Yao Wenjun, He Zhenghao, Deng Heming
(1HubeiKeyLaboratoryofIntelligentWirelessCommunications,CollegeofElectronicsandInformationEngineering,South-CentralUniversityforNationalities,Wuhan430074,China;2CollegeofElectricalandElectronicEngineering,HuazhongUniversityofScienceandTechnology,Wuhan430074,China)
直流電壓下兩相體放電路徑預(yù)測
?
PredictionoftheDischargePathsofTwo-PhaseMixturesunderDCVoltage
Yao Wenjun1, He Zhenghao2, Deng Heming2
(1HubeiKeyLaboratoryofIntelligentWirelessCommunications,CollegeofElectronicsandInformationEngineering,South-CentralUniversityforNationalities,Wuhan430074,China;2CollegeofElectricalandElectronicEngineering,HuazhongUniversityofScienceandTechnology,Wuhan430074,China)
AbstractThepredictionoftheDischargePathsofTwo-phaseMixturesunderDCVoltagehasbeeninvestigatedbytheexperiment.Fromtheexperimentalresultstheprobabilityofselectingtheairorthetwo-phasemixturesisgovernedbythelocaldistortedelectricfield,whichishighlycorrelatedwiththemacroparticlesizes.Inordertoexplainthephenomena,anewstochasticmodelhasbeenputup.Onthebasisofthestreamertheoryandprobabilityandstatisticstheory,thepaperusesthestrengthofanelectricfieldfromthePoisson'sequationasthecriterionofthestreamerdevelopment.ThebreakdowntimeofthestreamerdevelopmentmeetsWeibulldistributionandthedistortedfieldvaluedecidesthedirectionforthestreamerdevelopmentintheTPMDspace.ThedevelopmentoftheDCdischargepathcanbeaffectedbythelocalelectricfield.Theobjectivefunction(optimalpath)correspondstotheenergyfunctionoftheHopfieldneuralnetwork.Thecomparisonofthesimulationwiththeexperimentshowsthatthestochasticmodelhasgivenagoodapproximation.
Keywordsprediction;dischargepath;two-phasemixture;electricfielddistortion;imulation
直流電壓下兩相體放電路徑預(yù)測
Thedischargeinlongairgapsisahotissueinthestudyontheoutdoorinsulationofpowersystem.Atthesametimeitisalsoafoundationofthemechanismoflightningdischargeandtheresearchonthelightningprotection.Intheaboveresearchthedispersionandrandomnessofdischargepathsarethetypicalcharacteristicsofthedischargeinlongairgaps.Thelightningstrikeandlightningshieldingfailurearealsocloselyrelatedtotherandomnessofdischargepaths.Sotheinvestigationoftherandomnessofdischargepathsisakeyissue.
Thesparkpathsinthepoint/planeandpoint/two-rodairgapshavebeenpredictedbyMacAlpineetalbasedontheexperimentaldata[1-4].Theyfoundthatthedevelopmentofsparkpathsinairisbysuccessivestepsandinadirectionsuggestedbyanangularprobabilitydistributionwhichisrelatedtothefieldatthetipofthepropagatingleader.Inthe[5]AgorisD.P.usedanewstochasticmodelforthesimulationoflightningandbreakdowninlongairgaps.Thecomparisonofthesimulationwiththeexperimentalresultsshowsthatthestochasticmodelhasgivenagoodapproximationinthecaseoflargedistancesbetweentheactiveelectrodeandtheground.Thefractaltheoryhasalsobeenappliedtothesimulationoftheprocessofinceptionandpropagationinthelightningdischarges.Xudiscoveredthatafractalcoefficientη=2candeliveracrediblemodeloflightningstrikes,andprovedtheconsistencyofthestrikingprobabilityandshieldingeffectbetweensimulationresultsandobservations[6].
Theaboveinvestigationonthepredictionofthedischargepathsisonlyintheair.Howabouttheinvestigationinthetwo-phasemixtureThetwo-phasemixture(TPM)isamixtureofgasandmacroparticlesofhighconcentration[7-9],suchasdust,aerosolandrain,etc. (Toavoidconfusion,thetermmacroparticlesisusedtorepresenttheseparticles.)Itisofsignificantinterestinmanytechnicalapplicationsandnaturalphenomena,suchastheformationofthunderstorms,themacroparticle-contaminatedinsulatedsystem,flashoverinrainyweatherandsandstorm,dustplasmaandlightingshieldingfailureinrain,mistorsandstorm.Thesephenomenaarerelativetotwo-phasemixturedischarges(TPMDs).Grigor,evA.I.reportedthatthecoacervationofm-sizedraindropsisincreasingundertheperiodicvariationofenvironmentalelectricalfieldunderlightningdischarge,andthecoacervationiscloselyrelevanttothechargeabilityofraindrops[10].Somestudieshavereportedthatasignificantincreaseintheflashovervoltageisproducedbysupplyingthetetrachloroethylenemistintothegas[11].Liquiddropletsarelikelytostronglymodifytheclassicaldevelopmentoffilamentarydischargeinanon-uniformfieldgeometry[12].
ThepredictionofthedischargepathsofTPMsisoneofthemostimportantscientificquestions.Yetfewpeoplehaveinvestigatedtheproblem.InthispapertheselectionofthedischargepathinTPMsisemployedasthestudyobject.ThepercentagesofthedischargesinTPMSorairaremadecomparativeanalysesfromtheexperimentandsimulation,whichrevealthatthesizesofTPMmacroparticlesdecidethepredictionofthedischargepathsofTPMs.
1Experimental
1.1Experimentalarrangement
Fig.1 Schematic of the experimental setup圖1 實(shí)驗(yàn)裝置圖
ThesketchoftheexperimentalequipmentisshowninFig.1.Theexperimentalarrangementandmethodsisthesameasthepaper[9].TPMsandairaresimultaneouslyjettedintoeachhalfofthedischargechamberataboutthesameflowvelocity,whichcanpreventtheparticlesfromdeposingontheelectrodes.Theexperimentalprocedureisasfollows:
1)Adjustthelocationoftherodandlocalizingelectrode:AddthevoltagetothecriticalbreakdownandputdownthelargernumericalvaluesasU1.Theadjustedtimesisabove50times.Whenthepercentagesoftheselectionoftwolocalizingelectrodesareequal(50±5%),theadjustmentoftheelectrodesiscompleted.
2)JetairandTPMscontinuouslyatthesameflowvelocity:Jettheairintotheleftdischargechamber.AtthesametimejettheTPMsintotherightdischargechamberandaddthevoltagetothecriticalbreakdownandputdownthelargernumericalvaluesasU2.Writedownthebreakdowntimesfromtherodtotheleftortherightlocalizingelectrodeandgettheirdischargetimes.
3)Exchangejetorientation:ExchangethejetorientationofairandTPM.Thenrepeat2).
4)Reducetheinfluenceofthetwolocalizingelectrodes:ExchangejetorientationofairandTPMafterwerepeattheexperiment10times,repeat2)and3).Intheexperimentaltherepeatedfrequencyshouldsurpass100times.
5)TheeffectsofmacroparticlesizesonTPMDs:Whenwecomparethepercentageofthedischargeselectionfromtherodtotheleftlocalizingelectrodewiththerightone,theeffectsofmacroparticlesizesonTPMDarepresent.
1.2Propertiesoftheexperimentalmaterials
3kindsofsolidmaterialsandatobaccoareusedtoproduceparticlesinairasgas-solidTPMs.Waterisusedtoproducedropletssuspendedinairasgas-liquidTPMs,whichformatwatermistwiththreedropletsizes.Total7kindsofdifferentdielectricmaterialshavebeenusedtodemonstratetheeffectsofmacroparticlesizesonTPMDsinthispaper.TheirmaterialpropertiesfortheexperimentareshowninTab. 1.IntheTab. 1εristherelativedielectricconstant.
Tab.1 PropertiesofExperimentalMaterials
2Results
2.1Photographofthepredictiononthe
dischargepath
Fig.2 Photograph of the discharge path of the macroparticleswith different diameters圖2 不同粒徑顆粒的放電路徑圖片
Theexperimentalmaterialsare7kindsofdielectricmacroparticleswithdifferentaveragediameters.ThedischargepathinTPMsisshowninFig. 2.Thegapsbetweentherodandtheplaneelectrodeappliedinourworkare40cm, 44cmand48cm,respectively.Theresultsofthreegapsindicatetheeffectsarequitesimilar.Fig. 2istaken40cmandabout200kVasanexample.Whend<0.01mm,U-mist(d =0.0066mm),underpositiveornegativeDCvoltage,thepercentageissmallerthan50%andthedischargepathselectstheairbutTPM.ThephotographisshowninFig. 2a;Whend>0.1mm,thequartzsand(d=0.12mm)underpositiveornegativeDCvoltage,thepercentageishigherthan50%andthedischargepathselectstheTPMbutair.ThephotographisshowninFig. 2b;When0.01mm Fig.3 Effect of the macroparticle diameters on the probabilityof selecting the TPM圖3 兩相體顆粒粒徑大小對放電路徑的影響 2.2Processofthepredictiononthedischargepath TheN-mist(d=0.040mm)wasusedtotheexperiment.TheprocessofthedischargepathisshowninFig.4. Fig.4 Process on the selection of the discharge path of the N-mist圖4 噴射水霧的放電路徑選擇過程 TheFig.4a-4frepresentsthesixdifferentimportantstages.TheFig.4ashowsthatthewaterwassprayedtothedischargeroomandwasgeneratedthespaceofTPM.TheFig.4band4cshowsthecoronadischargeunderDCvoltage.Theblue-purplehaloneartherodelectrodegetsstrongerwiththedischarge.TheFig.4dto4fshowsthebreakdowninthegapsbetweentherodandtheplaneelectrode.Thedischargepath selectstheairandtheshapesofthepathsaremoreandmorecomplex. 2.3Effectofthesprayangleonthepredictionofdischargepath TheU-mist(d=0.0066mm)andN-mist(d=0.040mm)aretwokindsofmacroparticleswiththedifferentdiameter.TheirsprayangleisdifferentandtheprobabilityofselectingtheTPMisalsodifferent.Fig. 5showstheeffectofthesprayangleonthepredictionofdischargepath.UnderthesameDCvoltagepolaritytheTPMsareinjectedtothedischargechamberatthesameangle.TheeffectoftheU-mistonthedischargepathismoreremarkablethantheN-mist.Astheangleisfromthefronttothebackunderthepositivevoltage,thepercentageofthedischargepathinselectingtheU-mistisabout40%higherthanthatoftheN-mist.Simultaneouslythepercentagehaschangedverylittleasthevoltagerisesandunderthenegativevoltagethepercentagedecreasesasthevoltagerises.Intheexperimentthemistisrepelledbytherodelectrodeandrepulsedtotheplaneelectrode.Theappearanceismoreobviousasthevoltagerises. Fig.5 Effect of the spray angle on the prediction of discharge path圖5 噴射角度對放電路徑的影響 2.4Effectofthemacroparticlediameteronthepredictionofdischargepath TheFig. 6showsthephotographofthedischargepathonthequartzsandswiththedifferentdiameters.Thediameteroffinesandis0.15mmandthediameterofcoarsesandis0.80mm.Inthefigurethepositivevoltageis120kVandthenegativevoltageis240kVforthepureairanddusttwo-phasemixture.Fromthepicturetheobviousdischargepathscanbeseenandthebreakdownvoltageisdifferentunderthepositiveandnegativevoltage.Underthepositivevoltagethebreakdownislowerandthewidthsofthedischargepathsarefiner.Underthenegativevoltagethebreakdownvoltageishigherandthewidthsandbrightnessofthedischargepathsarebigger.Atthesamethewidthofdusttwo-phasemixtureisslightlywiderthanthatofpureair.Thewidthofcoarsesandtwo-phasemixtureisslightlywiderthanthatoffinesand.Thereasonisthatthedustmacroparticlesdistorteelectricalfieldandthedistributionofelectricfieldismorenon-uniform.Theionizationbetweenthecoarsesandmacroparticlesisstrongerthanthatofthefinesandmacroparticles. (Left: positive voltage, Right: negative voltage )Fig.6 Photograph of the discharge path on different quartz sands under the different voltage polarity圖6 不同石英砂在不同電壓極性下的放電路徑圖片 3Discussion Becausetherearemanynon-uniformdielectricinthedischargespace,TPMDsmusthavesomenewmechanismbesidesthatofgasdischarge.Themechanismincludes: 1)theinteractionsbetweenthemacroparticlesandtheelectricalfield,theelectronsandionsorthephotoionization; 2)thesurfacetrapsofthemacroparticlescapturetheelectronsandions; 3)thesemacroparticlesinTPMsdistorttheelectrostaticfield,interactwithions,electronsorphotonsandarechargedbydiffusion.Sothepredictionofthedischargepathsoftwo-phasemixtureisprimarilydeterminedbythedistortedelectricalfield.Thenewstochasticmodelisbasedontheselectionofpositivedischargepath.ThedevelopmentoftheDCdischargepathcanbeaffectedbythelocalelectricfield. 3.1Calculationofdistortedelectricalfield Tocomputetheelectricalfieldinthedischargespacethetwo-phasemacroparticlesareprocessedwithidealmethods.Supposethat(1)Themacroparticlesaresphereswiththesamephysicalproperties; (2)Theyareevenlydistributedandhavesamesizesinthedischargespace; (3)Thespacingbetweenthespheresisverylargeandhasnocharge.Thecalculationmethodsisthesameasthepaper[5].Thedischargeroomistakingplaceinatwo-dimensionalsquareareawithameshoflatticepointsupto200×200points.Eightpermissibledirection(includingdiagonals)ofstreamerpropagationareallowed.Thedistancebetweentwopointsofthelatticeisequaltoh,or1.41hfordiagonals.Therod-planeconfigurationisusedforthesimulation.Theupperelectrodeisarodwhosetopishemisphericandatpotentialφ=V0,whereV0istheappliedvoltage.Thelowerelectrodeisaplanewhosepotentialisatgroundpotentialφ=0.Thetwolocalizingelectrodesareplacedontheplane,whichisatpotentialφ=0too.Theselectionofthedischargepathcanbeobservedbythelocalizingelectrode.Therearevariouschargeinthestreamerchannel.Theirpotentialdistributionmeetsthepoissonequation. (1) Whereρisthechargeddensityinthestreamerchannel,Thechannelincludestheelectron,positiveandnegativeionsandpolarizationandchargedmacroparticles.Ifthereisnochargeinthestreamerchannel,thepotentialdistributionmeetstheLaplaceequation. 2φ=0. (2) TheelectricfieldcanbecalculatedbysolvingtheLaplaceequationwithboundariesontheelectrodesanddischargespace.InthecalculationthecurrentcontinuityequationandOhm'slawneedtobeused. (3) WhereJisthecurrentdensityandσistheelectricalconductivityofthestreamerchannel.Whenthestreamerspropagatefromtheanodetowardsthecathode,thekstepcanbediscretizedintothefollowingformula. ρk+1=ρk+ts(σφk+1). (4) Wheretsisthetimestep.Theformula(4)isplugintotheformula(1)togetthefollowingformula. (5) Thepotentialdistributionatthek+1stepcanbesolvedbythesuccessiveover-relaxationiterationmethod.Sotheelectricalfieldinthedischargespacecanbederivedfromtheformula(6).TheheavylineinFigure7showsthepossiblepathinthestreamerpropagation. E=-φ. (6) Fig.7 Schematic of possible new bounds of positivestreamer in the stochastic model圖7 正流注在方形網(wǎng)格空間發(fā)展的示意圖 3.2Initiationofthepositivestreamer Underthepositivevoltageoftherodelectrode,thereisastrongelectricfieldareaneartherodelectrode,wherethecollisioncoefficientαisgreaterthantheattachmentη,αandηarethefunctionoftheelectricfieldintensityE.Bytheactionoftheelectricfieldthefreeelectronsintheareaaremovedalongthedirectiontotherodelectrodeandformtheinitialelectronavalanche.Whentheheadelectronsintheinitialelectronavalanchegettotherodelectrode,thepositiveionsstayneartheelectrodeandformthespacecharges.Thespacechargesstrengthenthespaceelectricfieldfromtherodtoplaneelectrode.Themarcoparticlesbetweentherodandtheplaneelectrodearepolarizedandcharged.Themacroparticlesurfacecanextractthephotoelectronsandcontributetocollisionionization,whichenhancesthesecondaryelectronavalanche.Atthesametimethemacroparticlecanobstructandcapturetheelectronsandabsorbthephotons,whichweakenthesecondaryelectronavalanche.Thesefactorsaffectthepropagationoftheelectronavalancheandhaveacompetitioneffect.Theeffectwillaffectthetransitionfromtheelectronavalanchetothestreameranddecidethedischargepath. Thepositiveandnegativeions,thepolarizedandchargedmacroparticleswilldistorttheelectricalfieldafteronestreamerisdeveloped.Beforethespacesareeliminated,thenewstreamerisn’tformattedbecausethedensityanddistributionofnewoneareusuallyassociatedwiththeintensityoftheformerone.Theeliminatingtimeisdifferent.Therandomandirregularityofthedischargewillbeproduced. 3.3Coronadischargeinthepositivestreamer initiation Alargenumberofelectronavalanchesaregeneratedbytheactionofthedistortedelectricalfieldneartherodelectrode.Whenthepositiveionsrecombinewiththenegativeionsorelectrons,therayradiationswillbeproducedandthehalocomesout,whichformscoronadischarges.Ifalargenumberofpositivespacechargesaccumulatearoundtheanode,thediscontinuousstreamercoronawilltransformastableglowdischarge.Thereisanapproximateuniformfieldbetweenthepositivespacechargesandtheanode.Whenthedensityofthepositivespacechargesissmall,thepositiveionswillneutralizetheanode,whichcanclearthewayforanewstreamerappearing.Whenthedensityofthepositivespacechargesisverybigandthelocalfieldishighenough,thebreakdownwilloccurinthespacefromthepositiveionstotheanode.Theionizingradiationwillproducephotoelectron.Thephotoelectronattachesoneselftothemacroparticlesorthemoleculesandatomswhichformpositiveions.Thepositiveionsdrifttotheanodeandcompensatethelossforthepositiveparticlesinthespacecharges.Soasthepositiveionsexist,theglowdischargesexist. 3.4Probabilitymodelonthesuccessivepropagation ofthepositivestreamer Twoconditionsshouldbesatisfiedinordertohavethedevelopmentofthesuccessivestreamer.Firstly,theelectricfieldofthestreamerheadshouldbegreaterthanacriticalvalueinordertohaveionizationoftheairormarcoparticles.Secondly,asecondseedelectronshouldexistinthecollisionionizationareainordertostarttheformationofanavalanche.Thecriterionofthestreamergrowthhasbeenbasedmainlyonabovetwoassumptions.Ineverytimestepofthestreamergrowth,thelocalelectricfieldEishouldbecalculatedbetweenthepointsthatbelongtotheconductivestructureandthepointsaroundit.IfthelocalelectricfieldEiisgreaterthanathresholdvalueEth,thetimefortheformationofthenewstreamersegmentiscalculated.Thistimeisnecessaryforthestreamertopropagatefromonepointofthelatticetoanotherinacertaindirectionanditisnamedtheformationtime[5].Theformationtimeisarandomvariablehavinganarbitraryprobabilitydensityfunction,duetotherandomnatureofappearanceofsecondseedelectronsinthefrontofstreamertripsandthestatisticalfluctuationsoftheformationtimeofelectronavalanches. Thedistortedextentofthelocalelectricfieldisonlycorrelatedwiththemacroparticlesizesandhaslittlerelationshipwiththedielectricconstantandthevolumefraction[9].ThedistortedelectricfieldneatthemacroparticleisshowninFig. 8.Theequationisasfollows: (7) Fig.8 The distorted electric field near the macroparticle圖8 顆粒附近畸變電場 TheprobabilitydistributionoftheformationtimematchestheWeibulldistribution.Theformulaoftheformationtimeisasfollows: ρ(ts)=γ(E)e-γ(E)t. (8) wheretsistheformationtime,whosevalueisdependedonthelocalelectricfieldEi.γ(E)istheprobabilityfunctionofthestreamerpropagation: (9) whereτisthetimestepofthecurrentiterationofthecomputerprogram.Itiscalculatedbytheformula (10) ThelocalelectricfieldEibetweentheadjacenttwopointscanbecalculatedbythetheformula (11) ThethresholdvalueEthcanbecalculatedbythetheformula[9], (12) whenthestreamerdevelopstothestepk,thepropagationdirectionfromonepointPtoanotherP′ischosenonthebasisoftheprobabilityfunctionp(ts)andtheformationtimets. (13) whereζisarandomnumberofuniformdistributionattheinterval(0, 1).Theshortesttsischosentothetimestep. 3.5Simulationresultsandcomparision ThestochasticmodeisappliedtotheprobabilitydistributionofthehitpointunderthepositiveDCvoltage.Thelocalizingelectrodeisregardedasthestrikepoint.Theexperimentaltimesis100.Thehittedtimesoftheleftandrightelectrodeisrecordedandalsoincludesthesamehittedtimes.TheprobabilityofselectingtheairortheTPMsiscalculatedbytheformula(14). P=TTPM/Ttotal. (14) Tab.2showsthecomparisonwiththesimulationfromtheexperimentforthequartzsand.TheFig.8showsthecomparisonofthepercentagesoftheselectionofthedischargepathinTPMsfor7kindsofdifferentmacroparticlesizes.Theobjectivefunction(optimalpath)correspondstotheenergyfunctionoftheHopfieldneuralnetwork.Thestatesoftheneuronsofthisnetworkwillcorrespondtothesequenceofnodeswhichisdeterminedbythevaluesofthelocalelectricfield.AccordingtothestabilitytheoryofcontinuousHopfieldneuralnetwork,whentheenergyfunctiontendstotheminimumvalueandthestatesoftheneuronsalsotendtoanequilibriumpoint,thesequenceofnodesistheoptimalpathforthedischargedevelopment.TheoptimalpathhasbeenshowninFig.9. Fig.9 Comparison of the percentages of the selectionof the discharge path in TPMDs.圖9 兩相體放電路徑選擇百分比的比較 TimesHittheleftHittherightHitthetwosidesExperirment80155Simulation75178 4Conclusion Inthiswork7kindsofTPMsareinvestigatedbythedischargeexperimentsunderDCvoltage.ThepercentagesofthedischargepathinTPMsarecomparedwiththoseinair.ThestochasticmodeisusedtosimulatethedispersionandrandomnessofthedischargepathsofTPMs.Theconclusionsareasfollows. 1)TheelectricfieldisdistortedandthedistortionalextentisdecidedbythemacroparticlesizeswhentheTPMsareaddedtothedischargespace. 2)TheprobabilityofselectingtheairortheTPMsisgovernedbythelocaldistortedelectricfield. 3)Theresultsfromthestochasticmodehaveagoodapproximationwiththatfromtheexperiment. References [1]QiuDH,MacAlpineJMK.Aprobabilisticanalysis ofsparkpathsinpoint/planeairgaps[J].IEEETransDielectrElectrInsul, 2001,8(4):644~647. [2]MacAlpineJMK,QiuDH.Ananalysisofsparkpathsinairusing3-Dimensionalimageprocessing[J].IEEETransDielectrElectrInsul, 1999, 6(3): 331~336. [3]QiuDH,MacAlpineJMK.Anincrementalanalysisofsparkpathsinairusing3-Dimensionalimageprocessing[J].IEEETransDielectrElectrInsul, 2000, 7(6): 758-763. [4]MacAlpineJMK,CheungLH.Predictionofsparkpathsinapoint/two-rodgapinair[J].IEEETransDielectrElectrInsul, 2005, 12(3):469-477. [5]AgorisDP,CharalambakosVP,PyrglotiE.AcomputationalapproachonthestudyofFrankinrodheightimpactonstrikingdistanceusingastochasticmodel[J].JournalofElectrostatics, 2004, 60: 175-178. [6]XuW,ChenSM,HeJL.Simulationoflightningstrikein2-D& 3-Dwithfractaltheoryanditsapplication[J].ProceedingsoftheCSEE, 2010,30(22): 127-134, 2010. [7]YeQZ,LiJ,XieZH.Analyticalmodeofthebreakdownmechanisminatwo-phasemixture[J].JPhysD:ApplPhys, 2004, 37: 3373-3382. [8]YeQZ,LiJ,LuF.Abnormalbreakdowncharacteristicinatwo-phasemixture[J].JPhysD:ApplPhys, 2006, 29: 2198-2204. [9]YaoWJ,HeZH,DengHM,etal.Experimentalinvestigationoftwo-phasemixturedischargesunderDCvoltagefromeffectsofmacroparticlesizes[J].IEEETransPlasmaSci, 2011, 39(3): 856-864. [10]Grigor′evAI,ShiryaevaSO.Thepossiblephysicalmechanismofinitiationandgrowthoflightning[J].PhysicaScripta, 1996, 54(3): 660-666. [11]YashimaM,FujinamiH,TakumaT.Breakdowncharacteristicsofgasesmixedwithtetrachlorethylenemistundernearlyuniformfields[J].IEEETransDielectrElectrInsul, 2011, 25(2): 371-379. [12]TardiveauP,MarodeE.Point-planedischargedynamicsinthepresenceofdielectricdroplets[J].JPhysD:ApplPhys, 2003, 36(10): 1204-1211. 姚文俊1,何正浩2,鄧鶴鳴2 (1 中南民族大學(xué) 電子信息工程學(xué)院,智能無線通信湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430074;2 華中科技大學(xué) 電氣與電子工程學(xué)院,武漢 430074) 摘要通過實(shí)驗(yàn)研究了兩相體放電路徑的預(yù)測問題,結(jié)果表明:放電路徑中選擇空氣或兩相體由被畸變的電場決定,而電場的畸變受兩相體顆粒粒徑大小的影響。為了解釋實(shí)驗(yàn)現(xiàn)象,利用傳統(tǒng)的流注理論和概論統(tǒng)計(jì)理論,以泊松方程求解的空間場強(qiáng)為流注發(fā)展的判據(jù),并假設(shè)流注發(fā)展的擊穿時(shí)間滿足Weibull分布,將兩相體空間電場畸變后電場值的變化決定流注的發(fā)展方向,建立了正極性的放電路徑選擇的物理模型。將直流電壓下兩相體放電路徑發(fā)展問題的目標(biāo)函數(shù)(即最短路徑)與連續(xù)性Hopfield神經(jīng)網(wǎng)絡(luò)的能量函數(shù)相對應(yīng),將經(jīng)過的節(jié)點(diǎn)順序(局部電場值的影響大小)與網(wǎng)絡(luò)的神經(jīng)元狀態(tài)相對應(yīng),此時(shí)對應(yīng)的節(jié)點(diǎn)發(fā)展順序就是待求的最佳路線。仿真和實(shí)驗(yàn)結(jié)果比較顯示,基于該模型兩相體直流放電路徑選擇概率分布的計(jì)算結(jié)果與實(shí)驗(yàn)所得規(guī)律一致。 關(guān)鍵詞預(yù)測;放電路徑;兩相體;電磁畸變;仿真 收稿日期2015-12-16 作者簡介姚文俊(1970-),男,副教授,博士,研究方向:兩相體放電,E-mail:yaowj@mail.scuec.edu.cn 基金項(xiàng)目國家自然科學(xué) 項(xiàng)目(50237010);中南民族大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(CZY11003) 中圖分類號TM85 文獻(xiàn)標(biāo)識碼A 文章編號1672-4321(2016)02-0103-08