fā)展和消亡的過程中,一直都呈現(xiàn)出南北對稱分布,因此,圖3b中暖海溫南移主要是由背景氣候態(tài)海表溫度季節(jié)性南移導(dǎo)致的。
圖3 熱帶中太平洋地區(qū)(160°E~160°W)氣候態(tài)SST(a)和El Nio事件合成SST(b)緯度-時(shí)間演變(單位:℃)(橫坐標(biāo)表示El Nio當(dāng)年7月至翌年7月)Fig.3 Latitude-time seasonal evolution of the climatological SST (a) (unit:℃) and the composite of SST(b) (unit: ℃) during El Nio events over the Central Pacific (160°E—160°W). The abscissa indicates a month period from July of year 0 to July of year 1
圖4 赤道中太平洋(2°S~2°N,160°E~160°W)海表溫度(單位:℃)與降水異常(單位:mm/d)的散點(diǎn)圖(a);圖(b)同(a),但為SST與西風(fēng)異常(單位:m/s) Fig.4 Scatter plot of the SST (unit: ℃) and precipitation anomalies (unit: ℃) over the Central Pacific (2°S—2°N,160°E—160°W)(a); (b) same as in (a),but for the mean SST and westerly anomalies (unit: m/s)
和西風(fēng)異常都有著顯著的線性關(guān)系,相關(guān)系數(shù)都超過了0.7(通過95%顯著性檢驗(yàn)),說明下界面的海溫越高,赤道中太平洋對流越強(qiáng)、西風(fēng)異常越顯著。從海表溫度和對流異常的散點(diǎn)圖中可以看到它們的關(guān)系更是呈一個(gè)拋物線的關(guān)系(圖4a中已給出了二次擬合線)。降水異常隨海表溫度增長的關(guān)系表明,其增長速率大概分為兩個(gè)部分,在小于28.6℃左右,降水異常基本都是負(fù)值,對流受抑制;同時(shí)其斜率較小,表明隨海溫增加對流增加的幅度較小。而一旦超過這個(gè)閾值,降水異?;径际钦惓?;同時(shí)對流隨海溫增加的幅度大大增大,基本呈非線性快速增長(圖4a)。正是由于總SST與對流的非線性關(guān)系,也就是對流不僅決定于SSTA也決定于總的SST,造成了對流降水隨著總的SST南移。結(jié)合圖3b,在El Nio年大于28.6℃海表溫度處于5°N以南區(qū)域,南半球海溫都超過了29℃,因此正異常降水向南移動(dòng)(圖1c),且中心對應(yīng)南半球的高海溫區(qū)。圖4a中負(fù)降水異常出現(xiàn)在海溫低于28.6℃區(qū)域,對應(yīng)赤道以北區(qū)域出現(xiàn)的負(fù)降水異常。值得注意的是,由于異常降水的南移,使得對流出現(xiàn)非對稱性,南半球增強(qiáng)的對流會(huì)通過經(jīng)向環(huán)流進(jìn)一步抑制北半球的降水,從而使得赤道5°N以北降水負(fù)異常進(jìn)一步增強(qiáng)(圖1c)。風(fēng)場異常與海表溫度的關(guān)系也表現(xiàn)了與降水異常類似的特征(圖4b),當(dāng)降水異常南移的時(shí)候風(fēng)場也一起跟著南移(圖1b)。
4數(shù)值試驗(yàn)的結(jié)果
以上的觀測分析揭示了ENSO相關(guān)的大氣響應(yīng)場在其成熟后顯著南移是由于西太平洋暖海溫的季節(jié)移動(dòng)引起的。為了進(jìn)一步證實(shí)這些觀測的結(jié)果,我們用大氣環(huán)流模式進(jìn)行敏感性試驗(yàn)來探索年循環(huán)對El Nio局地海氣過程的影響。所用模式為美國NOAA的GFDL新一代大氣環(huán)流模式AM2.1,在本文第二部分的資料與模式中我們己經(jīng)對該模式和實(shí)驗(yàn)設(shè)計(jì)進(jìn)行了介紹。
圖5給出了兩組試驗(yàn)中用到的ENSO相關(guān)的異常海溫,此異常海溫是由Nio3.4指數(shù)回歸到熱帶太平洋海溫場得到。其空間分布為東正西負(fù)的El Nio海溫分布型,即中東太平洋為正的異常海溫,中心強(qiáng)度達(dá)到1℃;西太平洋地區(qū)為負(fù)海溫異常,其強(qiáng)度僅為-0.2℃左右。從圖中可以看出,異常海表溫度基本呈現(xiàn)經(jīng)向赤道對稱分布。進(jìn)一步,把Nio3.4指數(shù)回歸得到的系數(shù)乘以標(biāo)準(zhǔn)化月平均Nio3.4指數(shù)所得到的海溫變率加入到氣候態(tài)海表溫度中,作為大氣模式的下界面強(qiáng)迫大氣,對模式積分41年(1961-2001年)。第二組試驗(yàn)與第一組試驗(yàn)一致,只是去掉海表溫度年循環(huán)變化,可見他們下界面都包括了ENSO相關(guān)的海表溫度異常信息,差異僅是有無年循環(huán)。
圖5 1961-2001年Nio3.4指數(shù)回歸的熱帶太平洋地區(qū)海表溫度空間分布Fig.5 SST anomalies regressed upon the Nio3.4 index for the period 1961 to 2001
圖6 熱帶中太平洋地區(qū)(160°E~160°W) EX_AC(a)和EX_NO_AC(b)試驗(yàn)中El Nio事件合成的海表溫度緯度-時(shí)間分布(單位:℃)(橫坐標(biāo)表示El Nio當(dāng)年4月至翌年7月) Fig.6 Composite latitude-time seasonal evolution of the SST (unit:℃) over the central Pacific (160°E—160°W) during El Nio events for EX_AC(a),EX_NO_AC (b). The abscissa indicates a month period from A-pril of year 0 to July of year 1
圖7 熱帶中太平洋地區(qū)(160°E~160°W) EX_AC(a)和EX_NO_AC(b)試驗(yàn)?zāi)M結(jié)果的El Nio事件合成10 m風(fēng)場距平緯度-時(shí)間演變(陰影為緯向風(fēng)距平值,單位:m/s)(橫坐標(biāo)表示El Nio當(dāng)年7月至翌年7月) Fig.7 Composite latitude-time seasonal evolution of the mean 10 m wind anomalies (shading indicates westerly wind anomalies,unit: m/s) over the central Pacific (160°E—160°W) during El Nio events for EX _AC (a),EX_NO_AC(b). The abscissa indicates a month period from July of year 0 to July of year 1
圖8 El Nio當(dāng)年9-12月平均(a、c)與翌年1-4月平均(b、d)合成的風(fēng)場距平(矢量,通過90%顯著性檢驗(yàn),單位:m/s)和降水距平(陰影,單位:mm/d)的空間分布;a、b為EX_AC試驗(yàn)?zāi)M結(jié)果,c、d為EX_NO_AC試驗(yàn)?zāi)M結(jié)果(橫坐標(biāo)表示El Nio當(dāng)年7月至翌年7月)Fig.8 Composited surface wind anomalies (vector in m/s,shown when westerly and easterly anomalies exceeding the 90% confidence level) and precipitation anomalies (shading in mm/d) during the El Nio events for the EX_AC experiment (a,c),(a) September-December and (b) January-April average. (c,d) Same as in (a,c),but for EX_NO_AC. The abscissa indi-cates a month period from July of year 0 to July of year 1
5結(jié)論和討論
本文利用Hadley環(huán)流中心逐月海表溫度、歐洲中心ERA-40的10 m風(fēng)場及CMAP降水資料,討論了年循環(huán)對ENSO局地海氣相互過程的影響。并結(jié)合AM2.1模式兩組敏感性試驗(yàn)探討了SST年循環(huán)在ENSO局地海氣過程中的重要作用。
參考文獻(xiàn):
[1]van Loon H,Madden R A. The Southern Oscillation. Part Ⅰ: Global associations with pressure and temperature in northern winter[J]. Monthly Weather Review,1981,109(6): 1150-1162.
[2]Ropelewski C F,Halpert M S. Global and regional scale precipitation patterns associated with the El Nio/Southern Oscillation[J]. Monthly Weather Review,1987,115(8): 1606-1626.
[3]Ropelewski C F,Halpert M S. Quantifying Southern Oscillation-precipitation relationships[J]. J Climate,1996,9(5): 1043-1059.
[4]Trenberth K E,Caron J M. The Southern Oscillation revisited: Sea level pressure,surface temperatures,and precipitation[J]. J Climate,2000,13(24): 4358-4365.
Chen Wen. Impacts of El Nio and La Nia on the cycle of the Esat Asian winter and summer monsoon[J]. Chinese Journal of Atmospheric Sciences,2002,26(5): 595-610.
[6]黃榮輝,陳文,丁一匯,等. 關(guān)于季風(fēng)動(dòng)力學(xué)以及季風(fēng)與ENSO循環(huán)相互作用的研究[J].大氣科學(xué),2003,27(4): 484-502.
Huang Ronghui,Chen Wen,Ding Yihui,et al. Studies on the monsoon dynamics and the interaction between monsoon and ENSO cycle[J]. Chinese Journal of Atmospheric Sciences,2003,27(4): 484-502.
[7]薛峰,劉長征. 中等強(qiáng)度ENSO對中國東部夏季降水的影響及其與強(qiáng)ENSO的對比分析[J]. 科學(xué)通報(bào),2007,52(23):2798-2805.
Xue Feng,Liu Changzheng. Influence of Moderate ENSO on summer precipitation over eastern China and its comparative of the strong ENSO[J]. Chinese Science Bulletin,2007,52(23):2798-2805.
[8]李崇銀,穆穆,周廣慶,等. ENSO 機(jī)理及其預(yù)測研究[J]. 大氣科學(xué),2008,32(4): 761-781.
Li Chongyin,Mu Mu,Zhou Guangqing,et al. Mechanism and predict ion studies of the ENSO[J]. Chinese Journal of Atmospheric Sciences,2008,32(4): 761-781.
[9]Bjerknes J. Atmospheric teleconnections from the equatorial Pacific[J]. Monthly Weather Review,1969,97(3): 163-172.
[10]Latif M,Anderson D,Barnett T,et al. A review of the predictability and prediction of ENSO[J]. J Geophys Res,1998,103: 14375-14393.
[11]Neelin J D,Battisti D S,Hirst A C,et al. ENSO theory[J]. J Geophys Res,1998,103(C7): 14,261-14,290.
[12]Wallace J M,Rasmusson E M,Mitchell T P,et al. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA[J]. J Geophys Res,1998,103(14),169-14,240.
[13]楊輝,李崇銀. 厄爾尼諾持續(xù)時(shí)間與大氣環(huán)流異常形勢[J]. 地球物理學(xué)報(bào),2005,48(4):780-788.
Yang Hui,Li Chongyin. Lasting time of El Nio and circulation anomaly[J]. Chinese J Geophys,2005,48(4):780-788.
[14]Wyrtki K. El Nio—the dynamic response of equatorial Pacific Ocean to atmospheric forcing[J]. J Phys Oceanogr,1975,5(4): 572-583.
[15]Schopf P S,Suarez M J. A delayed action oscillator for ENSO[J]. J Atmos Sci,1988,45(21): 3283-3287.
[16]Battisti D S,Hirst A C. Interannual variability in a tropical atmosphere-ocean system: influence of the basic state,ocean geometry,and non-linearity[J]. J Atmos Sci,1989,46(12): 1687-1712.
[17]Jin F F. An equatorial ocean recharge paradigm for ENSO. Part Ⅰ: Conceptual mode[J]. J Atmos Sci,1997,54(7): 811-829.
[18]Jin F F. An equatorial ocean recharge paradigm for ENSO. Part Ⅱ: Astripped-down couple mode[J]. J Atmos Sci,1997,54(7): 830-847.
[19]Picaut J,Masia F,du Penhoat Y. An advective-reflective conceptual model for the oscillatory nature of the ENSO[J]. Science,1997,277(7): 663-666.
[20]Weisberg R H,Wang C. A western Pacific oscillator paradigm for the El Nio-Southern Oscillation[J]. Geophys Res Lett,1997,24(7): 779-782.
[21]張人禾,黃榮輝. El Nio事件發(fā)生和消亡中熱帶太平洋緯向風(fēng)應(yīng)力的動(dòng)力作用Ⅰ.資料診斷和理論分析[J]. 大氣科學(xué),1998,22(4): 587-599.
Zhang Renhe,Huang Ronghui. Dynamical roles of zonal wind stresses over the Tropical Pacific on the occurring and vanishing of El Nio Part Ⅰ: Diagnostic and theoretical analyses[J]. Chinese Journal of Atmospheric Sciences,1998,22(4): 587-599.
[22]巢紀(jì)平. 厄爾尼諾和南方濤動(dòng)動(dòng)力學(xué)[M]. 北京: 氣象出版社,1993: 2-3.
Chao Jiping. El Nio and Southern Oscillation dynamics[M]. Beijing: China Meteorological Press,1993: 2-3.
[23]嚴(yán)邦良,張人禾. 熱帶西太平洋風(fēng)應(yīng)力異常在ENSO循環(huán)中作用的數(shù)值試驗(yàn)[J]. 大氣科學(xué),2002,26(3): 316-329.
Yan Bangliang,Zhang Renhe. A numerical test of the effects of wind anomaly over the equatorial western Pacific on ENSO cyele[J]. Chinese Journal of Atmospheric Sciences,2002,26(3): 316-329.
[24]陳錦年,宋貴霆,褚健婷,等. 北赤道流區(qū)海溫異常與ENSO循環(huán)[J]. 熱帶海洋學(xué)報(bào),2003,22(4): 10-17.
Chen Jinnian,Song Guiting,Chu Jianting,et al. Anomalous sea temperature of westerward transferring north equatorial current and ENSO[J]. Journal of Tropical Oceanography,2003,22(4): 10-17.
[25]陳錦年,宋貴霆,褚健婷,等. 赤道太平洋次表層海水溫度異常的信號(hào)通道[J].水科學(xué)進(jìn)展,2003,14(2):152-157.
Chen Jmnian,Song Guiting,Chu Jianting,et al. Oceanic temperature anomalous signal pathway in the equatorial Pacific[J]. Advances in Water Science,2003,14(2): 152-157.
[26]Mantua N J,Battisti D S. A periodic variability in the Zebiak-Cane coupled ocean-atmosphere model:Air-sea interaction in the equatorial Pacific[J]. J Climate,1995,8(12): 2897-2927.
[27]Goddard L,Graham N E. El Nio in the 1990s[J]. J Geophys Res,1997,102(10): 10423-10436.
[28]Trenberth K E,Stepaniak D P. Indices of El Nio Evolution[J]. J Climate,2001,14(8): 1697-1701.
[29]Jin F F,An S I,Timmermann A,et al. Strong El Nio events and nonlinear dynamical heating[J]. Geophys Res Lett,2003,30(3):1120.
[30]Bejarano L,Jin F F. Coexistence of equatorial coupled modes of ENSO[J]. J Climate,2008,21: 3051-3067.
[31]Zhang W,Li J,Jin F F. Spatial and temporal features of ENSO meridional scales[J].Geophys Res Lett,2009,36: L15605.
[32]Zhang W,Jin F F. Improvements in the CMIP5 simulations of ENSO-SSTA meridional width[J]. Geophys Res Lett,2012,39(23): L23704.
[33]Zhang W,Jin F F,Zhao J X,et al. On the Bias in Simulated ENSO SSTA Meridional Widths of CMIP3 Models[J]. J Climate,2013,26(10): 3173-3186.
[34]Su J,Zhang R,Li T,et al. Causes of the El Nio and La Nia amplitude Asymmetry in the Equatorial Eastern Pacific[J]. J Climate,2010,23(3): 605-617.
[35]符淙斌,弗萊徹·J. “埃爾尼諾”(El Nio)時(shí)期赤道增暖的兩種類型[J]. 科學(xué)通報(bào),1985,30(8): 596-599.
Fu Congbin,F(xiàn)letcher J. Two types of warming over equator during El Nio[J]. Chinese Science Bulletin,1985,30(8): 596-599.
[36]Larkin N K,Harrison D E. On the definition of El Nio and associated seasonal average U.S. weather anomalies[J]. Geophys Res Lett,2005,32(13): L13705.
[37]Ashok K,Behera S K,Rao S A,et al. El Nio Modoki and its possible teleconnection[J]. J Geophys Res,2007,112(C11): C11007.
[38]Kao H Y,Yu J Y. Contrasting eastern-Pacific and central-Pacific types of ENSO[J]. J Climate,2009,22(3): 615-632.
[39]Kug J S,Jin F F,An S I. Two types of El Nio events: Cold tongue El Nio and warm pool El Nio[J]. J Climate,2009,22(6): 1499-1515.
[40]Ren H L,Jin F F. Nio indices for two types of ENSO[J]. Geophys Res Lett,2011,38(4): L04704.
[41]陳圣劼,何金海,吳志偉. 一種新的El Nio海氣耦合指數(shù)[J]. 大氣科學(xué),2013,37(4): 815-828.
Chen Shengjie,He Jinhai,Wu Zhiwei. New ocean atmosphere coupling indices for El Nio[J]. Chinese Journal of Atmospheric Sciences,2013,37(4): 815-828.
[42]陳錦年,王宏娜,王東曉,等. 2009/2010年El Nio事件變化特征及其機(jī)理[J]. 海洋學(xué)報(bào),2011,33(6): 29-38.
Cheng Jinnian,Wang Hongna,Wang Dongxiao,et al. Variational characteristics analyses of the El Nio event in 2009/2010[J]. Haiyang Xuebao,2011,33(6): 29-38.
[43]Wang Y,Chen J N,Wang H N,et al. Distribution of the tropical Pacific surface zonal wind anomaly and its relation with two types of El Nio[J]. Chinese Journal of Oceanology and Limnology,2013,31(5): 1-16.
[44]Weng H,Ashok K,Behera S K,et al. Impacts of recent El Nio Modoki on dry/wet conditions in the Pacific rim during boreal summer[J]. Climate Dyn,2007,29(2/3): 113-129.
[45]Kim H M,Webster P J,Curry J A. Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones[J]. Science,2009,325(5936): 77-80.
[46]Chen G H,Tam C Y. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific[J]. J Geophys Res,2010,37(1): L01803.
[47]Feng J,Wang L W,Chen S K,et al. Different impacts of two types of Pacific Ocean warming on Southeast Asia rainfall during boreal winter[J]. J Geophys Res,2010,115(D24): D24122.
[48]Feng J,Li J. Influence of El Nio Modoki on spring rainfall over South China[J]. J Geophys Res,2011,116(D13):D015160.
[49]Zhang W J,Jin F F,Li J,et al. Contrasting impacts of two-type El Nio over the western North Pacific[J]. J Meteor Soc,2011,89(5): 563-569.
[50]Zhang W J,Jin F F,Ren H L,et al. Differences in Teleconnection over the North Pacific and Rainfall Shift over the USA Associated with Two Types of El Nio during Boreal Autumn[J]. Journal the Meteorological Society of Japan,2012,90(4): 535-552.
[51]Zhang WJ,Jin F F,Zhao J X,et al. The possible influence of a non-convectional El Nio on the severe autumn drought of 2009 in Southwest China[J]. J Climate,2013,26(21): 8392-8405.
[52]Zhang Wenjun,Jin Feifei,Turner A. Increasing autumn drought over southern China associated with ENSO regime shift[J]. Geophys Res Lett,2014,41(11),doi:10.1002/2014GL060130.
[53]Xie F,Li J P,Tian W S,et al. Signals of El Nio Modoki in the tropical tropopause layer and stratosphere[J]. Atmos Chem Phys,2012,12(11): 5259-5273.
[54]Yuan Y,Yang S,Zhang Z. Different Evolutions of the Philippine Sea Anticyclone between the Eastern and Central Pacific El Nio: Possible Effects of Indian Ocean SST[J]. J Climate,2012,25(22): 7867-7883.
[55]Wang C,Wang X. Classifying El Nio Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks[J]. J Clim,2013,26(4): 1322-1338.
[56]Cai W J,Cowan T. La Nia Modoki impacts Australia autumn rainfall variability[J]. Geophys Res Lett,2009,36(12): L12805.
[57]Kug J S,Ham Y G. Are there two types of La Nia[J]. Geophys Res Lett,2011,38(16): L16704.
[58]Wang X,Wang D X,Zhou W,et al. Interdecadal modulation of the influence of La Nina events on mei-yu rainfall over the Yangtze River Valley[J]. Adv Atmos Sci,2012,29(1):157-168.
[59]Shinoda T,Hurlburt H E,Metzger E J. Anomalous tropical ocean circulation associated with La Nina Modoki[J]. J Geophys Res,2013,116(C12):C12001.
[60]Zhang Wenjun,Wang Lei,Xiang Baoqiang,et al. Impacts of two types of La Nia on the NAO during boreal winter[J]. Climate Dynamics,2014,44(5): 1351-1366.
[61]王磊,張文君,祁莉,等. 兩類La Nia季節(jié)演變過程的海氣耦合特征對比[J].海洋學(xué)報(bào),2014,36(1): 72-85.
Wang Lei,Zhang Wenjun,Qi Li,et al. Contrasting air-sea features associated with two types of La Nia during the seasonal evolution[J]. Haiyang Xuebao,2014,36(1): 72-85.
[62]陳錦年,汪洋,王宏娜,等. 2010/2011年中部型La Nia事件形成機(jī)理及其垂直環(huán)流異常[J]. 海洋科學(xué)進(jìn)展,2012,30(3): 305-316.
Chen Jinnian,Wang Yang,Wang Hongna,et al. The formation mechanism of the Central Pacific Pattern La Nia event in 2010/2011 and its anomalous vertical circulation[J]. Advances in Marine Science,2012,30(3): 305-316.
[63]Tziperman E,Cane M A,Zebiak S E,et al. Locking of El Nio’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO[J]. J Climate,1998,11(9): 2191-2199.
[64]Guilyardi E,Delecluse P,Gualdi S,et al. Mechanism for ENSO phase change in a coupled GCM[J]. J Climate,2003,16(8): 1141-1158.
[65]Harrison D E. Monthly mean island surface winds in the central tropical Pacific and El Nio events[J]. Mon Wea Rev,1987,115(12): 3133-3145.
[66]Harrison D E,Vecchi G. El Nio-Southern Oscillation sea surface temperature and wind anomalies,1946-1993[J]. Rev Geophys,1998,36(3): 353-399.
[67]Vecchi G,Harrison D E. On the termination of the 2002-03 El Nio event[J]. Geophys Res Lett,2003,30(18): 1964.
[68]Spencer H. Role of the atmosphere in seasonal phase locking of El Nio[J]. Geophys Res Lett,2004,31(24): L24104.
[69]Lengaigne M,Boulanger J,Meinkes C,et al. Influence of the seasonal cycle on the termination of El Nio events in a coupled general circulation model[J]. J Climate,2006,19(9): 1850-1868.
[70]McGregor S,Timmermann A,Schneider N,et al. The effect of the South Pacific Convergence Zone on the termination of El Nio events and the meridional asymmetry of ENSO[J]. J Climate,2012,25(16): 5566-5586.
[71]Stuecker M F,Timmermann A,Jin F F,et al. A combination mode of the annual cycle and the El Nio/Southern Oscillation[J]. Nature Geosci,2013,6(7): 540-544.
[72]Stuecker M,Jin F F,Timmermann A,et al. Combination Mode Dynamics of the anomalous North-West Pacific Anticyclone[J]. J Climate,2014,28(3): 1093-1111.
[73]Harrison D E,Vecchi G A. On the termination of El Nio[J]. Geophys Res Lett,1999,26(11): 1593-1596.
[74]Vecchi G,Harrison D E. The termination of the 1997/98 El Nio. Part Ⅰ: Mechanisms of oceanic change[J]. J Climate,2006,19(12): 2633-2646.
[75]Vecchi G. The termination of the 1997/98 El Nio. Part Ⅱ:Mechanisms of atmospheric change[J]. J Climate,2006,19(12): 2647-2664.
[76]McGregor S,Ramesh N,Spence P,et al. Meridional movement of wind anomalies during ENSO events and their role in event termination[J]. Geophys Res Lett,2013,40(4): 749-754.
[77]Rayner N A,Parker D E,Horton E B,et al. Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late nineteenth century[J]. J Geophys Res,2003,108(D14):4407.
[78]Simmons A. J,Gibson J K. The ERA-40 Project Plan. ERA-40 Project Report Series No. 1[R]. ECMWF,UK,2000:63.
[79]Xie P,Arkin A K. Global precipitation: A 17-year monthly analysis based on gauge observations,satellite estimates and numerical model outputs[J]. Bull Amer Meteorol Soc,1997,78(11): 2539-2558.
[80]Zhang Wenjun,Li Haiyan,Jin Feifei,et al. The annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO zonal structure[J]. Climate,2015,28(14): 5795-5812.
[81]The GFDL Global Atmospheric Model Development Team. The New GFDL Global Atmosphere and Land Model AM2-LM2: Evaluation with Prescribed SST Simulations[J]. J Climate,2004,17: 4641-4673.
[82]Fu J J,Li S,Luo D H. Impact of global SST on decadal shift of East Asian summer climate[J]. Adv Atmos Sci,2009,26(2): 192-201.
[83]Wang B,Wu R,F(xiàn)u X. Pacific-East Asian teleconnection: How does ENSO affect East Asian Climate[J]. J Climate,2000,13(9): 1517-1536.
收稿日期:2015-02-13;
修訂日期:2015-07-21。
基金項(xiàng)目:國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃973項(xiàng)目(2012CB417403);公益性行業(yè)(氣象)科研專項(xiàng)(GYHY 201506013,GYHY201406022);江蘇省研究生培養(yǎng)創(chuàng)新工程(CXZZ13_0505),江蘇省高?!扒嗨{(lán)工程”。
作者簡介:李海燕(1983—),女,廣西壯族自治區(qū)大新縣人,博士,研究方向?yàn)镋NSO動(dòng)力學(xué)與海氣相互作用。E-mail:ncl_talk@126.com *通信作者:張文君(1979—),男,教授,主要從事ENSO動(dòng)力學(xué)、海陸氣相互作用等方面研究。E-mail:zhangwj@nuist.edu.cn
中圖分類號(hào):P732.6
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0253-4193(2016)01-0056-13
Influence of SST annual cycle on local air-sea processes during El Nio events
Li Haiyan1,Zhang Wenjun1,He Jinhai1,Wang Yalan1
(1.CollaborativeInnovationCenteronForecastandEvaluationofMeteorologicalDisasters,KeyLaboratoryofMeteorologicalDisasterofMinistryofEducation,NanjingUniversityofInformationScience&Technology,Nanjing210044,China)
Abstract:Influence of annual cycle on the local air-sea processes during El Ni?o events is investigated based on the Hadley Centre (HadISST1) sea surface temperature (SST) analysis data,10 m wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 reanalysis and the CMAP precipitation data. In the observation,SST anomalies associated with El Ni?o over the equatorial eastern Pacific are meridionally quasi-symmetric about the equator. However,corresponding atmospheric responses display a strong southward movement during the El Ni?o decaying phase. During the El Ni?o developing phase (largely before November),almost meridionally symmetric zonal wind and precipitation anomalies are observed over the equatorial central Pacific. After the El Ni?o peak month (about December),the equatorial westerly and precipitation anomalies shift rapidly southward with a center at about 5°S. Then the zonal wind anomalies stay there till the El Ni?o’s termination. Meanwhile,negative precipitation and anticyclonic anomalies over the western Pacific shift northward. The inconsistence of the meridional movements of the El Ni?o SST anomalies and the associated atmospheric responses is mainly due to seasonally southward displacement of background warm SSTs along with the seasonal march of solar insolation. There is nonlinear relationship between convection and overall SST. That is,convective precipitation will be rapidly enhanced when total SST exceeds a certain threshold. Thus the corresponding convection anomalies are also displaced southward along with the southward shift of the SST and the zonal wind anomaly also appears south of the equator. In addition,the precipitation over northern hemisphere will be further suppressed due to the enhanced convection in southern hemisphere trough the meridional circulation,which can enhance the negative rainfall and anticyclone anomalies in the western Pacific and move northward. These observed analyses are supported by two experiments with and without considering the annual cycle. Southward shifts of the westerly anomalies and anticyclonic anomalies over the western North Pacific during the El Ni?o decaying phase are well simulated by the experiment with the annual cycle. However,these observed phenomena are not reproduced by the experiment without consideration of the annual cycle. Therefore,the annual cycle of climatological warm SSTs over the central Pacific plays a crucial role on the local atmospheric responses during the El Ni?o events.
Key words:El Ni?o; annual cycle; southward shift of atmospheric response
李海燕,張文君,何金海,等. SST年循環(huán)對El Nio事件局地海氣過程的影響[J]. 海洋學(xué)報(bào),2016,38(1): 56-68,doi:10.3969/j.issn.0253-4193.2016.01.006
Li Haiyan,Zhang Wenjun,He Jinhai,et al. Influence of SST annual cycle on local air-sea processes during El Nio events[J]. Haiyang Xuebao,2016,38(1): 56-68,doi: 10.3969/j.issn.0253-4193.2016.01.006