宋傳真, 林長志, 王元慶, 曹麗麗
(中國石化石油勘探開發(fā)研究院,北京 100083)
低滲稠油油藏蒸汽-CO2-化學(xué)劑復(fù)合吞吐研究
宋傳真, 林長志, 王元慶, 曹麗麗
(中國石化石油勘探開發(fā)研究院,北京 100083)
[摘要]敘利亞O油田SH-B油藏為典型的低滲孔隙型塊狀碳酸鹽巖稠油油藏,因埋藏深、滲透率低、原油黏度大等特點(diǎn),注氣困難,注氣質(zhì)量差,蒸汽吞吐開采效果差。通過室內(nèi)實(shí)驗(yàn)和數(shù)值模擬研究了注蒸汽-CO2-化學(xué)劑復(fù)合吞吐的效果,結(jié)果表明,CO2伴注具有增溶、膨脹、降黏、改善儲層滲透性等功能;高溫驅(qū)油劑(BM02#)在質(zhì)量分?jǐn)?shù)為0.3%時即可有效降低界面張力、改變巖石潤濕性、降低注氣汽壓力、延緩蒸汽突破時間、擴(kuò)大蒸汽波及體積的作用,提高驅(qū)替效率10%;油溶劑(OSVR)質(zhì)量分?jǐn)?shù)為5%時降黏率可達(dá)78.3%,且能有效降低注氣啟動壓力以及注氣壓力,驅(qū)替效率提高16%。熱化學(xué)復(fù)合蒸汽吞吐較之純蒸汽吞吐,第一周期產(chǎn)油量提高49.4%,最終驅(qū)替效率提高25.7%,可有效改善油藏開發(fā)效果,提高采收率。
[關(guān)鍵詞]低滲;稠油;CO2伴注;高溫驅(qū)油劑;油溶劑;蒸汽吞吐
敘利亞O油田SH-B油藏為典型的中深層低滲孔隙型塊狀碳酸鹽巖稠油油藏,具有埋藏深、油層厚、滲透率低、原油黏度大等特點(diǎn),油藏埋深(h)達(dá)1.7 km,油層厚度(d)為30~120 m,孔隙度(q)為18%~25%,滲透率(K)為(37~89)×10-3μm2,地面脫氣原油黏度(η)為0.2~10 Pa·s(50℃)。油藏試采期內(nèi)主要采用天然能量開發(fā),高黏井開展了蒸汽吞吐先導(dǎo)試驗(yàn),但油藏開采效果差[1]。由于SH-B油藏滲透率低于蒸汽吞吐開發(fā)的儲層滲透率篩選標(biāo)準(zhǔn),油層埋藏深度接近蒸汽吞吐的深度下限[2],目前蒸汽吞吐表現(xiàn)為注氣難,注氣質(zhì)量差,未達(dá)到真正意義上的蒸汽吞吐效果。如何解決“注進(jìn)氣、注好氣”是改善中深層低滲稠油油藏蒸汽吞吐開發(fā)效果的關(guān)鍵。
國內(nèi)外中高滲稠油油藏?zé)岵杉夹g(shù)較為成熟,針對超稠油還發(fā)展了熱化學(xué)輔助蒸汽吞吐技術(shù)[3-7]并推廣。為實(shí)現(xiàn)低滲碳酸鹽巖稠油“注進(jìn)氣、注好氣”目標(biāo),開展低滲稠油熱化學(xué)輔助蒸汽吞吐室內(nèi)研究,評價伴注CO2、高溫驅(qū)油劑和油溶劑在低滲稠油開發(fā)中的作用效果及其可行性,從而為SH-B油藏開發(fā)方案編制提供依據(jù),也為今后國內(nèi)外低滲稠油油藏開發(fā)提供借鑒。
1CO2伴注增油機(jī)理
CO2具有降低地層熱損失、增溶、膨脹、降黏、改善儲層滲透性等功能[8-11],能夠有效改善稠油熱采開發(fā)效果,伴注CO2技術(shù)在中高滲稠油油藏開發(fā)過程中發(fā)揮了重要作用[12]。由于CO2氣體較之液體來說,更容易吸入地層,因此,對于低滲稠油油藏來說,CO2伴注還可以解決低滲儲層注氣難的問題。
1.1原油體積膨脹增能作用
注入儲層的CO2,部分可以溶解于原油,使原油體積膨脹,增加原油內(nèi)動能;也利于原油克服毛管阻力和摩擦阻力,提高原油流動能力;另外,注入儲層的CO2在油層條件下會氣化膨脹,還可增加基質(zhì)孔隙中流體的壓力[13]。
利用高溫PVT裝置系統(tǒng)開展了CO2對SH-B稠油高壓物性影響的實(shí)驗(yàn),結(jié)果表明:在地層溫度條件下,CO2在稠油中的溶解量非常高。在10.14 MPa壓力條件下溶解量(體積比)高達(dá)83.81(圖1),體積可膨脹18%,壓縮系數(shù)提高了75%(圖2)。由此可見,溶解的CO2能夠大幅度增加地層回采驅(qū)替壓力,改善開發(fā)效果。
圖1 溶解氣油比與溶解壓力的關(guān)系(50℃)Fig.1 Relationship between dissolved gas-oil ratio and pressure
圖2 CO2溶解量對地層原油體積系數(shù)、壓縮系數(shù)的影響Fig.2 Effect of CO2 solution on Bg and Cg of formation oil
1.2溶解降黏作用
CO2溶于原油后,使原油密度變小,黏度大幅度降低,有利于克服毛細(xì)管阻力和摩擦力,從而提高原油的流動能力。實(shí)驗(yàn)結(jié)果表明:在油藏溫度50℃、壓力2 MPa條件下,CO2溶解量(體積比)達(dá)到25.16(標(biāo)準(zhǔn)狀況)時,降黏率就達(dá)到71.7%;在10.14 MPa壓力條件下溶解量(體積比)達(dá)83.81時,原油密度(ρ)由0.985 2 g/cm3降低到0.972 1 g/cm3(圖3),原油黏度從 4 710.4 mPa·s將至213.4 mPa·s(圖4),降黏率95.4%。
圖3 CO2溶解對原油密度影響(50℃)Fig.3 Effect of CO2 solution on the density of crude oil
圖4 CO2溶解對原油黏度影響(50℃)Fig.4 Effect of CO2 solution on the viscosity of crude oil
1.3改善儲層滲透性
SH-B儲層為碳酸鹽巖,注入CO2可使驅(qū)替介質(zhì)處于弱酸性環(huán)境,有助于驅(qū)出巖心內(nèi)殘留的瀝青質(zhì)(圖5);同時,酸性環(huán)境的溶蝕作用,利于將基質(zhì)微?;蛄1砀街奈⒘冸x下來隨流體遷出,進(jìn)而擴(kuò)大孔隙體積和孔喉 (圖6),改善儲層滲透性,一定程度上解決了儲層吸氣能力差、注氣困難的問題。
注CO2驅(qū)替實(shí)驗(yàn)結(jié)果表明,巖心孔隙度、滲透率在驅(qū)替前后都有一定幅度的提高,但不同溫度條件下,改善程度不同。50℃時,孔隙度和滲透率的變化率分別為19.24%和34.94%;而150℃時,孔隙度和滲透率的變化率僅為0.72%和4.13%(表1);另外,實(shí)驗(yàn)前后,巖心的孔隙結(jié)構(gòu)特征參數(shù)發(fā)生了一定變化,整體表現(xiàn)為排驅(qū)、中值壓力降低,孔喉半徑(r)增大,均質(zhì)系數(shù)和結(jié)構(gòu)系數(shù)降低(表2)。
圖5 注CO2驅(qū)替后流出液高倍透射電鏡照片F(xiàn)ig.5 HRTEM images of effluent after CO2 flooding
圖6 注CO2驅(qū)替后巖心電鏡照片F(xiàn)ig.6 SEM images of the core after CO2 flooding
2伴注高溫驅(qū)油劑作用機(jī)理
稠油熱采化學(xué)輔助開采技術(shù)是指以蒸汽攜帶熱量為基礎(chǔ),充分利用化學(xué)體系的界面特性改變原油性能或儲層物性,提高蒸汽波及效率和驅(qū)油效率,改善熱采開發(fā)效果,達(dá)到大幅度提高采收率的目標(biāo)。從機(jī)理上分析,如何降低黏滯力和毛管力是提高采收率的關(guān)鍵。油藏溫度較低時,稠油黏滯力遠(yuǎn)高于毛管力,原油流動性差,導(dǎo)致開采效果差。當(dāng)油藏溫度升高,黏滯力大幅度下降,如何降低毛管力則成為改善開采效果的關(guān)鍵。
表1 注CO2驅(qū)替實(shí)驗(yàn)前后巖心物性變化對比
表2 注CO2驅(qū)替實(shí)驗(yàn)前后巖心孔隙結(jié)構(gòu)特征參數(shù)
活性劑可降低油水界面張力,增大油對巖石表面的潤濕角,進(jìn)而減小毛細(xì)管阻力,活性水可進(jìn)入半徑更小的毛細(xì)管,從而增加波及系數(shù)[14]。目前石油磺酸鹽體系的界面張力較低,其原材料來源廣,具有原油相似的親油基結(jié)構(gòu),容易與陰離子和非離子表面活性劑復(fù)配,并通過分子結(jié)構(gòu)互補(bǔ)等機(jī)理產(chǎn)生協(xié)同效應(yīng),使較寬等效烷烴炭數(shù)分布的原油與水體系達(dá)到超低界面張力,從而提高洗油效率。SH-B油藏選用石油磺酸鹽作為高溫驅(qū)油劑的主劑,通過篩選與復(fù)配,最終確定了高溫驅(qū)油劑BM02#。
2.1降低界面張力
用地層水配置500 mL質(zhì)量分?jǐn)?shù)(w)分別為0.1%、0.2%、0.3%、0.5%、1.0%的BM02#高溫驅(qū)油劑溶液,采用旋轉(zhuǎn)滴法測定體系油水界面張力。不同含量高溫驅(qū)油劑與SH-B油藏油樣界面張力測試結(jié)果顯示:隨含量升高界面張力減小,質(zhì)量分?jǐn)?shù)>0.3%,界面張力即可降到10-2mN/m的級別(圖7),滿足低界面張力需要。
圖7 BM02#體系油水界面張力(50℃)Fig.7 Interfacial tension of oil and water dissolved BM02#
2.2改變巖石潤濕性
在不同實(shí)驗(yàn)溫度(F樣50℃、G樣150℃)下,配制質(zhì)量分?jǐn)?shù)為0.5%的高溫驅(qū)油劑溶液,測定巖樣的潤濕性。實(shí)驗(yàn)結(jié)果可見(表3),高溫驅(qū)油劑可轉(zhuǎn)變巖石潤濕性,把弱親油-親油巖石改變?yōu)槿跤H水,并且在150℃高溫下仍然有效,作用效果不受溫度影響。
表3 原樣潤濕性測定及注高溫驅(qū)油劑后
在掃描電鏡觀下,注劑后的巖心中,驅(qū)油劑多呈帶狀、膜狀展布,包裹在巖石粒屑表面。分析認(rèn)為,驅(qū)油劑包裹巖石,可改變其潤濕性能,使親油巖石變?yōu)橛H水巖石;而且注劑后巖石的粒屑結(jié)構(gòu)未見變化,溶蝕孔隙清晰、暢通,未見顆粒堵塞現(xiàn)象,表明注入劑不傷害油層(圖8)。
2.3對注氣壓力的影響
從入口壓力[15]變化曲線可以看出,注入高溫驅(qū)油劑,可降低初期注氣壓力(圖9),進(jìn)而降低注氣難度;延緩后期蒸汽突破時間,擴(kuò)大蒸汽波及范圍,改善注氣效果。伴注高溫驅(qū)油劑時的驅(qū)替效率為61.02%,較之純注蒸汽提高10%±(圖10)。
圖8 注高溫驅(qū)油劑后的巖心電鏡照片(G樣品)Fig.8 SEM images of core after pyrochemical oil displacement agent injection(A)擴(kuò)展劑分布形態(tài); (B)擴(kuò)展劑附著于粒表; (C)擴(kuò)展劑包裹顆粒; (D)擴(kuò)展劑覆蓋顆粒; (E)擴(kuò)展劑展布形態(tài); (F)溶孔旁側(cè)見有膜劑
圖9 注氣壓力與注入PV數(shù)關(guān)系Fig.9 The relationship between the steam injection pressure and the injected PV number
圖10 伴注高溫驅(qū)油劑對驅(qū)替效率和含水率的影響Fig.10 Effect of the pyrochemical oil displacement agent on displacement efficiency and water cut
3油溶劑降黏增效作用
稠油中瀝青質(zhì)和膠質(zhì)的復(fù)雜結(jié)構(gòu)以及兩者之間的相互作用可導(dǎo)致原油黏度增大,而油溶劑[16,17]與膠質(zhì)、瀝青質(zhì)分子發(fā)生相互作用是其降黏機(jī)理的核心問題。通常油溶劑分子借助強(qiáng)的氫鍵形成能力和滲透、分散作用進(jìn)入膠質(zhì)和瀝青質(zhì)等片狀分子之間,部分拆散平面重疊堆積而成的分子聚集體,在瀝青質(zhì)芳香片分子周圍形成降黏劑溶劑化層,導(dǎo)致芳香片無規(guī)則堆積、結(jié)構(gòu)松散,有序度降低,空間延展度減小,聚集體中包含的膠質(zhì)、瀝青質(zhì)數(shù)目減少,降低原油內(nèi)聚力,從而降低稠油體系的黏度。
SH-B油藏稠油中的瀝青質(zhì)含量較高,而膠質(zhì)含量較之國內(nèi)普通稠油低,因此,瀝青質(zhì)是影響原油黏度更為重要的因素?;赟H-B稠油這一特點(diǎn),在復(fù)配和選擇油溶劑[16,17]的時候更為注重對稠油中瀝青質(zhì)的溶解作用。試驗(yàn)首先對單一藥劑——三甲苯(SCRC國藥集團(tuán)化學(xué)試劑有限公司)、0#柴油、90#汽油、YR-2溶劑(勝利油田采油院自主生產(chǎn))和1#溶劑(南京化工廠提供)的降黏效果進(jìn)行了評價,發(fā)現(xiàn)單一試劑的降黏率<70%,只能通過復(fù)配進(jìn)一步提高降黏率。通過室內(nèi)實(shí)驗(yàn),優(yōu)選評價出由YR-2油溶劑與芳香質(zhì)縮合物復(fù)配的OSVR溶液作為SH-B油藏的油溶劑。從降黏測試結(jié)果可以看出,含量越高,降黏效果越好(表4)??紤]成本因素,選取質(zhì)量分?jǐn)?shù)為5%,此時降黏率達(dá)到78.27%。
表4 不同含量OSVR油溶劑在不同溫度下的降黏測試結(jié)果
50℃,脫氣原油黏度為10.433 Pa·s。
從入口壓力變化曲線可以看出,伴注油溶劑時能更好地降低注氣啟動壓力及注氣壓力(圖11),進(jìn)而降低注氣難度,并改善注氣效果。伴注高溫驅(qū)油劑時的驅(qū)替效率為67.67%,較之純注蒸汽提高16%±(圖12)。
圖11 注氣壓力與注入PV數(shù)關(guān)系Fig.11 The relationship between the steam injection pressure and the injected PV number
圖12 溶解油溶劑對驅(qū)替效率、含水率影響Fig.12 Effect of the oil solvent on displacement efficiency and water cut
4熱化學(xué)復(fù)合吞吐工藝開發(fā)效果預(yù)測
4.1驅(qū)替實(shí)驗(yàn)
對比不同注入介質(zhì)的填砂管驅(qū)替實(shí)驗(yàn),結(jié)果表明,熱水伴注“CO2+油溶性降黏劑+高溫驅(qū)油劑” 管式模型驅(qū)替效率達(dá)到91.65%,比純熱水驅(qū)替效率提高了25.69%(圖13);另外,在加入化學(xué)劑的情況下,前期注入壓力顯著降低(圖14),降低了注氣難度。
圖13 不同注入介質(zhì)驅(qū)替效率對比Fig.13 Correlation of displacement efficiency on the conditions of different injection medium
圖14 不同注入介質(zhì)注氣壓力對比Fig.14 Correlation of steam injection pressure on the conditions of different injection medium
4.2數(shù)值模擬預(yù)測
以經(jīng)濟(jì)效益為核心,針對蒸汽、CO2、油溶性降黏劑及高溫驅(qū)油劑注入量,設(shè)計(jì)正交實(shí)驗(yàn)方案,優(yōu)化確定了熱化學(xué)復(fù)合吞吐最佳方案:蒸汽周期注入量為6 kt;CO2周期注入量為300 t,且隨著周期數(shù)增加,需逐漸提高CO2周期注入量;油溶劑周期注入量40 t,隨著周期數(shù)增加,適當(dāng)減小油溶劑使用量;高溫驅(qū)油劑周期注入量30 t。
以此為基礎(chǔ),對比了不同方式下的開采效果, 伴注CO2、油溶劑和高溫驅(qū)油劑的復(fù)合蒸汽吞吐時,加熱區(qū)域平均溫度有所下降;但加熱范圍變大,近井筒加熱區(qū)平均溫度高(圖15、圖16),原油黏度也比純蒸汽的低很多(圖17),有效動用區(qū)域擴(kuò)大,周期產(chǎn)油量有了明顯的增加。以第一周期為例(圖18),單純進(jìn)行蒸汽吞吐的周期產(chǎn)油量為2.589 kt,而熱化學(xué)復(fù)合蒸汽吞吐預(yù)測周期產(chǎn)油量為3.867 kt,增油量為1.278 kt,提高了49.4%。
圖15 燜井階段溫度場平面圖Fig.15 The temperature field plan in the soak period
圖16 燜井階段壓力場平面圖Fig.16 The pressure field plan in the soak period
圖17 燜井階段原油黏度徑向分布Fig.17 The viscosity changes with the distance away from the wellbore
圖18 不同開發(fā)方式下第一周期產(chǎn)油量對比Fig.18 Correlation of the first-cycle oil production with different recovery methods
由此可見,蒸汽吞吐中同時伴注CO2、油溶劑以及高溫驅(qū)油劑可以取得更好的開發(fā)效果。
5結(jié)論
(1)CO2伴注具有增溶、膨脹、降黏、改善儲層滲透性等功能,在10.14 MPa壓力條件下,溶解量(體積比)高達(dá)83.81,體積可膨脹18%,壓縮系數(shù)提高75%,降黏率95.4%;同時使儲層孔隙體積和孔喉擴(kuò)大,改善了儲層滲透性,可解決儲層吸氣能力差、注氣困難的問題,有效改善SB-B稠油的熱采效果。
(2)以石油磺酸鹽為主劑,篩選、復(fù)配了SB-B油藏的高溫驅(qū)油劑BM02#。該試劑在質(zhì)量分?jǐn)?shù)為0.3%時即可將界面張力降到10-2mN/m的級別,將弱親油-親油巖石改變?yōu)槿跤H水性,前期降低了注氣壓力,后期延緩了蒸汽突破時間,擴(kuò)大了蒸汽的波及范圍,較之純蒸汽吞吐驅(qū)替效率提高了10%左右。
(3)復(fù)配確定了SH-B油藏適用的油溶劑(OSVR),質(zhì)量分?jǐn)?shù)為5%時降黏率達(dá)78.27%,且能有效降低注氣啟動壓力以及注氣壓力,降低了注氣難度,驅(qū)替效率較之純蒸汽吞吐提高16%左右。
(4)熱化學(xué)復(fù)合蒸汽吞吐,具有改善儲層滲透性、降低原油黏度、改善儲層潤濕性、擴(kuò)大蒸汽波及體積、提高洗油效率、降低注氣壓力等優(yōu)點(diǎn),可以解決低滲儲層注氣難、注氣質(zhì)量差的問題,較之純蒸汽吞吐,第一周期產(chǎn)油量提高了49.4%,最終驅(qū)替效率提高了25.7%,有效改善了開發(fā)效果,提高了油藏采收率。
[參考文獻(xiàn)]
[1] 宋傳真,劉傳喜,徐婷,等.低滲孔隙型碳酸鹽巖稠油油藏開發(fā)對策[J].石油與天然氣地質(zhì),2015,36(2):297-305.
Song C Z, Liu C, Xu T,etal. Development strategies for low-permeability carbonate heavy oil reservoirs: A case study from O oilfield in Syria[J]. Oil & Gas Geology, 2015, 36(2): 297-305. (In Chinese)
[2] 劉文章.熱采稠油油藏開發(fā)模式[M].北京:石油工業(yè)出版社,1998:146-147.
Liu W Z. The Development Models of Heavy Oil Reservoirs by Thermal Recovery[M]. Beijing: Petroleum Industry Press, 1998: 146-147. (In Chinese)
[3] 陶磊,李兆敏,畢義泉,等.勝利油田深薄層超稠油多元復(fù)合開采技術(shù)[J].石油勘探與開發(fā),2010,37(6):732-736.
Tao L, Li Z M, Bi Y Q,etal. Multi-combination exploiting technique of ultra-heavy oil reservoirs with deep and thin layers in Shengli Oilfield[J]. Petroleum Exploration and Development, 2010, 37(6): 732-736. (In Chinese)
[4] 李賓飛,張繼國,陶磊,等.超稠油HDCS高效開采技術(shù)研究[J].鉆采工藝,2009,32(6):52-55.
Li B F, Zhang J G, Tao L,etal. Research on HDCS high efficient development technology for super heavy oil[J]. Drilling & Production Technology, 2009, 32(6): 52-55. (In Chinese)
[5] 李兆敏,鹿騰,陶磊,等.超稠油水平井CO2與降黏劑輔助蒸汽吞吐技術(shù)[J].石油勘探與開發(fā),2011,38(5):600-605.
Li Z M, Lu T, Tao L,etal. CO2and viscosity breaker assisted steam huff and puff technology for horizontal wells in a super-heavy oil reservoir[J]. Petroleum Exploration and Development, 2011, 38(5): 600-605. (In Chinese)
[6] 張小波.蒸汽-二氧化碳-助劑吞吐開采技術(shù)研究[J].石油學(xué)報(bào),2006,27(2):80-84.
Zhang X B. Applied research of steam-carbon dioxide-auxiliary agent huff and puff technology[J]. Acta Petrolei Sinica,2006,27(2):80-84.(In Chinese)
[7] 李星,關(guān)群麗.河南油田超稠油油藏?zé)峄瘜W(xué)輔助蒸汽吞吐技術(shù)研究[J].油氣藏評價與開發(fā),2014,4(1):46-49.
Li X, Guan Q L. Research on technology of thermochemistry assisted steam stimulation in Henan extra-heavy oil reservoir[J]. Reservoir Evaluation and Development, 2014, 4(1): 46-49. (In Chinese)
[8] 楊勝來,王亮,何建軍,等.CO2吞吐增油機(jī)理及礦場應(yīng)用效果[J].西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,19(6):23-26.
Yang S L, Wang L, He J J,etal. Mechanism of increasing oil by CO2and the application in oil field[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2004, 19(6): 23-26. (In Chinese)
[9] 陶磊,李兆敏,張凱,等.二氧化碳輔助蒸汽吞吐開采超稠油機(jī)理——以王莊油田鄭411西區(qū)為例[J].油氣地質(zhì)與采收率,2009,16(1):51-54.
Tao L, Li Z M, Zhang K,etal.Study on the mechanism of CO2-assisted steam puff and huff in ultra-heavy oil reservoirs-taking west area of Zheng 411, Wangzhuang Oilfield as an example[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(1): 51-54. (In Chinese)
[10] Miller J S, Jones R A. A laboratory study to determine physical characteristics of heavy oil after CO2saturation[C]// SPE/DDE Enhanced Oil Recovery Symposiium. Tulsa: Society of Petroleum Engineers, l981: 259-268.
[11] Sankur V, Creek J L, Dijulio S S,etal. A laboratory study of Wilmington Tar Zone CO2injection project[C]//This paper first presented at the 1984 California Regional Meeting Held in Long Beach. SPE 12751, 1986: 95-104.
[12] AI Quraini A, Sohrabi M, Jamiolahmady M. Heavy oil recovery by liquid CO2/water injection[C]//This paper was presented at the SPE Europec/EAGE Annual Conference and Exhibition Held in London, United Kingdom. SPE 107163, 2007: 1-5.
[13] 李兆敏,陶磊,張凱,等.CO2在超稠油中的溶解特性實(shí)驗(yàn)[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2008, 32(5):92-96.
Li Z M, Tao L, Zhang K,etal. Experiment on CO2dissolubility in ultra-heavy oil[J]. Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(5): 92-96. (In Chinese)
[14] 王元慶,林長志,王連生,等.碳酸鹽巖稠油油藏?zé)岵沈?qū)油劑的性能評價[J].地質(zhì)科技情報(bào),2015,34(4):165-169.
Wang Y Q, Lin C Z, Wang L S,etal. Evaluation of thermal oil driver for carbonate heavy oil reservoir[J]. Geological Science and Technology Information, 2015, 34(4): 65-169. (In Chinese)
[15] 沈平平,陳興隆,秦積舜.CO2驅(qū)替實(shí)驗(yàn)壓力變化特性[J].石油勘探與開發(fā),2010,37(2):211-215.
Shen P P, Chen X L, Qin J S. Pressure characteristics in CO2flooding experiments[J]. Petroleum Exploration and Development, 2010, 37(2): 211-215. (In Chinese)
[16] 張鳳英,李建波,諸林,等.稠油油溶性降粘劑MASM 的合成及室內(nèi)評價[J].精細(xì)石油化工進(jìn)展,2005,6(12):5-l1.
Zhang F Y, Li J B, Zhu L,etal. Preparation and laboratory evaluation of oil-soluble viscosity reducer MASM for viscous crude oil[J]. Advances in Fine Petrochemicals, 2005, 6(12): 5-l1. (In Chinese)
[17] 金發(fā)揚(yáng),蒲萬芬,任兆剛,等.SZ36-l稠油油溶性降粘劑JN-1的合成及評價[J].精細(xì)石油化工進(jìn)展,2005,6(11):16-17.
Jin F Y, Pu W F, Ren Z G,etal. Synthesis and evaluation of oil-soluble viscosity reducer JN-1 for SZ36-1 heavy oil[J]. Advances in Fine Petrochemicals, 2005, 6(11): 16-17. (In Chinese)
Study on composite steam stimulation with carbon dioxide and chemical agents of low permeability heavy oil reservoir
SONG Chuan-zhen, LIN Chang-zhi, WANG Yuan-qing, CAO Li-li
PetroleumExploration&ProductionResearchInstitute,SINOPEC,Beijing100083,China
Abstract:Reservoir SH-B of O oilfield in Syria is a typical porous carbonate bearing heavy oil characterized by low permeability, deep buried depth and high viscosity. On cycle steam stimulation (CSS) recovery, it is difficult to inject the steam and therefore, the development effect is unsatisfactory. Effect of composite steam stimulation with carbon dioxide and chemical agents is studied by means of laboratory experiments and reservoir numerical simulation in order to solve the problems of how to inject steam into reservoir easily and how to improve the steam quality. It shows that injected CO2 has the functions of solubilizing, swelling, viscosity reduction and formation permeability improvement. The pyrochemical oil displacement agent (BM02#) at 0.3% concentration can effectively reduce the interfacial tension, change the rock wettability, lower the steam injection pressure, and put off the breakthrough time of steam to expand the steam swept volume and enhance the displacement efficiency of 10%. Oil solvent (OSVR) at 5% concentration can get high viscosity reduction rate up to 78.3%. It can also effectively lower the steam injection start-up pressure and steam injection pressure, and enhance the displacement efficiency of 16%. Compared with CSS, composite steam stimulation with CO2 and chemical agents can effectively improve the development effect and enhance the recovery factor. The first cycle production is increased by 49.4% and the final displacement effect is enhanced 25.7%. This method provides the basis for making the development plan of SH-B reservoir.
Key words:low permeability; heavy oil; accompanied CO2 injection; pyrochemical oil displacement agent; oil solvent; CSS
DOI:10.3969/j.issn.1671-9727.2016.03.10
[文章編號]1671-9727(2016)03-0336-08
[收稿日期]2015-09-03。
[基金項(xiàng)目]國家科技重大專項(xiàng)(2011ZX05031-002); 中國石化科技項(xiàng)目(P12098)。
[分類號]TE345
[文獻(xiàn)標(biāo)志碼]A
[第一作者] 宋傳真(1974-),女,碩士,高級工程師,從事油氣田開發(fā)工作, E-mail:songfax.syky@sinopec.com。