范江 杜坤 周明 徐冰峰 龍?zhí)煊?/p>
摘要:管網(wǎng)水力模型是實(shí)現(xiàn)供水系統(tǒng)現(xiàn)代化管理的重要工具,要使水力模型能比較準(zhǔn)確地反映管網(wǎng)真實(shí)運(yùn)行狀態(tài),達(dá)到預(yù)期使用目的,其中的參數(shù)需要校核。將管網(wǎng)節(jié)點(diǎn)流量校核作為優(yōu)化問題,采用加權(quán)最小二乘法逐步迭代求解,與已有研究相比,采用矩陣分析法推導(dǎo)供水管網(wǎng)雅克比矩陣解析式,引入水量分配矩陣聚合節(jié)點(diǎn)流量,將欠定問題轉(zhuǎn)化為超定,提高了校核的計(jì)算效率和結(jié)果的可靠性。采用簡(jiǎn)單管網(wǎng)闡明了雅克比矩陣的計(jì)算、節(jié)點(diǎn)流量的聚合及梯度向量的構(gòu)造,利用實(shí)際管網(wǎng)驗(yàn)證了方法的實(shí)用性。
關(guān)鍵詞:供水管網(wǎng);節(jié)點(diǎn)流量校核;加權(quán)最小二乘法;雅克比矩陣;解析式
中圖分類號(hào):TU 991.32
文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1674-4764(2016)03-0073-07
Abstract:Hydraulic model of water distribution systems (WDSs) is an essential tool to realize modernization management of WDSs. To make the model capable of reflecting the systems behavior with reasonable accuracy and achieving intended purposes, the parameters in it should be calibrated. The nodal demand calibration of WDS models is formulated as a nonlinear optimization problem, which is then solved iteratively using weighted least squares method. Comparing to previous studies, the proposed method deduces the analytical solution of Jacobian matrix of WDSs based on matrix analysis method, and translates the under-determined problem to over-determined by aggregating the nodal demand using demand allocation matrix, such that the computational efficiency and the reliability of calibration results were improved. A simple network is used to illustrate the computation of Jacobian matrix, the construction of gradient vectors and the aggregation of nodal demand. The practicability of the method is further validated by a real network.
Keywords:water distribution system; nodal demand calibration; weighted least squares algorithm; jacobian matrix; analytical solution
管網(wǎng)水力模型不僅能用于指導(dǎo)供水調(diào)度、優(yōu)化運(yùn)營(yíng)管理,還是開展其他相關(guān)研究的基礎(chǔ),如管網(wǎng)水質(zhì)模擬、突發(fā)性水質(zhì)污染事件預(yù)警與定位等。隨著社會(huì)經(jīng)濟(jì)發(fā)展,各地自來水廠開始投入大量人力與財(cái)力構(gòu)建或完善管網(wǎng)水力模型。管網(wǎng)水力模型校核,或稱管網(wǎng)參數(shù)校正,是指通過調(diào)整模型中預(yù)先設(shè)置的水力參數(shù),使模型計(jì)算值與監(jiān)測(cè)值匹配的過程,其目的在于使構(gòu)建的水力模型能比較準(zhǔn)確地反映管網(wǎng)的真實(shí)運(yùn)行狀態(tài),達(dá)到預(yù)期使用目的。在構(gòu)建的管網(wǎng)水力模型中,由于節(jié)點(diǎn)流量隨時(shí)間不斷發(fā)生變化,為時(shí)間“常變量”,需要進(jìn)行實(shí)時(shí)校核[1]。
針對(duì)管網(wǎng)節(jié)點(diǎn)流量校核,吳學(xué)偉等[2]嘗試以節(jié)點(diǎn)水壓為已知量計(jì)算節(jié)點(diǎn)流量,并采用實(shí)驗(yàn)室管網(wǎng)進(jìn)行驗(yàn)證,結(jié)果表明,對(duì)實(shí)驗(yàn)室小型管網(wǎng)狀態(tài)估計(jì)精度較高,但對(duì)于實(shí)際大型管網(wǎng)的工況分析有待進(jìn)一步研究。叢海兵等[3]從管網(wǎng)實(shí)時(shí)模擬角度出發(fā),提出狀態(tài)估計(jì)的數(shù)學(xué)模型并采用簡(jiǎn)約梯度法求解。Shang等[4]利用卡爾曼濾波法校核管網(wǎng)節(jié)點(diǎn)流量,該法利用上一步的節(jié)點(diǎn)流量作為校核初值以提高計(jì)算效率。鑒于管網(wǎng)中監(jiān)測(cè)點(diǎn)數(shù)少于節(jié)點(diǎn)數(shù),Cheng等[5-6]采用截?cái)嗥娈惥仃嚪纸夥ㄇ蠼馇范▋?yōu)化問題實(shí)現(xiàn)了節(jié)點(diǎn)流量校核。Preis等[7]嘗試采用遺傳算法實(shí)時(shí)校核節(jié)點(diǎn)流量,為提高收斂速度,利用M5算法對(duì)節(jié)點(diǎn)流量進(jìn)行預(yù)先估計(jì)。此外,目前最廣泛使用的WaterGEMS、InfoWorks WS等商業(yè)軟件也采用遺傳算法校核管網(wǎng)水力模型[8]。然而,遺傳算法的參數(shù)設(shè)置對(duì)算法性能影響較大,其本身就是個(gè)優(yōu)化問題,要求校核人員具有相關(guān)的數(shù)學(xué)知識(shí),且需要依據(jù)多次運(yùn)算收斂情況判斷參數(shù)設(shè)置是否合理,會(huì)導(dǎo)致使用困難與計(jì)算量大等缺點(diǎn)。例如,中國(guó)很多水廠都花費(fèi)巨資購(gòu)買上述軟件,但實(shí)際使用效果并不理想。再者,Vassiljev等[9-11]的最新研究表明,當(dāng)大型管網(wǎng)變量個(gè)數(shù)大于10時(shí),遺傳算法計(jì)算時(shí)間長(zhǎng)達(dá)數(shù)小時(shí),無法實(shí)現(xiàn)節(jié)點(diǎn)流量的實(shí)時(shí)校核??傊?,如何提高節(jié)點(diǎn)流量校核的計(jì)算效率及校核結(jié)果可靠性仍是管網(wǎng)研究領(lǐng)域的熱點(diǎn)與難點(diǎn)問題。
加權(quán)最小二乘法是高斯–牛頓算法的變形,不僅計(jì)算效率高,還能通過調(diào)整權(quán)重系數(shù)提高校核結(jié)果的可靠性,被廣泛用于解決各類實(shí)際工程問題。鑒于節(jié)點(diǎn)流量實(shí)時(shí)校核要求較高的計(jì)算效率,筆者深入研究了基于加權(quán)最小二乘法的管網(wǎng)節(jié)點(diǎn)流量校核,相較于以往研究,采用矩陣分析法推導(dǎo)供水管網(wǎng)雅克比矩陣解析式,引入水量分配矩陣將節(jié)點(diǎn)流量聚合減少未知量個(gè)數(shù),提高了校核的計(jì)算效率與結(jié)果的可靠性。
1 基于加權(quán)最小二乘法的節(jié)點(diǎn)流量校核框架
由于實(shí)際管網(wǎng)中監(jiān)測(cè)點(diǎn)個(gè)數(shù)小于節(jié)點(diǎn)數(shù)時(shí),式(6)中的聯(lián)合雅克比矩陣[JH(Qk); Jq(Qk)]的行數(shù)小于列數(shù),即約束個(gè)數(shù)少于未知量個(gè)數(shù),解不唯一。針對(duì)該欠定問題,最常用方法是將具有相似用水特征的節(jié)點(diǎn)流量賦予相同的用水乘子或聚合(二者不存在本質(zhì)區(qū)別),進(jìn)而將欠定問題轉(zhuǎn)化為超定進(jìn)行求解。筆者也采用最通用的節(jié)點(diǎn)流量聚合法,不同之處在于,通過引入水量分配矩陣進(jìn)行節(jié)點(diǎn)流量聚合,有助于簡(jiǎn)化運(yùn)算并易于編程。圖1為節(jié)點(diǎn)流量校核流程圖,其中包括校核模塊與正計(jì)算模塊,二者將對(duì)方的輸出作為輸入反復(fù)運(yùn)算直至ΔQ達(dá)到規(guī)定精度ε,文中ε=0.01。
3 節(jié)點(diǎn)流量聚合及梯度向量計(jì)算
由于實(shí)際管網(wǎng)中監(jiān)測(cè)點(diǎn)數(shù)遠(yuǎn)少于節(jié)點(diǎn)數(shù),節(jié)點(diǎn)流量校核為欠定問題,不存在唯一解。Waslki[16]最早提出采用節(jié)點(diǎn)流量聚合法將欠定問題轉(zhuǎn)化為超定進(jìn)行求解,隨后該方法被絕大多數(shù)學(xué)者認(rèn)可,如WaterGEMS、InfoWorks WS等商業(yè)軟件都采用了該方法。為簡(jiǎn)化運(yùn)算、便于編程,引入水量分配矩陣Gd進(jìn)行節(jié)點(diǎn)流量聚合。對(duì)管網(wǎng)中的n個(gè)節(jié)點(diǎn),若分為l組,則水量分配Gd為n×l矩陣,其中,元素取值為各節(jié)點(diǎn)的基礎(chǔ)需水量與對(duì)應(yīng)聚合流量的比值?;诠芫W(wǎng)雅克比矩陣及水量分配矩陣,梯度向量能計(jì)算為
式中:[JH(Qg); Jq(Qg)]為聚合流量的梯度向量;下標(biāo)ob代表與觀測(cè)值對(duì)應(yīng)的雅克比矩陣行向量。但值得說明的是,供水管網(wǎng)的節(jié)點(diǎn)流量聚合并非易事,從工程經(jīng)驗(yàn)來看,節(jié)點(diǎn)流量聚合是基于管網(wǎng)中某些節(jié)點(diǎn)流量具有相似用水特征;而從數(shù)學(xué)角度來看,節(jié)點(diǎn)流量聚合的實(shí)質(zhì)是一種提高參數(shù)敏感度的參數(shù)化方法,其目的是通過犧牲解的分辨率來控制解的方差。通常節(jié)點(diǎn)用水類型劃分越細(xì),解的分辨率越高,但解的方差會(huì)很大,很小的觀測(cè)誤差都可能導(dǎo)致極大的解誤差,甚至不切實(shí)際的解,尤其在利用有限水壓監(jiān)測(cè)值進(jìn)行節(jié)點(diǎn)流量校核時(shí),水壓監(jiān)測(cè)誤差甚至?xí)环糯?~3個(gè)數(shù)量級(jí),因此,節(jié)點(diǎn)流量聚合的關(guān)鍵是如何在在分辨率與誤差間取得折衷。
一些建模者認(rèn)為,應(yīng)先明確管網(wǎng)中各節(jié)點(diǎn)的用水類型,然后進(jìn)行“精細(xì)”分類,最后再聚合。但實(shí)際中上述做法很難實(shí)現(xiàn),一方面,管網(wǎng)水力模型中節(jié)點(diǎn)流量代表的是某個(gè)區(qū)域的用水量,其本身就包含了不同特征用水;另一方面,統(tǒng)計(jì)管網(wǎng)中各節(jié)點(diǎn)用水特征工作量巨大,尤其對(duì)未構(gòu)建地理信息系統(tǒng)的管網(wǎng)。此外,若將漏損等不確定因素納入考慮,準(zhǔn)確劃分節(jié)點(diǎn)用水類型甚至不可能。
Sanz等[17]的最新研究表明,相較于根據(jù)節(jié)點(diǎn)實(shí)際用水特征進(jìn)行參數(shù)化,根據(jù)節(jié)點(diǎn)地理位置進(jìn)行流量聚合得到的校核結(jié)果精度高、方差小,這是由于相同地理位置的聚合流量對(duì)監(jiān)測(cè)值敏感度更高,能形成單因子濾波,使校核結(jié)果可靠性更高。Du等[18]認(rèn)為可將變異系數(shù)(σ/μ)作為校核結(jié)果的可靠性評(píng)價(jià)指標(biāo),同時(shí),結(jié)合管網(wǎng)的主要用水特征進(jìn)行流量聚合,一方面保證校核結(jié)果的可靠性,另一方面使校核結(jié)果盡量與管網(wǎng)實(shí)際用水特征相符。鑒于本文的重點(diǎn)在于闡明整體校核框架,對(duì)節(jié)點(diǎn)流量的參數(shù)化方法及誤差分析不做進(jìn)一步探討,相關(guān)內(nèi)容可參見文獻(xiàn)[18]。
4 案例分析
4.1 案例1
利用圖3的實(shí)際管網(wǎng)進(jìn)一步驗(yàn)證算法可行性。該管網(wǎng)水力模型中僅保留了DN200及以上管道,包括103根管道與85個(gè)節(jié)點(diǎn)。根據(jù)管道的管材與管齡,管道的海曾威廉系數(shù)估計(jì)為115。根據(jù)水廠提供的用水信息,供水區(qū)域大致分為工業(yè)區(qū)與居民區(qū),其中,工業(yè)區(qū)內(nèi)主要包括4個(gè)集中水點(diǎn),其用水量占總用水總量的約50%。
在校核管網(wǎng)水力模型前,將平均時(shí)用水量作為節(jié)點(diǎn)基本用水量,除了4個(gè)集中用水點(diǎn)外,假設(shè)居民與未計(jì)量用水沿管線長(zhǎng)度平均分配,并具有相同的用水模式。根據(jù)監(jiān)測(cè)的水泵供水量變化曲線確定用水模式,對(duì)管網(wǎng)進(jìn)行延時(shí)狀態(tài)下水力模擬。限于篇幅,僅給出了某天24 h水泵水壓與流量的監(jiān)測(cè)值與模型計(jì)算值,詳見圖4。其中,節(jié)點(diǎn)水壓平均誤差為1.1 m、監(jiān)測(cè)流量平均誤差33 m3/h,模型計(jì)算值與監(jiān)測(cè)值相差不大,故該管網(wǎng)水力模型能基本反映管網(wǎng)的真實(shí)運(yùn)行狀態(tài)。
值得說明的是,在利用優(yōu)化算法校核節(jié)點(diǎn)流量前,必須先對(duì)管網(wǎng)進(jìn)行初步的宏觀校核,控制模型計(jì)算值與監(jiān)測(cè)值的差在一定范圍內(nèi)。如果發(fā)現(xiàn)模型計(jì)算值與監(jiān)測(cè)值誤差異過大,一般當(dāng)水壓差>3 m、流量差>15%時(shí),應(yīng)復(fù)核水泵曲線、檢查管網(wǎng)拓?fù)浣Y(jié)構(gòu)或節(jié)點(diǎn)標(biāo)高是否出錯(cuò),必要時(shí)應(yīng)進(jìn)行實(shí)地勘察。
在利用所提出算法校核管網(wǎng)節(jié)點(diǎn)流量時(shí),為保證校核結(jié)果可靠性,控制其變異系數(shù)σ/μ≤0.1。通過分析7個(gè)監(jiān)測(cè)值對(duì)應(yīng)雅克比矩陣向量,并結(jié)合該管網(wǎng)主要用水特征,將區(qū)域內(nèi)節(jié)點(diǎn)分為2組。限于篇幅原因,表4僅給出了第10時(shí)監(jiān)測(cè)值與校核前后模型計(jì)算值,整個(gè)校核過程花費(fèi)時(shí)間小于5 s。
根據(jù)表4可知,在校核節(jié)點(diǎn)流量后,并非所有模型計(jì)算值與監(jiān)測(cè)值的差都減小,相反有些節(jié)點(diǎn)的差會(huì)略微增大,一部分原因是由于影響模型計(jì)算值的參數(shù)除了節(jié)點(diǎn)流量外,還包括管道阻力系數(shù)、節(jié)點(diǎn)標(biāo)高等??傮w而言,模型計(jì)算誤差的絕對(duì)平均值有明顯下降,這表明校核后的模型能更準(zhǔn)確地反映真實(shí)管網(wǎng)運(yùn)行狀態(tài),由此可見,所提出方法能用于實(shí)際管網(wǎng)節(jié)點(diǎn)流量校核。
5 結(jié) 論
探討了基于加權(quán)最小二乘法的供水管網(wǎng)節(jié)點(diǎn)流量校核,應(yīng)用矩陣分析法推導(dǎo)供水管網(wǎng)雅克比矩陣的解析式,采用節(jié)點(diǎn)流量聚合法將欠定問題轉(zhuǎn)化為超定進(jìn)行求解;將所有計(jì)算過程轉(zhuǎn)化為簡(jiǎn)潔的矩陣運(yùn)算,提高了校核的計(jì)算效率與結(jié)果可靠性。案例分析結(jié)果表明,所提出方法計(jì)算效率高,能用于實(shí)際管網(wǎng)節(jié)點(diǎn)流量校核。
對(duì)實(shí)際管網(wǎng)節(jié)點(diǎn)流量校核,如何合理聚合節(jié)點(diǎn)流量是關(guān)鍵,通常當(dāng)管網(wǎng)中節(jié)點(diǎn)流量呈現(xiàn)明顯同步變化特征時(shí),節(jié)點(diǎn)流量聚合法更適用。此外,吉洪若夫正規(guī)化與截?cái)嗥娈惥仃嚪纸夥ㄒ材芮蠼庠擃惽范▎栴},由于3種方法數(shù)學(xué)機(jī)理不同,對(duì)不同規(guī)模、不同類型管網(wǎng)的適用性問題有待進(jìn)一步研究。
參考文獻(xiàn):
[1] KANG D, LANSEY K. Demand and roughness estimation in water distribution systems [J]. Journal of Water Resources Planning and Management, 2010, 137(1): 20-30.
[2] 吳學(xué)偉, 趙洪賓.給水管網(wǎng)狀態(tài)估計(jì)方法的研究[J]. 哈爾濱建筑大學(xué)學(xué)報(bào), 1995, 28(6): 60-64.
WU X W, ZHAO H B. Study of state estimation of water supply system [J]. Journal of Harbin University of Civil Engineering and Architecture, 1995, 28(6): 60-64. (in Chinese)
[3] 叢海兵, 黃廷林.給水管網(wǎng)的狀態(tài)模擬[J]. 西安建筑科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2004, 35(4): 343-346.
CONG H B, HUANG T L. State simulation of water supply system [J]. Journal of Xi′an University of Architecture & Technology (Natural Science Edition), 2004, 35(4): 343-346. (in Chinese)
[4] SHANG F, UBER J G, VAN BLOEMEN WAANDERS B G, et al. Real time water demand estimation in water distribution system [C] // 8th Annial Water Distribution Systems Analysis Symposium, 2006: 1-14.
[5] CHENG W, HE Z. Calibration of nodal demand in water distribution systems [J]. Journal of Water Resources Planning and Management, 2010, 137(1): 31-40.
[6] CHENG W P, YU T C, XU G. Real-time model of a large-scale water distribution system [J]. Procedia Engineering, 2014, 89: 457-466.
[7] PREIS A, ALLEN M, WHITTLE A J. On-line hydraulic modeling of a water distribution system in Singapore [J]. American Society of Civil Engineers, 2012(425): 1336-1348.
[8] WU Z Y, WALSKI T M. Effective approach for solving battle of water calibration network problem [J]. Journal of Water Resources Planning and Management, 2011, 138(5): 533-542.
[9] VASSILJEV A, KOPPEL T. Estimation of real-time demands on the basis of pressure measurements [C] // Proceedings of the 8th International Conference on Engineering Computational Technology, Stirling, United Kingdom: Civil-Comp Press, 2012: 54.
[10] PUUST R, VASSILJEV A. Real water network comparative calibration studies considering the whole process from engineer's perspective [J]. Procedia Engineering, 2014, 89: 702-709.
[11] VASSILJEV A, KOPPEL T. Estimation of real-time demands on the basis of pressure measurements by different optimization methods [J]. Advances in Engineering Software, 2015, 80(1): 67-71.
[12] LANSEY K E, EL-SHORBAGY W, AHMED I, et al. Calibration assessment and data collection for water distribution networks [J]. Journal of Hydraulic Engineering, 2001, 127(4): 270-279.
[13] KANG D, LANSEY K. Real-time demand estimation and confidence limit analysis for water distribution systems [J]. Journal of Hydraulic Engineering, 2009, 135(10): 825-837.
[14] PEREZ R, PUIG V, PASCUAL J, et al. Pressure sensor distribution for leak detection in Barcelona water distribution network [J]. Water Science and Technology: Water Supply, 2009, 9(6): 715.
[15] MéNDEZ M, ARAYA J A, SANCHEZ L D. Automated parameter optimization of a water distribution system [J]. Journal of Hydroinformatics, 2013 15(1), 71-85.
[16] WALSKI T. Technique for calibrating network models [J]. Journal of Water Resources Planning and Management, 1983, 360 (4), 360-372.
[17] SANZ G, PREZ R. Sensitivity analysis for sampling design and demand calibration in water distribution networks using the singular value decomposition [J]. Journal of Water Resources Planning and Management, 2015, 141(10):1-9.
[18] DU K, LONG T Y, WANG J H, et al. Inversion model of water distribution systems for nodal demand calibration[J]. Journal of Water Resources Planning and Management, 2015, 141(9):1-12.
(編輯 胡英奎)