趙潔
【摘 要】G-不變凸函數(shù)是一類新的廣義凸函數(shù),是G-凸函數(shù)的推廣。本文研究了一類多目標(biāo)半無(wú)限規(guī)劃問(wèn)題,在G-不變凸性條件下,建立了該類問(wèn)題有效解的Karush-Kuhn-Tucker充分條件。本文的結(jié)果是后續(xù)對(duì)偶理論研究的基礎(chǔ)。
【關(guān)鍵詞】多目標(biāo)規(guī)劃;半無(wú)限規(guī)劃;G-不變凸;最優(yōu)性條件
【Abstract】G-invex functions is a class of generalized convex functions. It is a generalization of the G-convex functions. In this paper, a class of multiobjective semi-infinite programming problems is considered. Karush-Kuhn-Tucker sufficient optimality condition of efficient solution for such problem are established under the assumption of G-invexity. The results of this paper is the basis of subsequent duality theory research.
【Key words】Multi-objective programming problem; Semi-infinite programming problem; G-invex function; Optimality conditions
凸性和廣義凸性在最優(yōu)化理論和應(yīng)用中有深遠(yuǎn)的影響。1981年,Hanson在文獻(xiàn)[1]中提出不變凸函數(shù)的概念。2007年,Antczak在文獻(xiàn)[2]中提出一類實(shí)值G-不變凸函數(shù)。隨后Antczak將它推廣到向量情形,并且用它研究了一類多目標(biāo)規(guī)劃的最優(yōu)性條件和對(duì)偶[3-4]。
半無(wú)限規(guī)劃(SIP)是指決策變量有限而約束函數(shù)無(wú)限的優(yōu)化問(wèn)題。Kanzi和 Nobakhtian 在[5]中證明了等式約束下的SIP的充分必要最優(yōu)性條件。S.K.Mishra等在[6]中研究了一類非光滑半無(wú)限的對(duì)偶理論。
受以上文獻(xiàn)啟發(fā),本文主要研究G-不變凸函數(shù)下一類多目標(biāo)半無(wú)限規(guī)劃的最優(yōu)性條件。
【參考文獻(xiàn)】
[1]Hanson. On sufficiency of the Kuhn-Tucker conditions[J]. Journal of Mathematical Analysis and Applications, 1981, 80(2): 545-550.
[2]Antczak. New optimality conditions and duality results of G-type in differentiable mathematical programming[J]. Nonlinear Analysis, 2007, 66: 1617-1632.
[3]Antczak. On G-invex multiobjective programming. Part I. Optimality[J]. Journal of Global Optimization, 2009, 43(1): 97-109.
[4]Antczak. On G-invex multiobjective programming. Part II. Duality[J]. Journal of Global Optimization, 2009, 43(1):111-140.
[5]Kanzi,Nobakhtian. Optimality conditions for non-smooth semi-infinite programming[J]. Optimization, 2010, 59(5): 717-727.
[6]Mishra,Jaiswal,LeThi. Duality for nonsmooth semi-infinite programming problems[J]. Optimization Letter, DOI 10.1007/s11590-010-0240-8.
[7]林銼云,董加禮.多目標(biāo)優(yōu)化的方法與理論[M].吉林:吉林教育出版社,1992.
[責(zé)任編輯:楊玉潔]