楊春虹 劉成 李陽(yáng) 劉華英 涂文鳳
摘 要:化石能源目前仍是人類利用的主要能源,而化石能源的日益枯竭已經(jīng)成為可以影響社會(huì)發(fā)展和國(guó)家安全的關(guān)鍵問(wèn)題。同時(shí)人類對(duì)化石能源的過(guò)度依賴也帶來(lái)了嚴(yán)重的環(huán)境污染和全球變暖問(wèn)題。因此,提高可再生清潔能源的利用,掌握可再生能源利用中的關(guān)鍵技術(shù),實(shí)現(xiàn)可再生清潔能源利用的獨(dú)立自主是關(guān)系到我國(guó)國(guó)計(jì)民生的關(guān)鍵。太陽(yáng)能是地球上一切可再生能源的主要來(lái)源,而植物光合作用則是地球上唯一可以在常溫常壓下捕捉、轉(zhuǎn)化和儲(chǔ)存太陽(yáng)輻射能量的過(guò)程。在光合作用過(guò)程中高等植物葉綠體中的光合膜蛋白主要負(fù)責(zé)捕捉和轉(zhuǎn)化太陽(yáng)能。人工模擬這一系列的過(guò)程是目前國(guó)際上的研究熱點(diǎn)之一。解析光合膜蛋白的結(jié)構(gòu)與功能關(guān)系以及光合膜激發(fā)能傳遞的機(jī)理是模擬光合膜蛋白的功能的基礎(chǔ)。該研究將在光合膜色素蛋白復(fù)合體現(xiàn)有結(jié)構(gòu)信息的基礎(chǔ)上,基于光合作用理論研究的最新進(jìn)展,比如:對(duì)于捕光天線三維結(jié)構(gòu)的解析的基礎(chǔ)上,進(jìn)一步認(rèn)知光合膜蛋白的功能,在植物細(xì)胞水平及個(gè)體水平上,探索光合膜蛋白的結(jié)構(gòu)與功能間的關(guān)系,并在此基礎(chǔ)上,進(jìn)行以提高光合膜蛋白的結(jié)構(gòu)穩(wěn)定性為目標(biāo)的分子設(shè)計(jì)和組裝,通過(guò)設(shè)計(jì)光合膜蛋白的關(guān)鍵結(jié)構(gòu)域和最佳介質(zhì)環(huán)境,探索提高光合作用量子效率的途徑,提高光合膜蛋白的結(jié)構(gòu)穩(wěn)定性;以具有較高工作效率和高穩(wěn)定性的短命植物團(tuán)扇薺為材料,著重研究團(tuán)扇薺光合膜蛋白的結(jié)構(gòu)和功能的關(guān)系展開(kāi)研究;同時(shí),設(shè)計(jì)、合成和組裝能進(jìn)行全波長(zhǎng)吸收的體外組裝的光合膜色素蛋白復(fù)合體的超分子體系。最后與其他研究合作,對(duì)于光合膜蛋白進(jìn)行化學(xué)修飾及納米顆粒修飾,拓寬光合膜蛋白的吸收光譜和電荷分離特性,以實(shí)現(xiàn)具有高效率和高穩(wěn)定性特征的以光合膜色素蛋白復(fù)合體超分子體系為主體的光合作用模擬元件,為利用光合作用原理,尋求取得新型的固定太陽(yáng)能,產(chǎn)生人類所需的能量的提供理論依據(jù),為構(gòu)建未來(lái)的生物太陽(yáng)能電池提供新思路,新材料及新技術(shù)。
關(guān)鍵詞:光合作用 捕光色素蛋白復(fù)合體 分子設(shè)計(jì) 穩(wěn)定性 多樣性
Abstract: The fossil energy was still the main part of world energy consumption. It has been a critical problem to social development and national security that the fossil energy gradually exhausted. The fossil energy consumption also brings about serious environmental pollution and global warming problem. Therefore increasing utilization of renewable clear energy, mastering key technology and keeping independence in making use of renewable clear energy are very important to the nation's economy and the people's livelihood.Solar energy is main resource for most renewable clear energy and photosynthesis is the only way to harvest, convert and store solar energy at ambient temperature and pressure conditions on the earth. Photosynthetic membrane proteins in plants are responsible for harvesting and converting solar energy. The simulation of such processes is one of hot points in scientific research. Studies about the relationship between structure and function of photosynthetic membrane proteins and the mechanism of excitation energy transfer are the basis of such simulation. This project will be based on the new achievement in photosynthetic researches, for example, the atomic resolution crystal structure of major light harvesting complexes, to explore the functions of photosynthetic membrane proteins and further unveil the relationship between structure and function on different levels. Finally, we can (1)accomplish molecular design and modification for stability improvement;(2)increase photosynthetic quantum efficiency and stability by modifying key domains and environment;(3) study the relationship between structure and function in Berteroa incana, which contains a series of photosynthetic membrane proteins with high stability and efficiency;(4)design, and reconstitute photosynthetic proteins which can absorb light at all wavelength in visible region. Collaborating with other project, we plan to modify photosynthetic membrane proteins with organic or nano particles to improve absorption or create functions such as charge separation of photosynthetic membrane proteins. In this way, we hope to construct bio-inspired elements, the main parts of which are photosynthetic membrane proteins, to mimic photosynthesis. This project will contribute to theory support for searching for photosynthesis-based ways for convert solar energy and also the work will help in creating new idea, new material and new technology for the construction of bio-inspired solar cells in future.
Key Words: Photosynthesis; Light harvesting pigment-protein complexes; Molecular design; Stability; Diversity
閱讀全文鏈接(需實(shí)名注冊(cè)):http://www.nstrs.cn/xiangxiBG.aspx?id=51476&flag=1