潘成澤 , 邱林 , 董永觀
(1 新疆維吾爾自治區(qū)國家三〇五項目辦公室,新疆 烏魯木齊 830000;2 南京地質礦產研究所,江蘇 南京 210016)
?
哈薩克斯坦Ust-Kamenogorsk地區(qū)額爾齊斯構造帶構造演化的年代學制約
潘成澤1, 邱林1, 董永觀2
(1 新疆維吾爾自治區(qū)國家三〇五項目辦公室,新疆 烏魯木齊830000;2 南京地質礦產研究所,江蘇 南京210016)
摘要:額爾齊斯構造帶呈北西-南東向從西西伯利亞南緣經(jīng)Ust-Kamenogorsk、齋桑進入中國的阿勒泰,向南東方向延伸進入蒙古南戈壁地區(qū),全長超過2 000km,是中亞造山帶重要的構造邊界之一。對哈薩克斯坦境內Ust-Kamenogorsk地區(qū)額爾齊斯構造帶的宏觀巖石-構造特征和不同巖石類型鋯石U-Pb定年研究表明,Ust-Kamenogorsk地區(qū)的額爾齊斯構造帶的強變形片麻巖變質時間發(fā)生在460~400Ma,代表了加里東期的碰撞造山事件。侵入其中的片麻狀花崗巖的結晶年齡為282Ma,而最晚期切穿構造面理的塊狀花崗巖的結晶年齡為252Ma。結合前人的研究成果綜合分析,表明額爾齊斯構造帶經(jīng)歷了古生代的板塊拼合、二疊紀的左旋走滑以及三疊紀西伯利亞地幔柱事件導致的巖漿巖侵入等主要構造演化階段。
關鍵詞:Ust-Kamenogorsk;額爾齊斯構造帶;鋯石U-Pb年齡;構造演化階段
額爾齊斯構造帶是阿爾泰南緣最重要的板塊邊界(圖1),其南屬于準噶爾-哈薩克斯坦板塊,北屬于阿爾泰造山帶(何國琦等,1990,1996;李天德等,1996,2001)。
該構造帶在哈薩克斯坦境內長千余千米,中國境內約600余千米,向東延伸到蒙古境內的南蒙造山帶南帶。額爾齊斯縫合帶演化時間長, 構造極為復雜,多期構造疊加完全改變了早期構造面貌。因此要全面研究該構造帶的構造演化序列,需要從多方面進行綜合分析。
額爾齊斯構造帶在哈薩克斯坦境內分隔了Kalba-Narym地體和Rudny阿爾泰地體(BUSLOV et al.,2002;ZHANG et al., 2012)(圖2),最寬處可達到50 km。在構造帶內發(fā)育各種類型的構造巖片,包括來自2個地體邊緣的構造巖塊。MELNIKOV et al(1997;1998)的研究表明,額爾齊斯構造帶在東哈薩克斯坦發(fā)育典型的韌性剪切變形, 礦物拉伸線理、旋轉碎斑構造等顯示以左行剪切構造變形為主,北西—南東方向展布,產狀陡傾。BUSLOV et al(2002)對構造帶進行云母Ar-Ar定年分析(圖2),發(fā)現(xiàn)2個主要的年齡峰期,分別是283~276Ma及273~265Ma。但由于研究區(qū)構造-巖漿活動強烈且復雜,加之云母礦物自身封閉溫度的限制,云母Ar-Ar年齡數(shù)據(jù)還不足以對額爾齊斯構造帶的演化過程做出客觀描述。通過對構造帶宏觀特征的調查研究和主要巖石類型的鋯石U-Pb年齡測定,以期對Ust-Kamenogorsk地區(qū)額爾齊斯構造帶的顯生宙構造演化過程做進一步闡釋。
1Ust-Kamenogorsk地區(qū)額爾齊斯構造帶的基本特征
在Ust-Kamenogorsk地區(qū),額爾齊斯構造帶是由一系列的韌性剪切斷裂構成的斷裂系統(tǒng)(圖2)。構造帶包含4類主要巖石類型:
第一類是黑云母斜長片巖及片麻巖類,局部出現(xiàn)混合巖化片麻巖,是前寒武紀雜巖中所能見到的“最老”的巖石單元。
巖石呈灰黑色、灰白色,片狀片麻狀構造(圖3,圖4A、圖4B),主要礦物包括黑云母、長石(斜長石為主,可能有少量的鉀長石類)、石英。石榴子石少量且分布不均勻,常以條帶狀分布于偉晶巖邊部,可能與局部的巖漿熱液活動有關。
1.片巖;2.片麻巖、混合巖、片麻狀花崗巖;3塊狀花崗巖;4.塊狀花崗閃長巖;5.基性巖墻;6.斷層圖2 Ust-Kamenogorsk地區(qū)額爾齊斯構造帶地質簡圖(依據(jù)Buslov等2004)Fig.2 Geological map along the Iritish belt in Ust-Kamenogorsk (After Buslov et al.,2004)
第二類為片麻狀花崗巖,呈巖墻、巖株狀侵入到黑云母斜長片巖片麻巖中(圖3),接觸邊界清晰,并與巖體發(fā)生同期韌性變形,形成復雜的褶皺構造。露頭宏觀特征顯示片麻狀花崗巖是黑云母斜長片(麻)巖部分熔融的產物,巖漿發(fā)生位移的距離有限,與中國阿勒泰地區(qū)很多片麻狀花崗巖類似。
第三類是侵入到片麻巖及片麻狀花崗巖中的花崗閃長巖,塊狀構造,未發(fā)生變質及變形,局部含有片麻巖團塊,其產出特征明確表明花崗閃長巖侵入是發(fā)生在韌性剪切變形之后(圖3,圖4C、圖4D)。
第四類是侵入到片麻巖及片麻狀花崗巖中的偉晶巖類,偉晶巖類型單一,主要為白云母長石偉晶巖,偉晶巖脈寬度一般為0.5~1m,很少超過1m,延伸3~50m,部分偉晶巖脈發(fā)生強烈變形。偉晶巖組成和出露特征與中國阿勒泰一帶片麻巖中的偉晶巖非常相似,應是變質作用的產物。
2主要巖石類型礦物特征
黑云母片麻巖(HZK01,82°42′16"E,50°01′14"N):巖石呈灰黑色,片狀構造;主要的礦物組成包括黑云母(20%~35%)、斜長石(20%~30%)、鉀長石(15%~25%)、石英(30%~45%),局部見少量綠簾石和石榴子石,其中石榴子石以變斑晶形式出現(xiàn)。巖石礦物組合表明其原巖屬于正常沉積巖。
片麻狀花崗巖(HSK15,82°42′18"E,50°01′16"N)(圖4C):片麻狀構造,面理總體展布方向與額爾齊斯構造帶一致,構造變形復雜,主要表現(xiàn)為左行韌性剪切構造。礦物組成包括黑云母(2%~5%)、角閃石(1%~3%)、斜長石(30%~40%)、微斜長石(10%~20%)、石英(25%~35%),副礦物主要有磷灰石、Ti-Fe氧化物、鋯石等。巖石露頭構造變形強烈,但薄片中的礦物卻保留相對完整,未見明顯的旋轉碎斑結構,僅石英顆粒顯示波狀消光特征。在區(qū)域上,片麻狀花崗巖大多呈北西向的小巖脈或巖株沿額爾齊斯構造帶分布,盡管與圍巖突變接觸,但其面理與圍巖面理一致。由此可以推斷片麻狀花崗巖是同構造就位的,屬于構造同期花崗巖。
1.黑云母(斜長)片巖、片麻巖;2.片麻狀花崗巖、混合巖;3.花崗閃長巖;4.砂巖、粉砂巖;5.逆沖斷層;6.采樣點位置及編號圖3 Ust-Kamenogorsk南部前寒武系路線地質剖面圖Fig.3 Precambrian geological section at the southern margin of the Ust-Kamenogorsk
圖4 Ust-Kamenogorsk一帶額爾齊斯構造帶主要構造特征圖Fig.4 Field photos along the Iritish belt in Ust-Kamenogorsk (see details in the text)
花崗閃長巖(HSK16,82°42′18"E,50°01′18"N):取樣巖體呈巖株狀,面積約0.5km2,塊狀構造,花崗結構,無變形。主要礦物包括角閃石(15%~25%)、斜長石(40%~50%)、石英(30%~35%)。另有,少量的黑云母等(<5%),除角閃石有少量被交代現(xiàn)象外,礦物原生結構基本得到完整保留。此類花崗閃長巖應是額爾齊斯構造帶穩(wěn)定后的巖漿產物。
3鋯石特征及測年結果
對上述黑云母片麻巖、片麻狀花崗巖和花崗閃長巖進行鋯石U-Pb定年分析,以期對額爾齊斯構造帶的構造演化提供精確的年代學約束(表1)。樣品測試分析由天津地質礦產研究所完成,測試方法見侯可軍等(2009)。
片麻巖(HSK01):鋯石均無色透明,從其晶體形態(tài)、結構特征等可分為2組。一組具有明顯的磨圓度,多為長柱狀,長度一般為150~250 um,長短軸之比為2∶1~4∶1,具有顯著的生長環(huán)帶結構。表明此類鋯石是巖漿成因,并經(jīng)歷了剝蝕、搬運和再沉積過程。另一組鋯石呈不規(guī)則粒狀,部分為短柱狀,無明顯環(huán)帶結構。從測試結果分析,2組鋯石具有顯著的不一致年齡,其中第一組的206Pb/238U年齡為650~850Ma,而第二組鋯石的206Pb/238U年齡為400~460Ma(表1,圖5)。很顯然,第一組年齡代表了源區(qū)的年齡,第二組鋯石年齡則代表了變質事件,片麻巖沉積的時代大致為650~460Ma,為震旦紀—早古生代早期。早古生代的構造事件使沉積巖發(fā)生角閃巖相變質,這與中國阿勒泰地區(qū)及蒙古中部地區(qū)部分片麻巖年齡特征一致(陳麗秋等,2012)。
片麻狀花崗巖(HSK15):鋯石呈柱狀,無色透明,長軸一般為150~200 um。在CL圖象及BSE圖象中,鋯石顯示了清晰的震蕩環(huán)帶結構,未見繼承性的核;20粒鋯石U含量為53×10-6~380 ×10-6,Th含量為27×10-6~258×10-6,Th/U值為0.40~1.12(表1)。鋯石結構和放射性元素均表明鋯石是巖漿結晶形成的。20個測點具有在誤差范圍內一致的206Pb/238U表面年齡,采用算術平均,獲得的年齡為(281±1.1) Ma,代表了片麻狀花崗巖的結晶年齡(圖5)。
花崗閃長巖(HSK16):鋯石顆粒相對細小,一般為100~150 um,少量小于100 um。鋯石無色透明,具有不規(guī)則的環(huán)帶結構,Th/U值為0.2~0.6。16粒鋯石16次分析,U含量為46×10-6~737×10-6,Th含量為25×10-6~277×10-6。從分析結果看,有2粒鋯石可能為巖漿捕獲鋯石,年齡約320Ma。其余14個測點中,有6個測點由于誤差較大未納入計算,其他8個測點在誤差范圍內有一致的206Pb/238U年齡,其算術平均值為(252.4±2.6) Ma(圖5),可以代表花崗閃長巖的結晶年齡。
表1 Ust-Kamenogorsk地區(qū)額爾齊斯構造帶中不同巖石類型鋯石LA-ICPMS U-Pb定年結果表
續(xù)表1
樣品編號Th*U*Th/U206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ206Pb/238U年齡(Ma)1σ207Pb/235U年齡(Ma)1σHSK011014880.150.064860.49680.02110.05560.00234054435461126580.450.076470.60020.03060.05660.00284754474551229570.510.077360.61010.03260.05720.00304804500581350990.500.077660.61210.02230.05720.002148245004014771550.500.067350.52080.01430.05610.00154203458301526670.390.070160.54810.03020.05670.00324374481621639890.440.073170.57970.02400.05750.00244555510461736900.390.1197121.05550.02740.06400.00167297740261849411.200.1097100.95250.05340.06300.00356716707581942740.570.067860.51830.02640.05540.00284234429552018570.320.072460.56030.03410.05610.003445044586721801890.420.073960.57790.01370.05670.0013459448126221631970.830.067260.52050.01240.05620.00144194460272330630.470.067460.51880.02600.05540.002842144305624981450.670.1376121.28340.02590.06760.001383178572125981450.670.1376121.28390.02590.06770.0013831785821樣品編號Th*U*Th/U206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ206Pb/238U年齡(Ma)1σ207Pb/235U年齡(Ma)1σHSK151741140.650.044840.36130.01650.05850.0026282231314239610.630.045540.33620.02770.05360.00422873294243782020.390.044840.31750.01080.05140.0017282228010457930.610.044840.32340.02280.05240.00362832285205661530.430.044440.36310.01690.05930.00272802314156951960.480.044040.52760.01190.08690.0019278243010773940.780.044040.32180.01710.05300.00282782283158701000.700.044640.33030.01940.05380.0032281229017927530.500.044550.32720.02940.05330.004628132872610572800.200.045240.33180.00950.05330.00152853291811371340.280.044940.33180.01850.05350.0029283329116122583730.690.044130.31620.00760.05200.001227822797131391940.720.044440.47940.01300.07830.002228023981114681630.420.044840.32990.01140.05340.0018282228910151261131.120.045040.32760.01710.05280.00272842288151640750.540.043940.33170.02400.05480.0038277329121171011750.580.044440.31770.01210.05190.002028022801118751590.480.044340.43770.01260.07170.0021279236911
續(xù)表1
樣品編號Th*U*Th/U206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ206Pb/238U年齡(Ma)1σ207Pb/235U年齡(Ma)1σHSK1519431080.400.044440.54780.02120.08950.00342803444172043660.650.044140.59310.02890.09760.0047278347323HSK161551860.300.040340.32050.01380.05770.0025255228212225460.530.051050.39150.04340.05570.00583213335373492870.170.040130.29620.00950.05360.00172542263841262270.560.039830.28290.01030.05160.0018252225395441990.220.039440.43040.01410.07920.00232492363126401550.260.040640.29310.01440.05230.00262572261137942850.330.043540.38040.00920.06340.00152753327882777370.380.031740.36230.00700.05560.00132013314691082740.390.040730.29450.00890.05250.0015257226281030860.350.039340.29110.01780.05370.003224932591611321230.260.050140.36530.01460.05290.0021315331613122034020.510.035830.25650.00640.05190.0013227223261334810.420.038340.31840.02490.06040.0047242228122141142710.420.038530.28050.00960.05280.00182442251915752280.330.039530.40360.01160.07400.0020250234410161103460.320.039240.27910.00710.05160.001324822506
注 :U、Th含量為10-6。
4討論
根據(jù)不同巖石類型鋯石U-Pb年齡和鋯石結構特征,可以初步認為。①Ust-Kamenogroask一帶前人歸屬于早前寒武紀的變質巖系是新元古代-早古生代早期的沉積產物(Vasyukova等,2011),其巖石類型、變質變形、副變質礦物組合、鋯石特征及U-Pb年齡等,與中國阿勒泰地區(qū)的克木其群幾乎一致(楊富全等,2006;XIAO et al. 2008, 2009, 2010)。②變質巖系變質時間為加里東期(400~460 Ma),與中國阿勒泰克木其群變質年齡相吻合,充分表明加里東期造山事件在區(qū)域上可能延伸上千千米(WINDLEY et al. 2007; XIAO et al. 2004; METELKIN et al. 2005)。Ust-Kamenogorsk地質研究所在該地區(qū)額爾齊斯構造帶南部的超高壓-高壓變質巖中(榴輝巖),獲得變質礦物Ar-Ar年齡為430Ma,也進一步佐證了這一點。③280Ma左右的片麻狀花崗巖,是在額爾齊斯構造帶發(fā)生左行剪切的構造背景下,局部溫壓變化導致部分熔融形成的(胡藹琴等,2006;周剛等,2007)。④250Ma時期,處于伸展構造背景,形成塊狀花崗閃長巖。
結合前人的Ar-Ar年齡結果,可以確定Ust-Kamenogorsk地區(qū)構造熱事件序列。①850Ma~460Ma期間,是以被動大陸邊緣沉積組合為特征的沉積巖系形成階段,代表在新元古代晚期—早古生代早期山區(qū)阿爾泰褶皺造山后的又一沉積旋回。厚度巨大的哈巴河群是這一時期沉積的典型代表,也是Rundy阿爾泰的重要組成部分。②460Ma~400Ma期間,是山區(qū)阿爾泰南緣重要的構造演化階段,這一時期造成了被動大陸邊緣的沉積組合發(fā)生全面的褶皺變形和中深程度的變質作用,甚至在局部地區(qū)還出現(xiàn)麻粒巖相及榴輝巖相變質作用,如在Ust-Kaminogorsk南部地區(qū)412Ma的榴輝巖是這一時期深俯沖作用的重要證據(jù)。③280~270Ma期間,是另一個重要的構造演化階段,除了左行走滑作用,在額爾齊斯構造帶兩側還發(fā)育了大量的超鎂鐵巖及A型花崗巖(秦克章等,2012),近年來的研究認為,它們可能和塔里木二疊紀地幔柱有關(ZHANG et al., 2010; 2013a, 2013b, 2014)。④250Ma左右,走滑構造作用結束,區(qū)域上處于伸展構造背景,形成塊狀花崗閃長巖。這一期的構造熱事件,可能受到西伯利亞地幔柱的影響(VASYUKOVA et al., 2011)。
圖5 Ust-Kamenogorsk南部不同類型巖石鋯石U-Pb年齡諧和圖Fig.5 Zircon U-Pb concordia of the diverse rocksat the Iritish belt in Ust-Kamenogorsk
5結論
根據(jù)野外地質調查和鋯石U-Pb定年,可以得出以下結論。
(1)Ust-Kamenogorsk地區(qū)額爾齊斯構造帶主要經(jīng)歷了3期構造-巖漿-變質事件,分別為460~400Ma、280~270Ma和250Ma。
(2)早期的構造熱事件可能代表了Kalba-Narym地體和Rudey-Altai地體的拼合事件,與中國境內的阿勒泰造山帶這一時期的造山事件相當。
(3)280~270Ma的構造熱事件是由于西伯利亞板塊的逆時針旋轉造成額爾齊斯構造帶左旋走滑效應的結果。
(4)250Ma代表了最晚期的巖漿事件,可能是西伯利亞地幔柱在中亞造山帶的巖漿效應。
致謝:感謝審稿人對本文認真細致的審閱和寶貴意見;感謝國家三〇五項目“成礦動力學背景和成礦過程研究”(2011BAB06B03-01)的資助。
參考文獻(References):
侯可軍,李延河,田有榮. LA-MC-ICPMS 鋯石微區(qū)原位U-Pb定年技術[J]. 礦床地質, 2009, 28(4):481-492.HOU kejun, LI Yanhe, TIAN Yourong. In situ U-Pb zircon dating using laser ablation multi ion counting-ICP-MS[J]. Mineral Deposit,2009,28(4):481-492 (in Chinese with English abstract).
何國琦,韓寶福,岳永君,等. 中國阿勒泰造山帶的構造劃分和地殼演化[M]. 新疆地質科學,1990.
HE Guoqi,HAN Baofu, YUE Yongjun ,et al. Tectonic division and crustal evolution of Altay Orogenic Belt in China[M]. Geoscience (Xinjiang) ,1990 (in Chinese with English Abstract).
何國琦,李茂松.興蒙-北疆及鄰區(qū)古生代蛇綠巖的對比研究及其大地構造意義,張旗主編:蛇綠巖與地球動力學研究[M].北京:地質出版社,1996.
HE Guoqi, LI Maosong. Comparison study and tectonic significance of the Paleozoic ophiolites in the Xingmneg-North Xijiang and its marginal area. In Zhang Qi (ed.): Geodynamics of ophiolites[M]. Beijing: Geological Publishing House, 1996 (in Chinese).
胡靄琴,韋剛健,鄧文峰.阿爾泰地區(qū)青河縣西南片麻巖中錯石SHRIMP U-Pb定年及其地質意義[J]. 巖石學報, 2006, 2(1):l-10.
HU Aiqin, WEI Jiangang, DENG Wenfeng. SHRIMP zircon U-Pb dating and its significance for gneisses from southeastern area to Qinghe County in the Altai, China[J]. Acta Petrologica Sinica, 2006,2(1): 1-10 (in Chinese with English abstract).
李天德,B.H.波里揚斯基.中國和哈薩克斯坦阿爾泰大地構造及地殼演化[J].新疆地質,2001,19(1):27-32.
LI Tiande, POLIYANGSIJI, B.H. Tectonic and crustal evolution of Altai in China and Kazakhstan[J]. Xinjiang Geology, 2001, 19(1):27-32 (in Chinese with English abstract).
楊富全, 毛景文, 鄭建民,等. 哈薩克斯坦阿爾泰巨型成礦帶的地質特征和成礦模型[J].地質學報,2006,80(7):963-983.
YANG Fuquan, MAO Jingwen, ZHENG Jianmin,et al. Geology andMetallogenic Model of the Altay Large Metal logenic Belt in Kazakhstan[J]. Acta Geologica Sinica, 2006, 80(7): 963-983.
周剛,張招崇,羅世賓,等. 新疆阿爾泰山南緣瑪因鄂博高溫型強過鋁花崗巖:年齡、地球化學特征及其地質意義[J]. 巖石學報,2007, 23(8):1909-1920.
ZOU Gang, ZHANG Zhaochong, LUO Shibin,et al. Confirmation of hightemperature Strongly peraluminous Mayin'ebo granites in the south margin of Alty,Xinjiang:age.geochemistry and tectonic implications[J]. Acta Petrologica Sinica, 2007, 23(8):1909-1920.
秦克章, 唐冬梅, 蘇本勛, 等.北疆二疊紀鎂鐵-超鎂鐵巖銅、鎳礦床的構造背景、巖體類型、基本特征、相對剝蝕程度、含礦性評價標志及成礦潛力分析[J].西北地質,2012,45(4):84-116.
QIN Kezhang, TANG Dongmei, SU Benxun, et al. The Tectonic setting, style, basic feature, relative erosion deee, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni- bearing Permian mafic- ultramafic complexes, Northern Xinjiang[J]. Northwestern Geology, 2012, 45(4):84-116.
陳麗秋,趙忠合,何立新,等.新疆瑪因鄂博斷裂南側阿熱勒托別巖體地球化學特征及地質意義[J].西北地質,2008,41(2),22-30.
CHEN Qiuli, ZHAO Zhonghe, He Lixin, et al. Geochemistry and tectonic implications of the aretuobie pluton to south of the Mayinebo suture zone in Altay, Xinjiang[J]. Northwestern Geology, 2008, 41(2), 22-30.
BUSLOV, M.M., WATANBE, T., FUJIWARA, I., et al. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation[J]. Journal of Asian Earth Sciences, 2004, 23, 655-671.
METELKIN, DV, VERNIKOVSKY, VA, KAZANSKY, AY, et al. The Siberian Craton in the structure of the Supercontinent Rodinia: analysis of paleomagnetic Data. Doklady Earth Sci. 2005, 404:1021-1026.
VASYUKOVA, EA., IZOKH, AE., BOROSENKO, AS., Early Mesozoic lamprophyres in Gorny Altai: petrology and age boundaries[J]. Russian Geology and Geophysics,2011,52:1574-1591.
WINDLEY, BF, ALEXEIEV D, XIAO, WJ, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. J. Geol. Soc., London., 2007, 164: 31-47.
XIAO, W., WINDLEY, BADARCH, G., et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. J. Geol. Soc., London, 2004, 161:339-342.
XIAO, WJ, HAN, CM, YUAN, C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32:102-117.
XIAO, W., KRONER, A, WINDLEY, B. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic[J]. Int. J. Earth Sci, 2009a, 98:1185-1188.
XIAO, WJ, HUANG, BC, HAN, CM, et al. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18:253-273.
ZHANG, C.L., SANTOSH, M., ZOU, H.B., et al. Revisiting the ‘‘Irtish tectonic belt’’: implications for the Paleozoic tectonic evolution of the Altai orogeny[J]. Journal of Asian Earth Sciences, 2012, 52:117-133.
ZHANG, CL., ZOU, HB, YAO, CY et al. Origin of the Permian gabbroic intrusions in the southern margin of the Altai Orogen: A possible link to the Permian Tarim mantle plume?[J] Lithos,2014, 204: 112-124.
ZHANG, CL, ZOU, HB.Comparison between the Permian mafic dykes in Tarim and the western part of Central Asian Orogenic Belt (CAOB), NW China: implications for two mantle domains of the Permian Tarim Large Igneous Province[J]. Lithos, 2013a, 174: 15-27.
ZHANG, CL, ZOU, HB. Permian A-type granites and Tarim and western part of the Central Asia Orogenic Belt (CAOB): Genetically related to a common Permian mantle plume?[J] Lithos, 2013b,172-173, 47-60.
ZHANG CL, LI, ZX, LI, XH et al. A Permian Large Igneous Province in Tarim and Central Asian Orogenic Blet (CAOB), NW China: Results of a ca. 275 Ma mantle plume?[J] GSA Bulletin, 2010,122(11-12) 2020-2040.
收稿日期:2015-06-15;修回日期: 2016-1-20
基金項目:十二五國家三〇五項目“成礦動力學背景和成礦過程研究”(2011BAB06B03-01)
作者簡介:潘成澤(1964-),男,遼寧寬甸人,地質礦產高級工程師,2005年畢業(yè)于中國地質大學地質工程碩士專業(yè),主要從事地質礦產調查研究和科技管理工作。E-mail:xj305pcz@vip.163.com
中圖分類號:P597
文獻標志碼:A
文章編號:1009-6248(2016)02-0189-09
Tectonic Evolution of the Iritish belt in Ust-Kamenogorsk Area, Kazakhstan: New Geochronological Evidence
PAN Chengze1, QIU Lin1, DONG Yongguan2
(1.National 305 Project Office, Urumuqi 830000,Xinjiang, China;2.Nanjing Institute of Geology and Mineral Resources, Nanjing210016,Jiangsu,China)
Abstract:The Iritish belt, served as one of the most important tectonic boundary in Central Asian Orogenic Belt (CAOB), extends more than 2 000 kilometers from west Siberian, through Ust-Kamenogorsk and Zhaisang Lake in Kazakhstan, Chinese Altai and then into Mogonia. In combination with systematic geochronological data, the detailed field observation along the Iritish belt in Ust-Kamenogorsk have been reported in this paper, aiming to have a better understanding its tectonic evolution process.The data reveals that amphibolite-facies metamorphism of the gneiss in this belt took place during 460~400 Ma, representing the Caledonian orogenic event. The gneissic granitesintruded into the gneiss along the lamellar structure and crystallized at ca.282 Ma, while the massive granodiorites sharply cut across the schistosity, with crystallized age of ca.252 Ma. Based on these observations, the evolution process of the Iritish belt can be divided into three stages at least, i.e., the Caledonian orogenic event (460~400 Ma), the Permian sinistral strike-slip and the Triassic magmatic event possibly related to the Siberia mantle plume.
Keywords:Ust-Kamenogorsk; Iritish belt; zircon U-Pb age; tectonic evolution