国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

航空發(fā)動機失諧葉盤動態(tài)特性研究進(jìn)展*

2016-05-30 06:59:27姚建堯王建軍
航空制造技術(shù) 2016年21期
關(guān)鍵詞:王建軍葉盤模態(tài)

姚建堯,高 陽,王建軍

(1.重慶大學(xué)航空航天學(xué)院,重慶 400044;2.中國航空工業(yè)集團(tuán)公司貴州航空發(fā)動機研究所,貴陽 550081;3.北京航空航天大學(xué)能源與動力工程學(xué)院,北京 100191)

姚建堯

重慶大學(xué)航空航天學(xué)院研究員,主要從事航空發(fā)動機結(jié)構(gòu)強度、振動和可靠性,流固耦合理論及應(yīng)用等方面的研究。

葉盤結(jié)構(gòu)是航空發(fā)動機中的關(guān)鍵構(gòu)件,其工作狀態(tài)直接影響到整機的結(jié)構(gòu)完整性和工作可靠性[1]。隨著結(jié)構(gòu)設(shè)計、材料和加工工藝等方面的不斷進(jìn)步,現(xiàn)代航空發(fā)動機的壓氣機/風(fēng)扇中廣泛采用整體葉盤(環(huán)),與高效氣動設(shè)計相結(jié)合,使壓氣機/風(fēng)扇的效率提高、流動損失降低,發(fā)動機整機的性能參數(shù)顯著改善。先進(jìn)的氣動和結(jié)構(gòu)設(shè)計使得葉盤所承受的氣動負(fù)荷增加,而結(jié)構(gòu)本身卻變得更為輕巧,因此其振動問題也更加突出,嚴(yán)重地威脅著航空發(fā)動機的結(jié)構(gòu)強度和壽命[2]。

葉盤結(jié)構(gòu)以往的設(shè)計和分析中,通常假設(shè)各扇區(qū)是一致的。由于材料分散性、加工誤差、使用中的不均勻磨損、抑制顫振而引入錯頻等因素,葉盤各扇區(qū)間總是不可避免地存在微小的差別,稱為失諧[3]。失諧的存在破壞了結(jié)構(gòu)的周期對稱性,某些情況下會造成明顯的振動局部化和振動幅值放大現(xiàn)象,使得葉盤結(jié)構(gòu)的結(jié)構(gòu)完整性和可靠性問題更為嚴(yán)峻。

葉盤結(jié)構(gòu)的失諧問題一直受到工程界和學(xué)術(shù)界的關(guān)注,國內(nèi)外學(xué)者從理論、試驗和工程應(yīng)用等方面都進(jìn)行了深入的研究[3-8]。近幾十年來,隨著理論和計算水平的不斷進(jìn)步,失諧葉盤的研究也經(jīng)歷了從簡化模型到高保真模型、從單級葉盤到多級葉盤、從假設(shè)失諧到真實失諧的過程,建模和計算分析精度不斷提高,為葉盤結(jié)構(gòu)設(shè)計及其安全性和可靠性的保障提供了有力的支持。本文將從建模、減縮和分析評價3個方面對失諧葉盤結(jié)構(gòu)動態(tài)特性的國內(nèi)外相關(guān)研究進(jìn)展進(jìn)行總結(jié)。

失諧葉盤建模技術(shù)

合理、準(zhǔn)確地建模是葉盤動態(tài)特性分析的基礎(chǔ),基于葉盤結(jié)構(gòu)的特點,失諧葉盤結(jié)構(gòu)分析模型主要有集中參數(shù)模型、連續(xù)參數(shù)模型和高保真有限元模型3類[9]。在最近的研究中也報道了精確幾何失諧和多級葉盤結(jié)構(gòu)的建模技術(shù)。下面分別對其進(jìn)行介紹。

1 集中參數(shù)模型

集中參數(shù)模型采用集中質(zhì)量模擬葉片和輪盤的質(zhì)量,采用彈簧來模擬葉片剛度、輪盤剛度和耦合剛度,如圖1所示[10-12]。該類模型規(guī)模小,能很好地反映葉盤的一族或少數(shù)幾族諧調(diào)和失諧的動態(tài)特性,廣泛應(yīng)用于失諧葉盤的機理研究,并取得良好的效果。

葉盤集中參數(shù)模型的建模過程是一個典型的反問題(參數(shù)識別),需要通過已知的模態(tài)或響應(yīng)特性來獲取集中參數(shù),并使得集中參數(shù)模型的響應(yīng)特性與高保真有限元模型接近。Mignolet和Lin[13]利用最小二乘估計(Least square estimation)、最大似然估計(Maximum likelihood estimation)以及兩者的組合等3種方法建立起已知的失諧響應(yīng)和未知的集中參數(shù)的關(guān)系,并進(jìn)行求解來獲取系統(tǒng)中的參數(shù)。同樣地,也可以利用隨機模態(tài)剛度法(Radom modal stiffness approach)或最大似然估計方法,通過模態(tài)數(shù)據(jù)來獲取集中參數(shù)模型中的參數(shù)[14-15]。集中參數(shù)模型也應(yīng)用至葉盤結(jié)構(gòu)的魯棒性分析[16-17]以及多級葉盤失諧動態(tài)特性分析中[18-19]。

2 連續(xù)參數(shù)模型

葉盤結(jié)構(gòu)的集中參數(shù)模型精度有限,難以模擬葉片和葉盤結(jié)構(gòu)的復(fù)雜的振動及耦合振動特性。為了提高動態(tài)特性的分析精度,也有學(xué)者采用連續(xù)參數(shù)模型模擬葉盤。在這類模型中,通常采用梁模擬葉片,采用板模擬輪盤,而葉片間的耦合仍用集中參數(shù)的彈簧進(jìn)行模擬,典型結(jié)構(gòu)如圖2[20-21]所示。

連續(xù)參數(shù)模型可以方便地考慮剪切變形、旋轉(zhuǎn)慣性、離心效應(yīng)、科氏力等[22-24]。采用該模型也可以方便地引入葉盤裂紋,考察其在旋轉(zhuǎn)狀態(tài)下的耦合振動特性[25-27]。葉先磊等[28]采用該類模型研究了大小葉片整體葉盤的耦合振動特性,其結(jié)果與有限元模型的計算結(jié)果具有良好的一致性。

與集中參數(shù)模型相比,基于梁和板構(gòu)件的連續(xù)參數(shù)模型能夠提高模擬精度,但由于該模型仍難以模擬實際的葉片和輪盤的復(fù)雜振動形式,計算分析精度仍然較低,因此也多用于失諧機理的研究。

3 高保真有限元模型

圖1 葉盤結(jié)構(gòu)集中參數(shù)模型Fig.1 Lumped-parameter model for bladed disk

圖2 葉盤結(jié)構(gòu)連續(xù)參數(shù)模型Fig.2 Beam blade model for bladed disk

前面介紹的兩種建模方法都是針對葉盤結(jié)構(gòu)動態(tài)特性而提出的簡化模型,雖然能反映出葉盤結(jié)構(gòu)的基本振動特征,但并不能精確描述某一特定葉盤的振動特性,如模態(tài)特性和響應(yīng)水平等。隨著硬件和軟件水平的不斷提高,葉盤結(jié)構(gòu)的高保真有限元模型得到越來越廣泛的應(yīng)用,目前已成為通用做法。失諧葉盤有限元建模的關(guān)鍵在于如何將失諧引入至有限元模型中,目前主要通過改變?nèi)~片材料屬性和改變?nèi)~片幾何形狀來模擬和實現(xiàn)失諧。

通過改變?nèi)~片材料屬性(通常為彈性模量)來模擬失諧是最簡便的方法,這種失諧類型通常被稱為“比例失諧(proportional mistuning)[29]”,所謂比例失諧是指失諧量與諧調(diào)情況的質(zhì)量或剛度矩陣成比例,失諧前后固有頻率變化很小,模態(tài)振型也與諧調(diào)時基本一致。這種方式能很好地反映失諧造成的各葉片間的頻率差,模擬加工誤差或使用磨損所造成的失諧,在失諧葉盤動態(tài)特性分析中得到廣泛的應(yīng)用[30-32]。

另一種實現(xiàn)失諧的方法是改變?nèi)~片的幾何形狀,這種方式同時改變了系統(tǒng)的質(zhì)量和剛度矩陣。在這種情況下,不僅模態(tài)頻率變化較大,而且模態(tài)振型也會發(fā)生較大的變化,因此被稱為“非比例失諧(nonproportional mistuning)[29]”。非比例失諧與實際情況更為接近,可用來模擬加工誤差、裂紋、掉角、外物打傷等所造成的失諧。Lim等[33]采用改變?nèi)~片單元位置和形狀的方法模擬了外物打傷造成的單個葉片大幾何失諧的情況(圖3[33]);Capiez-Lernout等[34-35]則通過改變?nèi)~片截面前緣和尾緣的扭轉(zhuǎn)角的方法模擬了加工誤差造成的幾何失諧;張輝有和王紅建[36]則通過改變?nèi)~片厚度來模擬葉盤的幾何失諧。

4 幾何失諧葉盤結(jié)構(gòu)的建模

在前面介紹的各種模型中,失諧多是通過假設(shè)的形式引入到葉盤中的。研究表明,葉盤中實際存在的幾何失諧同時改變了名義模型的剛度和質(zhì)量的分布,某些情況下其振動特性與比例失諧葉盤有顯著差別[37],因此需在分析模型中準(zhǔn)確體現(xiàn)幾何失諧的影響。隨著測量和建模技術(shù)的進(jìn)步,近年來提出了通過葉片表面坐標(biāo)測量獲取精確幾何失諧的方法,主要有接觸式測量和非接觸式測量兩種方法。

在接觸式測量方面,Sinha等[38]與普惠公司合作,采用坐標(biāo)測量機獲取葉片表面坐標(biāo)。通過對測量數(shù)據(jù)的恰當(dāng)正交分解(Proper Orthogonal Decomposition,POD)獲取幾何失諧的數(shù)據(jù)特征,結(jié)合CAD和CAE軟件建立有限元模型。

非接觸式的光學(xué)測量是獲取葉片表面幾何失諧的另一種主要手段。與接觸式測量方法相比,該方法更為快捷方便,適應(yīng)性更廣,但精度要比接觸式稍低。Kaszynski等[39]實現(xiàn)了利用光學(xué)掃描高精度測量整體葉盤幾何坐標(biāo)的自動化過程,利用測量數(shù)據(jù)重建了幾何失諧葉盤的三維模型,進(jìn)而通過有限元分析獲取其動態(tài)特性(圖4[39])。在其后續(xù)研究中,還提出一種直接關(guān)聯(lián)名義有限元模型和幾何測量數(shù)據(jù)的網(wǎng)格變形法[40-41]以快速精確地建立幾何失諧葉盤的有限元模型。

5 多級葉盤結(jié)構(gòu)的建模

在多級葉盤的動態(tài)分析中,有限元模型占有主導(dǎo)地位。Bladh等[42]建立了簡化的兩級失諧葉盤的有限元模型,研究了盤的柔性以及盤間耦合對失諧動態(tài)特性的影響。葛長闖等[43-44]以某型發(fā)動機兩級壓氣機葉盤為研究對象,建立有限元模型并對其自由振動特性進(jìn)行分析,并基于應(yīng)變能定義了新的模態(tài)局部化因子。D’Souza等[45-46]研究了兩級葉盤的概率動態(tài)特性,并首次考慮了氣動作用對多級葉盤失諧動態(tài)特性的影響。需要指出的是,多級葉盤的有限元模型規(guī)模一般都很大,需要對其進(jìn)行減縮處理以提高分析效率。

葉盤結(jié)構(gòu)模型減縮技術(shù)

圖3 失諧葉盤的有限元模型Fig.3 Finite element model for bladed disk

圖4 非接觸式幾何失諧測量系統(tǒng)Fig.4 Optical 3D canning system for geometrical mistuning

由于失諧破壞了葉盤結(jié)構(gòu)的周期對稱性,通常情況下須采用完整模型進(jìn)行分析,加之實際工程中的葉盤幾何形狀復(fù)雜、模型規(guī)模大,給計算帶來很大困難。特別是對于多級葉盤,即使是在諧調(diào)的情況下,由于兩級葉片數(shù)一般不存在公約數(shù),因此在分析中往往需要采用整體模型,這導(dǎo)致多級葉盤有限元模型的規(guī)模會更大。并且,失諧具有很強的隨機性,很多情況下需要通過蒙特卡洛模擬對多個樣本的分析以獲取其統(tǒng)計特征,進(jìn)一步增加了計算負(fù)荷。

為此,國內(nèi)外學(xué)者研究了各種模型減縮技術(shù)和高效的求解方法,以實現(xiàn)高效、高保真的模擬和分析葉盤結(jié)構(gòu)動態(tài)特性的目的。目前,廣泛應(yīng)用的模型減縮方法主要有基于部件的減縮、基于模態(tài)族的減縮和基于周期對稱性的減縮等3大類。

1 基于部件的減縮技術(shù)

基于系統(tǒng)部件的模態(tài)綜合法(Component Mode Synthesis,CMS)[47-48]是結(jié)構(gòu)動力學(xué)中常用的子結(jié)構(gòu)模態(tài)綜合法,是將復(fù)雜的整體結(jié)構(gòu)分成較小、較易于處理的動態(tài)子結(jié)構(gòu)的一種方法。對于葉盤結(jié)構(gòu),常見的是將葉片和輪盤分別處理為子結(jié)構(gòu),兩個子結(jié)構(gòu)之間用固定界面、自由界面或混合界面連接。這類方法在單級葉盤的失諧分析中已得到廣泛的應(yīng)用,具體可參考相關(guān)文獻(xiàn)[6]和專著[49],這里重點介紹該方法在幾何失諧葉盤中的擴展應(yīng)用。

Lim等[33,50]針對外物打傷造成的單個葉片大幾何失諧的情況進(jìn)行研究,提出了基于系統(tǒng)部件的雜交模態(tài)綜合法,將失諧葉盤分為諧調(diào)葉盤(諧調(diào)子結(jié)構(gòu))和相應(yīng)的葉片失諧部分(失諧子結(jié)構(gòu)),進(jìn)而進(jìn)行子結(jié)構(gòu)的模態(tài)減縮。

Beck等[51-53]提出了適用于失諧葉盤動態(tài)特性分析的Craig-Bampton部件模態(tài)綜合法(C-B CMS),該方法可將葉片與輪盤分別作為子結(jié)構(gòu)(共n+1個)或者將每個扇區(qū)作為子結(jié)構(gòu)(共n個)。對于比例失諧的情況,各葉片采用與諧調(diào)葉片相同的減縮基;而對于存在幾何偏差的非比例失諧的情況,各葉片則需采用不同的減縮基。在其后續(xù)的研究中,該模型減縮方法還被應(yīng)用至雙流道[54-56]葉盤的動態(tài)特性分析中(圖5[55])。

2 基于模態(tài)族的減縮技術(shù)

葉盤結(jié)構(gòu)是一種典型的周期結(jié)構(gòu),即使在失諧狀態(tài)下,其模態(tài)仍具有成族出現(xiàn)的特征。利用這一特征,Yang和Griffin[57]提出了使用部分諧調(diào)模態(tài)(subset of nominal system modes,SNM)作為基向量進(jìn)行模型減縮;Feiner和Griffin[58]進(jìn)一步對基向量進(jìn)行減縮,僅使用一族模態(tài)對葉盤進(jìn)行減縮,稱為基礎(chǔ)失諧模型(Fundamental Model of Mistuning,FMM),除穩(wěn)態(tài)頻響分析外,該模型可用于失諧葉盤瞬態(tài)響應(yīng)分析[59]和失諧識別[60-62]等。在Martel等[63-64]提出的漸近失諧模型(Asymptotic Mistuning Model,AMM)中,使用的則是能夠反映系統(tǒng)動態(tài)特性的最小模態(tài)子集,提高了這種基于模態(tài)族的減縮方法的適用性(圖6[63])。

圖5 雙通道整體葉盤及其子結(jié)構(gòu)劃分Fig.5 Dual flow-path integrally bladed rotor and its cyclic sector C-B CMS partitionment

前面已經(jīng)說明,幾何失諧屬于非比例失諧,使得葉片的振型發(fā)生較為顯著的變化,這就使得前面介紹的模態(tài)減縮方法的精度受到一定的影響。Ganine等[65-66]針對幾何失諧葉盤,通過靜模態(tài)補償(static mode compensation,SMC)對模態(tài)減縮方法進(jìn)行改進(jìn),將大的幾何失諧和小的隨機失諧采用不同的減縮基分別處理,而后再將兩者疊加。該方法可準(zhǔn)確高效地預(yù)測幾何失諧葉盤的模態(tài)和響應(yīng)等動態(tài)特性。

圖6 FMM和AMM失諧降階模型的模態(tài)選取Fig.6 Choices of basic vectors of FMM and AMM

為了解決模態(tài)減縮方法在幾何失諧葉盤動態(tài)特性分析中的精度問題,Sinha[67-68]提出一種改進(jìn)的模態(tài)域分析(modified modal domain analysis,MMDA)方法。該方法首先對葉片幾何失諧數(shù)據(jù)進(jìn)行[67]POD分析,以獲取失諧特征(圖7);進(jìn)而將具有這些幾何失諧特征的葉盤進(jìn)行諧調(diào)情況下的模態(tài)分析,與名義設(shè)計諧調(diào)葉盤的模態(tài)共同組成模態(tài)減縮基。在后續(xù)的研究中,該方法也應(yīng)用到多級幾何失諧葉盤[69]、工業(yè)葉盤[70]、失諧識別[71]、受迫響應(yīng)統(tǒng)計特性分析[72]等。

3 基于周期對稱性的減縮技術(shù)

葉盤結(jié)構(gòu)是一種典型的循環(huán)周期對稱結(jié)構(gòu),在單級葉盤的諧調(diào)分析中,僅可采用一個扇區(qū)進(jìn)行分析。失諧和多級葉盤雖然破壞了嚴(yán)格意義上的周期對稱性,但仍可認(rèn)為是廣義的周期對稱結(jié)構(gòu),可利用該性質(zhì)對分析模型進(jìn)行減縮。

姚建堯等[73-74]提出了一種利用周期對稱性求解失諧葉盤瞬態(tài)響應(yīng)的計算方法。該方法將失諧部分作為非線性激勵移到運動方程右端,左端仍保持諧調(diào)的形式,仍可僅用單扇區(qū)進(jìn)行求解分析。失諧非線性激勵可與結(jié)構(gòu)本身的非線性(摩擦、間隙、大變形等)和非線性氣動載荷等一并處理,提高了分析效率。王培屹和李琳[75]基于周期對稱的諧波平衡法,提出了利用單扇區(qū)模型計算失諧葉盤穩(wěn)態(tài)頻率響應(yīng)的方法,該方法的關(guān)鍵仍在于對失諧激勵的處理方式。

周期對稱性在多級葉盤的建模中有著更為廣泛的應(yīng)用。多級葉盤周期對稱建模中最大的挑戰(zhàn)在于每級葉盤的葉片數(shù)量不同,需要對級間連接部分進(jìn)行特殊處理。Song等[76]提出了多級葉盤的逐級模態(tài)綜合法,將每一級作為一個部件,在每一級中都可僅用一個扇區(qū)進(jìn)行建模分析;在級間邊界處理上,利用級間鼓筒的軸對稱性,通過傅里葉基向量來實現(xiàn)級間的坐標(biāo)轉(zhuǎn)換,以滿足不同級間的邊界條件(圖8[76])。在后續(xù)研究中,該方法被應(yīng)用至多級葉盤的系統(tǒng)參數(shù)識別中[77]。Laxalde等[78]采用類似的方法處理級間連接鼓筒,但級間使用的是連續(xù)的網(wǎng)格。需要說明的是,上述兩個研究都是針對多級諧調(diào)葉盤進(jìn)行的。

Bhartiya和Sinha[69]同樣將諧調(diào)多級葉盤的每一級作為子結(jié)構(gòu)分別進(jìn)行分析,在邊界處理時,分別選取連接鼓筒處的約束模態(tài)和自由模態(tài)作為減縮基,并利用之前研究的MMDA方法對幾何失諧多級葉盤進(jìn)行動態(tài)特性分析。

失諧葉盤結(jié)構(gòu)動態(tài)特性分析評價

葉盤結(jié)構(gòu)中的失諧對其動態(tài)特性產(chǎn)生非常顯著的影響,為定量衡量失諧的影響,國內(nèi)外學(xué)者定義了一系列無量綱參數(shù),如模態(tài)局部化因子、幅值放大因子、模態(tài)參與因子等。此外,人為失諧、科氏力、非線性等因素也會對失諧葉盤的動態(tài)特性產(chǎn)生更為復(fù)雜的影響。

1 失諧葉盤動態(tài)特性的評價

失諧對葉盤結(jié)構(gòu)動態(tài)特性最為明顯的影響表現(xiàn)為模態(tài)局部化和振動傳遞局部化,為定量描述這些現(xiàn)象,分別定義了模態(tài)局部化因子和幅值放大因子。王建軍等[79]基于實際葉盤結(jié)構(gòu)失諧振動局部化的基本特征和物理含義,分別定義了基于模態(tài)位移、模態(tài)應(yīng)力和模態(tài)應(yīng)變能的模態(tài)局部化因子,得到評價失諧葉盤結(jié)構(gòu)模態(tài)局部化程度的定量方法。在這些定義中,都需要將失諧模態(tài)與相應(yīng)的諧調(diào)模態(tài)進(jìn)行比較,為了使兩者的對應(yīng)更具有物理意義,姚建堯等[80-81]提出振型的節(jié)徑譜的概念,通過失諧振型的主節(jié)徑成分確定與之對應(yīng)的諧調(diào)振型。

在失諧對葉盤響應(yīng)的定量評價方面,廣泛采用的是幅值放大因子,其定義為失諧最大響應(yīng)(位移或應(yīng)力)與諧調(diào)最大響應(yīng)之比。這種定義物理意義明確,計算簡便,在工程和學(xué)術(shù)界得到廣泛應(yīng)用[18,32,72,82-84]。

圖7 葉片幾何失諧的POD特征Fig.7 Blade thickness for each POD feature

圖8 多級葉盤的周期對稱模型Fig.8 Cyclic model for multistage bladed disk

與單級葉盤相比,多級葉盤模態(tài)局部化特性的評價要更為復(fù)雜,主要需考慮級間耦合的問題。Sternchuss和Balmes[85]通過應(yīng)變能定義了各級的模態(tài)參與因子(relative participation factor),以衡量各階模態(tài)是以單級振動為主導(dǎo)還是以耦合振動為主導(dǎo)。D’Souza和Epureanu[86]則分別利用應(yīng)變能比(strain energy ratio)和模態(tài)置信因子對多級葉盤的模態(tài)進(jìn)行分類評價。多級葉盤響應(yīng)評價相對簡潔,一般仍采用與單級葉盤的相同的幅值放大因子[69]。

此外,Rotea和D’Amato[11]和姚建堯等[16-17]也試圖從系統(tǒng)魯棒性的角度評價失諧葉盤的動態(tài)特性,但目前只能應(yīng)用于簡單的集中參數(shù)模型。Nikolic等[87]提出了通過增加失諧范圍來提高葉盤結(jié)構(gòu)魯棒性的設(shè)計理念;Mbaye等[88]提出利用錯頻手段提高葉盤結(jié)構(gòu)的魯棒性。

2 人為失諧的影響

Kaza和Kielb[89-90]的研究表明,適當(dāng)程度的人為失諧可以有效提高壓氣機的顫振裕度。目前,引入人為失諧或錯頻以抑制顫振已成為發(fā)動機設(shè)計的常用技術(shù)手段[91-93]。同時,某些人為失諧也能有效地抑制隨機失諧對葉盤響應(yīng)的不利影響。Choi等[94]研究了AB兩種葉片類型人為失諧排列方式對隨機失諧響應(yīng)放大的抑制效果,并應(yīng)用至離心葉盤的設(shè)計中。Kenyon和Griffin[82]研究了更為復(fù)雜的諧波形式的人為失諧對隨機失諧葉盤響應(yīng)的影響。Murthy和Mignolet[95]研究了干摩擦阻尼器人為失諧對葉盤的影響。姚建堯等[80-81]則利用節(jié)徑譜和模態(tài)激勵因子的概念,很好地解釋了隨機失諧的閾值效應(yīng)和人為失諧的作用機理。袁惠群[96]、李巖[97]和趙天宇等[98]分別采用蟻群算法、離散遺傳粒子群算法和模擬退火算法對人為失諧排列方式進(jìn)行優(yōu)化。

3 科氏力的影響

葉盤在高速旋轉(zhuǎn)的工作狀態(tài)下,科氏力會對其動態(tài)特性產(chǎn)生較為顯著的影響。李永強等[99]基于薄殼理論考慮了科氏力對旋轉(zhuǎn)葉片動頻的影響,但并未考慮對輪盤的影響。Huang和Kuang[24]采用連續(xù)參數(shù)模型研究了考慮科氏力效應(yīng)下的失諧葉盤的模態(tài)局部化,結(jié)果表明,科氏力可能會加劇失諧葉盤的模態(tài)局部化現(xiàn)象。Nikolic等[100]研究了科氏力和失諧共同作用下葉盤的響應(yīng)特性,并進(jìn)行了相應(yīng)的試驗驗證,結(jié)果表明,某些情況下科氏力使得失諧響應(yīng)顯著增大。辛健強等[101]采用有限元法對考慮科氏力的工業(yè)葉盤進(jìn)行分析,結(jié)果同樣表明,科氏力對失諧葉盤的模態(tài)和響應(yīng)特性會產(chǎn)生顯著的影響。

4 非線性的影響

在失諧葉盤動態(tài)特性分析中,也考慮了摩擦、裂紋、大變形等非線性因素的影響。

干摩擦阻尼器是航空發(fā)動機中最常見的阻尼器之一,其對失諧葉盤動態(tài)特性,特別是響應(yīng)水平有著顯著的影響。Poudou和Pierre[102]提出了帶干摩擦阻尼器的葉盤結(jié)構(gòu)響應(yīng)計算的頻域-時域混合方法。Cha和Sinha[103]研究了白噪聲和窄帶激勵下帶摩擦阻尼器的失諧葉盤響應(yīng)的統(tǒng)計特性。王紅建[104]和賀爾銘等[105]研究了干摩擦阻尼失諧對葉盤受迫響應(yīng)的影響,結(jié)果表明,干摩擦散亂失諧會導(dǎo)致阻尼件減振性能的降低。Petrov等[106-111]系統(tǒng)研究了考慮摩擦和間隙等非線性因素情況下的失諧葉盤的建模和分析技術(shù)。

裂紋是葉片中常見的缺陷形式,同樣是引起失諧的主要因素之一。Kuang和Huang[25]以及Hou[27]通過連續(xù)參數(shù)模型考慮了葉片裂紋位置以及大小對失諧葉盤模態(tài)局部化的影響,但并未考慮裂紋的非線性性質(zhì)。Saito等[112]建立了裂紋葉片的有限元模型,并考慮了裂紋開合造成的非線性,基于模態(tài)綜合法建立了裂紋失諧葉盤的降階模型;在其后續(xù)研究中,還將其擴展至多級葉盤[113]和裂紋檢測中[114]。Wang等[115]利用類似的方法對失諧離心葉盤進(jìn)行了分析。

大變形和大位移所引起的幾何非線性對失諧葉盤有一定的影響。Capiez-lernout等[116-119]研究了考慮幾何非線性的高負(fù)荷離心壓氣機葉盤的建模、降階和響應(yīng)分析技術(shù)。

結(jié)論和展望

本文重點回顧了失諧葉盤的建模、降階以及動態(tài)特性分析評價等方面的相關(guān)研究進(jìn)展,著重對多級葉盤和幾何失諧葉盤的最新研究進(jìn)行了介紹。需要指出的是,由于論文篇幅有限,這里并未涉及葉盤結(jié)構(gòu)流固耦合、失諧識別、試驗技術(shù)等重要領(lǐng)域。

從前述的研究進(jìn)展可以看出,隨著計算機軟硬件和建模技術(shù)的不斷提高,失諧葉盤高保真模型已得到廣泛的應(yīng)用,特別是基于坐標(biāo)測量的精細(xì)建模技術(shù)也已于近年來開始應(yīng)用。但由于失諧葉盤的隨機性,更為關(guān)注其動態(tài)特性的統(tǒng)計特征,因此高效精確的降階技術(shù)仍是研究的重要方向之一。為了更加準(zhǔn)確地預(yù)測失諧響應(yīng)及其概率分布特征,進(jìn)行失諧葉盤流固耦合的概率特性分析也是未來重要的研究方向之一。

除理論研究外,如何將失諧分析和設(shè)計的理念在工程中加以應(yīng)用,指導(dǎo)航空發(fā)動機的設(shè)計、評估和使用是未來需要重點關(guān)注的問題。

[1]李其漢,王延榮.航空發(fā)動機結(jié)構(gòu)強度設(shè)計問題[M].上海: 上海交通大學(xué)出版社,2014.

LI Qihan,WANG Yanrong.The design problem of aero-engine structure strength[M].Shanghai: Shanghai Jiao Tong University Press,2014.

[2]李其漢,王延榮,王建軍.航空發(fā)動機葉片高循環(huán)疲勞失效研究[J].航空發(fā)動機,2003,29(4): 16-18.

LI Qihan,WANG Yanrong,WANG Jianjun.Investigation of high cycle fatigue failures for the aero engine blades[J].Aeroengine,2003,29(4):16-18.

[3]王建軍,李其漢,朱梓根.失諧葉片-輪盤結(jié)構(gòu)系統(tǒng)振動局部化問題的研究進(jìn)展[J].力學(xué)進(jìn)展,2000,30(4): 517-528.

WANG JianJun,LI Qihan,ZHU ZiGen.Vibratory localization of mistuned bladed disk assemblies—a review[J].Advances in Mechanics,2000,30(4): 517-528.

[4]SRINIVASAN A V.Flutter and resonant vibration characteristics of engine blades[J].Journal of Engineering for Gas Turbines and Power,1997,119(10): 742-775.

[5]SLATER J C,MINKIEWICZ G R,BLAIR A J.Forced response of bladed disk assemblies-a survey[J].Shock and Vibration Digest,1999,31(1): 17-24.

[6]CASTANIER M P,PIERRE C.Modeling and analysis of mistuned bladed disk vibration: status and emerging directions[J].Journal of Propulsion and Power,2006,22(2):384-396.

[7]臧朝平,蘭海強.失諧葉盤結(jié)構(gòu)振動問題研究新進(jìn)展[J].航空工程進(jìn)展, 2011,2(2): 133-142.

ZANG Chaoping,LAN Haiqiang.Advances in research vibration problem of mistuned blisk assemblies[J].Advances in Aeronautical Science and Engineering,2011,2(2): 133-142.

[8]白斌,白廣忱,童曉晨,等.整體葉盤結(jié)構(gòu)失諧振動的國內(nèi)外研究狀況[J].航空動力學(xué)報,2014,29(1): 91-103.

BAI Bin,BAI Guangchen,TONG Xiaochen,et al.Research on vibration problem of integral mistuned bladed disk assemblies at home and abroad[J].Journal of Aerospace Power,2014,29(1): 91-103.

[9]王建軍,許建東,李其漢.失諧葉片-輪盤結(jié)構(gòu)振動局部化的分析模型[J].汽輪機技術(shù), 2004,46(4): 256-259.

WANG Jianjun,XU Jiandong,LI Qihan.Analytical models of mistuned bladed disk assembles—a review[J].Turbine Technology,2004,46(4): 256-259.

[10]CASTANIER M P,PIERRE C.Using Intentional mistuning in the design of turbomachinery rotors[J].AIAA Journal,2002,40(10): 2077-2086.

[11]ROTEA M,D’AMATO F.New tools for analysis and optimization of mistuned bladed disks[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2002.

[12]王建軍,姚建堯,李其漢.剛度隨機失諧葉盤結(jié)構(gòu)概率模態(tài)特性分析[J].航空動力學(xué)報,2008,23(2): 256-262.

WANG Jianjun,YAO Jianyao,LI Qihan.Probability characteristics of vibratory mode of bladed disk assemblies with random stiffness mistuning[J].Journal of Aerospace Power,2008,23(2): 256-262.

[13]MIGNOLET M P,LIN C.Identification of structural parameters in mistuned bladed disks[J].Journal of Vibration and Acoustics,1997,119(3): 428-438.

[14]MIGNOLET M P,RIVAS-GUERRA A J,DELOR J P.Identification of mistuning characteristics of bladed disks from free response data—part I[J].Journal of Engineering for Gas Turbines and Power,2001,123(2): 395-403.

[15]RIVAS-GUERRA A J,MIGNOLET M P,DELOR J P,et al.Identification of mistuning characteristics of bladed disks from free response data—part II[J].Journal of Engineering for Gas Turbines and Power,2001,123(2): 404-411.

[16]姚建堯,王建軍,李其漢.失諧周期結(jié)構(gòu)的魯棒分析模型[J].應(yīng)用力學(xué)學(xué)報,2009,26(3): 426-431.

YAO Jianyao,WANG Jianjun,LI Qihan.Robustness analysis model for mistuned periodic structures[J].Chinese Journal of Applied Mechanics,2009,26(3): 426-431.

[17]姚建堯,王建軍,李其漢.失諧葉盤結(jié)構(gòu)魯棒性能分析[J].航空動力學(xué)報,2010,25(7): 1634-1639.

YAO Jianyao,WANG Jianjun,LI Qihan.Robust performance analysis of mistuned bladed disks[J].Journal of Aerospace Power,2010,25(7):1634-1639.

[18]廖海濤,王建軍,李其漢.多級葉盤結(jié)構(gòu)隨機失諧響應(yīng)特性分析[J].振動與沖擊,2011,30(3): 22-29.

LIAO Haitao,WANG Jianjun,LI Qihan.Mistuned forced response characteristics analysis of mistuned multi-stages bladed disks[J].Journal of Vibration And Shock,2011,30(3): 22-29.

[19]SINHA A.Reduced-order model of a mistuned multi-stage bladed rotor[C]//Proceedings of GT2007,ASME Turbo Expo 2007:Power for Land,Sea and Air,2007.

[20]TURCOTTE J S,HOLLKAMP J J,GORDON R W.Vibration of a mistuned bladed-disk assembly using structurally damped beams[J].AIAA Journal,1998,36(12): 2225-2228.

[21]TOMIOKA T,KOBAYASHI Y,YAMADA G.Analysis of free vibration of rotating disk–blade coupled systems by using artificial springs and orthogonal polynomials[J].Journal of Sound and Vibration,1996,191(1): 53-73.

[22]RZADKOWSKI R.The general model of free vibrations of mistuned bladed discs,part i:Theory[J].Journal of Sound and Vibration,1994,173(3): 377-393.

[23]RZADKOWSKI R.The general model of free vibrations of mistuned bladed discs,part ii: Numerical results[J].Journal of Sound and Vibration,1994,173(3): 395-413.

[24]HUANG B W,KUANG J H.Mode locallization in a rotating mistuned turbo disk with Coriolis effects[J].International Journal of Mechanical Sciences,2001,43: 1643-1660.

[25]KUANG J H,HUANG B W.The effect of blade crack on mode localization in rotating bladed disks[J].Journal of Sound and Vibration,1999,227(1): 85-103.

[26]HUANG B W,KUNG H K,KUANG J H.Stability in a twisted periodic blade system with cracks[J].AIAA Journal,2006,44(7): 1436-1444.

[27]HOU J.Cracking-induced mistuning in bladed disks[J].AIAA Journal,2006,44(11):2542-2546.

[28]葉先磊,王建軍,朱梓根,等.大小葉片結(jié)構(gòu)連續(xù)參數(shù)模型和振動模態(tài)[J].航空動力學(xué)報,2005,20(1): 66-72.

YE Xianlei,WANG Jianjun,ZHU Zigen,et al.Continuous parameter model and vibration modal of splitter vane rotor[J].Journal of Aerospace Power,2005,20(1): 66-72.

[29]LIM S H,BLADH R,CASTANIER M P,et al.A compact,generalized component mode mistuning representation for mode bladed disk vibration[C]//44th AIAA/ASME/ASCE/AHS Structures,Structural Dynamics,and Materials Conference.2003.

[30]BLADH R,PIERRE C,CASTANIER M P.Dynamic response predictions for a mistuned industrial turbomachinery rotor using reducedorder modeling[J].Journal of Engineering for Gas Turbines and Power,2002,124(4): 311-324.

[31]于長波,王建軍,李其漢.錯頻葉盤結(jié)構(gòu)的概率模態(tài)局部化特性分析[J].航空動力學(xué)報,2009,24(9): 2040-2045.

YU Changbo,WANG Jianjun,LI Qihan.Probability characteristics for vibratory mode of detuned bladed disk assemblies[J].Journal of Aerospace Power,2009,24(9): 2040-2045.

[32]于長波,王建軍,李其漢.失諧葉盤結(jié)構(gòu)的概率響應(yīng)局部化特性[J].航空動力學(xué)報,2010,25(9): 2006-2012.

YU Changbo,WANG Jianjun,LI Qihan.Probability characteristics for response localization of mistuned bladed disk assemblies[J].Journal of Aerospace Power,2009,25(9): 2006-2012.

[33]LIM S H,BLADH R,CASTANIER M P,et al.Compact,generalized component mode mistuning representation for modeling bladed disk vibration[J].AIAA Journal,2007,45(9): 2285-2298.

[34]CAPIEZ-LERNOUT E,SOIZE C.Nonparametric modeling of random uncertainties for dynamic response of mistuned balded disks[J].Journal of Engineering for Gas Turbines and Power,2004,126(7): 610-618.

[35]CAPIEZ-LERNOUT E,SOIZE C,LOMBARD J P,et al.Blade manufacturing tolerances definition for a mistuned industrial bladed disk[J].Journal of Engineering for Gas Turbines and Power,2005,127(7): 621-628.

[36]張輝有,王紅建.一種基于葉盤結(jié)構(gòu)幾何失諧的降階分析方法[J].航空工程進(jìn)展,2014,5(4): 481-486.

ZHANG Huiyou,WANG Hongjian.A reduced order model of bladed disks with geometric mistuning[J].Advances in Aeronautical Science and Engineering,2014,5(4): 481-486.

[37]BECK J A,BROWN J M,SLATER J C,et al.Probabilistic mistuning assessment using nominal and geometry based mistuning methods[J].Journal of Turbomachinery,2013,135(5): 51004.

[38]SINHA A,HALL B,CASSENTI B,et al.Vibratory parameters of blades from coordinate measurement machine data[J].Journal of Turbomachinery,2008,130(1): 523-531.

[39]KASZYNSKI A A,BECK J A,BROWN J M.Uncertainties of an automated optical 3d geometry measurement,modeling,and analysis process for mistuned integrally bladed rotor reverse engineering[J].Journal of Engineering for Gas Turbines and Power,2013,135(10): 1025-1034.

[40]KASZYNSKI A A,BECK J A,BROWN J M.Automated finite element model mesh updating scheme applicable to mistuning analysis[C]//ASME Turbo Expo 2014: Turbine Technical Conference and Exposition.American Society of Mechanical Engineers,2014.

[41]KASZYNSKI A A,BECK J A,BROWN J M.Experimental validation of a mesh quality optimized morphed geometric mistuning model[C]//ASME Turbo Expo 2015: Turbine Technical Conference and Exposition.2015.

[42]BLADH R,CASTANIER M P,PIERRE C.Effects of multi-stage coupling and disk flexibility on mistuned bladed disk dynamics[J].Journal of Engineering for Gas Turbines & Power,2001,125(1): V004T033A040.

[43]葛長闖,王建軍,劉永泉.2級葉片-輪盤系統(tǒng)模態(tài)特性研究[J].航空發(fā)動機,2009,35(5): 19-23.

GE Changchuang,WANG Jianjun,LIU Yongquan.Investigation of characteristics of twostage blade-disk system modal[J].Aeroengine,2009,35(5): 19-23.

[44]葛長闖,王建軍,劉永泉.失諧多級整體葉盤振動模態(tài)特性定量評價方法研究[J].航空發(fā)動機,2012,38(1): 25-28.

GE Changchuang,WANG Jianjun,LIU Yongquan.Quantitative assessment method of vibration mode characteristics for mistuned multistage blisk[J].Aeroengine,2012,38(1): 25-28.

[45]D’SOUZA K X,EPUREANU B I.A statistical characterization of the effects of mistuning in multistage bladed disks[J].Journal of Engineering for Gas Turbines and Power,2012,134(1): n37-n47.

[46]D’SOUZA K X,JUNG C,EPUREANU B I.Analyzing mistuned multistage turbomachinery rotors with aerodynamic effects[J].Journal of Fluids and Structures,2013,42: 388-400.

[47]CRAIG R,CHANG C.Free-interface methods of substructure coupling for dynamic analysis[J].AIAA Journal,1976,14(11): 1633-1635.

[48]CRAIG R R.Coupling of substructures for dynamic analyses: an overview[C]// Proceedings of AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference and Exhibit.2000.

[49]王建軍,李其漢.航空發(fā)動機失諧葉盤振動減縮模型與應(yīng)用[M].北京: 國防工業(yè)出版社,2009.

WANG Jianjun,LI Qihan.Methods and applications of reduction modeling for mistuned bladed disk vibration in aero-engine[M].Beijing:National Defend Industry Press ,2009.

[50]LIM S,CASTANIER M,PIERRE C.Vibration modeling of bladed disks subject to geometric mistuning and design changes[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Material Comference.2004.

[51]BECK J A,BROWN J M,SLATER J C,et al.Probabilistic mistuning assessment using nominal and geometry based mistuning methods[J].Journal of Turbomachinery,2012,135(5): 1085-1097.

[52]BECK J A,BROWN J M,CROSS C J,et al.Component-mode reduced-order models for geometric mistuning of integrally bladed rotors[J].AIAA Journal,2014,52(7): 1345-1356.

[53]BECK J A,BROWN J M,KASZYNSKI A A,et al.Geometric mistuning reduced-order models for integrally bladed rotors with mistuned disk–blade boundaries[J].Journal of Turbomachinery,2015,137(7): 71001.

[54]BECK J A,BROWN J M,KASZYNSKI A A,et al.Mistuned response prediction of dual flow-path integrally bladed rotors with geometric mistuning[J].Journal of Engineering for Gas Turbines and Power,2015,137(6): 62501.

[55]BECK J A,BROWN J M,SCOTTEMUAKPOR O E,et al.Dynamic response characteristics of dual flow-path integrally bladed rotors[J].Journal of Sound and Vibration,2015,336: 150-163.

[56]BECK J A,SCOTT-EMUAKPOR O E,BROWN J M,et al.Validation of geometric mistuning reduced-order models for single and dual flow-path integrally bladed rotors[C]//17th AIAA Non-Deterministic Approaches Conference.2015.

[57]YANG M T,GRIFFIN J H.A reduced-order model of mistuning using a subset of nominal system modes[J].Journal of Engineering for Gas Turbines and Power,2001,123(10): 893-900.

[58]FEINER D M,GRIFFIN J H.A fundamental model of mistuning for a single family of modes[J].Journal of Turbomachinery,2002,124(10): 597-605.

[59]AYERS J P,FEINER D M,GRIFFIN J H.A reduced-order model for transient analysis of bladed disk forced response[J].Journal of Turbomachinery,2006,128(7): 466-473.

[60]FEINER D M,GRIFFIN J H.Mistunign identification of bladed disks using a fundamental mistuning model—part ii:application[J].Journal of Turbomachinery,2004,126(1): 159-165.

[61]FEINER D M,GRIFFIN J H.Mistuning identification of bladed disks using a fundamental mistuning model—part i: theory[J].Journal of Turbomachinery,2004,126(1): 150-158.

[62]王帥,王建軍,李其漢.一種基于模態(tài)減縮技術(shù)的整體葉盤結(jié)構(gòu)失諧識別方法[J].航空動力學(xué)報,2009,24(3): 662-669.

WANG Shuai,WANG Jianjun,LI Qihan.Mistuning identification of integrally bladed disk based on the modal reduced technique[J].Journal of Aerospace Power,2009,24(3): 662-669.

[63]MARTEL C,CORRAL R.Asymptotic description of maximum mistuning amplification of bladed disk forced response[J].Journal of Engineering for Gas Turbines and Power,2009,131(2): 435-446.

[64]KHEMIRI O,MARTEL C,CORRAL R.Quantitative validation of the asymptotic mistuning model using a high fidelity bladed disk model[C]// ASME Turbo Expo 2010: Power for Land,Sea,and Air.2010.

[65]GANINE V,LEGRAND M,PIERRE C,et al.A reduction technique for mistuned bladed disks with superposition of large geometric mistuning and small model uncertainties[C]//Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery.2008.

[66]GANINE V,LEGRAND M,MICHALSKA H,et al.A sparse preconditioned iterative method for vibration analysis of geometrically mistuned bladed disks[J].Computers & Structures,2009,87(5): 342-354.

[67]SINHA A.Reduced-order model of a bladed rotor with geometric mistuning[C]//Proceedings of ASME Turbo Expo 2007: Power for Land,Sea and Air.2007.

[68]SINHA A.Reduced-order model of a bladed rotor with geometric mistuning[J].Journal of Turbomachinery,2009,131(3): 310-314.

[69]BHARTIYA Y,SINHA A.Reduced order model of a multistage bladed rotor with geometric mistuning via modal analyses of finite element sectors[J].Journal of Turbomachinery,2012,134(4): 410-411.

[70]VISHWAKARMA V,SINHA A,BHARTIYA Y,et al.Modified modal domain analysis of a bladed rotor using coordinate measurement machine data on geometric mistuning[J].Journal of Engineering for Gas Turbines and Power,2015,137(4): 110-121.

[71]BHARTIYA Y,SINHA A.Geometric mistuning identification of integrally bladed rotors using modified modal domain analysis[J].Journal of Engineering for Gas Turbines and Power,2014,136(12): 205-215.

[72]VISHWAKARMA V,SINHA A.Forced response statistics of a bladed rotor with geometric mistuning[J].AIAA Journal,2015,53(9): 2776-2781.

[73]姚建堯,王建軍.周期對稱性在葉盤結(jié)構(gòu)瞬態(tài)響應(yīng)求解中的應(yīng)用[J].航空動力學(xué)報,2011,26(2): 385-391.

YAO Jianyao,WANG Jianjun.Application of cyclic symmetry property in transient forced vibration of bladed disks[J].Journal of Aerospace Power,2011,26(2): 385-391.

[74]YAO J Y,ZHU W X,HU N,et al.Application of symmetry property for transient response analysis of mistuned bladed disks[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference.2016.

[75]王培屹,李琳.用于失諧葉盤動力學(xué)特性分析的減縮計算方法[J].航空動力學(xué)報,2014,29(6): 1395-1402.

WANG Peiyi,LI Lin.Reduced order computational method for analysis of mistuning bladed disk dynamics characteristic[J].Journal of Aerospace Power,2014,29(6): 1395-1402.

[76]SONG S H,CASTANIER M P,PIERRE C.Multi-stage modeling of turbine engine rotor vibration[C]// ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.2005.

[77]SONG S H,CASTANIER M P,PIERRE C.System identification of multistage turbine engine rotors[C]// Proceedings of GT2007,ASME Turbo Expo 2007: Power for Land,Sea and Air.2007.

[78]LAXALDE D,LOMBARD J P,THOUVEREZ F.Dynamics of multistage bladed disks systems[J].Journal of Engineering for Gas Turbines and Power,2007,129(5): 1058-1064.

[79]王建軍,于長波,姚建堯,等.失諧葉盤振動模態(tài)局部化定量描述方法[J].推進(jìn)技術(shù),2009,30(4): 457-461.

WANG Jianjun,YU Changbo,YAO Jianyao,et al.Vibratory mode localization factors of mistuned bladed disk assemblies[J].Journal of Propulsion Technology,2009,30(4): 457-461.

[80]姚建堯,王建軍,李其漢.基于振型節(jié)徑譜的失諧葉盤結(jié)構(gòu)動態(tài)特性評價[J].推進(jìn)技術(shù),2011,32(5): 645-653.

YAO Jianyao,WANG Jianjun,LI Qihan.Dynamic characteristics assessment of mistuned bladed disk using nodal diameter spectrum of mode shapes[J].Journal of Propulsion Technology,2011,32(5): 645-653.

[81]YAO J Y,WANG J J,Li Q H.Improved modal localization and excitation factors for understanding mistuned bladed disk response[J].Journal of Propulsion and Power,2011,27(1): 50-60.

[82]KENYON J A,GRIFFIN J H.Forced response of turbine engine bladed disks and sensitivity to harmonic mistuning[J].Journal of Engineering for Gas Turbines and Power,2003,125(1): 113-120.

[83]LIAO H T,WANG J J,YAO J Y,et al.Mistuning forced response characteristics analysis of mistuned bladed disks[J].Journal of Engineering for Gas Turbines and Power,2010,132(12): 1113-1122.

[84]KHEMIRI O,MARTEL C,CORRAL R.Forced response of mistuned bladed disks:quantitative validation of the asymptotic description[J].Journal of Propulsion and Power,2014,30(2): 397-406.

[85]STERNCHUSS A,BALMES E.Reduction of multistage rotor models using cyclic modeshapes[C]// Proceedings of GT2007,ASME Turbo Expo 2007: Power for Land,Sea and Air.2007.

[86]D’SOUZA K X,EPUREANU B I.A statistical characterization of the effects of mistuning in multistage bladed disks[J].Journal of Engineering for Gas Turbines and Power,2012,134(1): 1137-1147.

[87]NIKOLIC M,PETROV E P,EWINS D J.Robust strategies for forced response reduction of bladed discs on large mistuning concept[C]// Proceedings of GT2007,ASME Turbo Expo 2007: Power for Land,Sea and Air.2007.

[88]MBAYE M,SOIZE C,OUSTY J,et al.Robust analysis of design in vibration of turbomachines[J].Journal of Turbomachinery,2013,135(2): 210-218.

[89]KAZA K R V,KIELB R E.Flutter and response of a mistuned cascade in incompressible flow[J].AIAA Journal,1982,20(8): 1120-1127.

[90]KAZA K R V,KIELB R E.Flutter of turbofan rotors with mistuned blades[J].AIAA Journal,1984,22(11): 1618-1625.

[91]徐建民,宋兆泓.錯頻葉片轉(zhuǎn)子的穩(wěn)定性分析[J].北京航空航天大學(xué)學(xué)報,1986(4): 21-32.

XU Jianmin,SONG Zhaohong.The stability analysis of the rotor of the fault frequency[J].Journal of Beijing University of Aeronautics and Astronautics,1986(4): 21-32.

[92]鄭赟,王靜.錯頻對葉片的氣動彈性穩(wěn)定性影響[J].航空動力學(xué)報,2013,28(5):1029-1036.

ZHENG Yun,WANG Jing.Influence of frequency mistuning on aeroelastic stability of blade[J].Journal of Aerospace Power,2013,28(5):1029-1036.

[93]徐可寧,王延榮,劉金龍.壓氣機轉(zhuǎn)子錯頻葉盤結(jié)構(gòu)振動響應(yīng)分析[J].燃?xì)鉁u輪試驗與研究,2013,26(3): 6-12.

XU Kening,WANG Yanrong,LIU Jinlong.Vibration response analysis on mistuned bladed disk assembly of compressor rotors[J].Gas Turbine Experiment and Research,2013,26(3): 6-12.

[94]CHOI B K,LENTZ J,MIGNOLET M P.Optimization of intentional mistuning patterns for the reduction of the forced response effects of unintentional mistuning: formulation and assessment[J].Antipode,2002,16(3): 47-59.

[95]MURTHY R,MIGNOLET M P.On the benefits of intentional mistuning of friction dampers to reduce the response of tuned and mistuned bladed disks[C]// ASME Turbo Expo 2013: Turbine Technical Conference and Exposition.2013.

[96]袁惠群,張亮,韓清凱,等.基于蟻群算法的航空發(fā)動機失諧葉片減振排布優(yōu)化分析[J].振動與沖擊,2012,31(11): 169-172.

YUAN Huiqun,ZHANG Liang,HAN Qingkai,et al.Optimization of mistuning blades arrangement for vibration absorption in an aeroengine based on artificial ant colony algorithm[J].Journal of Vibration and Shock,2012,31(11):169-172.

[97]李巖,袁惠群,梁明軒.基于改進(jìn)DPSO算法的航空發(fā)動機失諧葉片排序[J].東北大學(xué)學(xué)報(自然科學(xué)版),2013,33(4): 569-572.

LI Yan,YUAN Huiqun,LIANG Mingxuan.Mistuned blade sorting based on improved dpso algorithm for aero-engine[J].Journal of Northeastern University(Natural Science),2013,33(4): 569-572.

[98]趙天宇,袁惠群,楊文軍,等.非線性摩擦失諧葉片排序并行退火算法[J].航空動力學(xué)報,2016,31(5): 1053-1064.

ZHAO Tianyu,YUAN Huiqun,YANG Wenjun.Mistuned blade arrangement with non-linear friction based on parallel annealing algorithm[J].Journal of Aerospace Power,2016,31(5): 1053-1064.

[99]李永強,李健,郭星輝.科氏力對旋轉(zhuǎn)葉片動頻的影響[J].振動與沖擊,2006,25(1): 79-83.

LI Yongqiang,LI Jian,GUO Xinghui.Effect of coriolis force on dynamic frequency of high speed spinning blade[J].Journal of Vibration and Shock,2006,25(1): 79-83.

[100]NIKOLIC M,PETROV E P,EWINS D J.Coriolis forces in forced response analysis of mistuned bladed disks[J].Journal of Turbomachinery,2007,129(10): 730-739.

[101]辛健強,王建軍,李其漢.科氏力對失諧葉盤振動特性的影響分析[J].推進(jìn)技術(shù),2011,32(5): 637-644.

XIN Jianqiang,WANG Jianjun,LI Qihan.Analysis on vibration characteristics of mistuned bladed disk assemblies with Coriolis force[J].Journal of Propulsion Technology,2011,32(5):637-644.

[102]POUDOU O,PIERRE C.Hybrid frequency-time domain methods forthe analysis of complex structural systems with dry friction damping[C]//44th AIAA/ASME/ASCE/AHS Structures,Structural Dynamics,and Materials Conference.2003.

[103]CHA D,SINHA A.Statistics of responses of a mistuned and frictionally damped bladed disk assembly subjected to white noise narrow band excitations[J].Probabilistic Engineering Mechanics,2006,21: 384-396.

[104]王紅建,賀爾銘,余仕俠.具有干摩擦散亂失諧的葉盤受迫響應(yīng)特性[J].航空動力學(xué)報,2006,21(4): 711-715.

WANG Hongjian,HE Erming,YU Shixia.Forced response characteristics of bladed disks with disordered dry friction[J].Journal of Aerospace Power,2006,21(4): 711-715.

[105]賀爾銘,王紅建,余仕俠.含有非線性摩擦阻尼的失諧葉盤系統(tǒng)受迫響應(yīng)研[J].機械強度,2007,29(4): 532-535.

HE Erming,WANG Hongjian,YU Shixia.Investigation of forced response of mistuned bladed disks with non-linear friction damping[J].Journal of Mechanical Strength,2007,29(4):532-535.

[106]PETROV E P.A method for use of cyclic symmetry properties in analysis of nonlinear multiharmonic vibrations of bladed disks[J].Journal of Turbomach,2004,126(1):175-183.

[107]PETROV E P,EWINS D J.Generic friction models for time-domain vibration analysis of bladed disks[J].Journal of Turbomachinery,2004,126(1): 184-192.

[108]PETROV E P,EWINS D J.Methods for analysis of nonlinear multiharmonic vibrations of mistuned bladed disks with scatter of contact interface characteristics[J].Journal of Turbomachinery,2005,127(1): 128-136.

[109]PETROV E P,ZACHARIADIS Z I,BERETTA A,et al.A study of nonlinear vibrations in a frictionally damped turbine bladed disk with comprehensive modeling of aerodynamic effects[J].Journal of Engineering for Gas Turbines& Power,2013,135(3): 1239-1251.

[110]PETROV E P,DEPARTMENT M E,FRICTION,et al.Analysis of flutter-induced limit cycle oscillations in gas-turbine structures with[J].Journal of Turbomachinery,2014,134:61011-61018.

[111]SEVER I A,PETROV E E,EWINS D J.Experimental and numerical investigation of rotating bladed disk forced response using under-platform friction dampers[C]// Proceedings of GT2007,ASME Turbo Expo 2007: Power for Land,Sea and Air.2007.

[112]SAITO A,CASTANIER M P,PIERRE C.Effects of a cracked blade on mistuned turbine engine rotor vibration[J].Journal of Vibration and Acoustics,2009,131(6): 49-62.

[113]D’SOUZA K,SAITO A,EPUREANU B I.Reduced-order modeling for nonlinear analysis of cracked mistuned multistage bladed-disk systems[J].AIAA Journal,2012,50(2): 304-312.

[114]JUNG C,SAITO A,EPUREANU B I.Detection of cracks in mistuned bladed disks using reduced-order models and vibration data[J].Journal of Vibration and Acoustics.2012,134(6): 1-10.

[115]WANG S,ZI Y,LI B,et al.Reduced-order modeling for mistuned centrifugal impellers with crack damages[J].Journal of Sound and Vibration,2014,333(25): 6979-6995.

[116]CAPIEZ-LERNOUT E,SOIZE C,MBAYE M.Geometric nonlinear dynamic analysis of uncertain structures with cyclic symmetry-Application to a mistuned industrial bladed disk[C]// International Conference on Uncertainty in Structural Dynamics.2014.

[117]CAPIEZ-LERNOUT E E L,SOIZE C,MBAYE M.Mistuning analysis and uncertainty quantification of an industrial bladed disk with geometrical nonlinearity[J].Journal of Sound and Vibration,2015,356: 124-143.

[118]CAPIEZ-LERNOUT E E L,SOIZE C,MBAYE M.Uncertainty quantification for an industrial mistuned bladed disk with geometrical nonlinearities[C]//ASME Turbo Expo 2015: Turbine Technical Conference and Exposition.2015.

[119]CAPIEZ-LERNOUT E E L,SOIZE C,MBAYE M.Uncertainty quantification in nonlinear structural dynamics for mistuned bladed disks[C]//UNCECOMP 2015,1st ECCOMAS Thematic International Conference on Uncertainty Quantification in Computational Sciences and Engineering.2015.

猜你喜歡
王建軍葉盤模態(tài)
Fe-doped ZnS film fabricated by electron beam evaporation and its application as saturable absorber for Er:ZBLAN fiber laser*
憫蠶
位卑未敢忘憂國——記上海馳愛機械有限公司總經(jīng)理王建軍
王建軍接替宋麗萍任深交所總經(jīng)理
國內(nèi)多模態(tài)教學(xué)研究回顧與展望
某型航空發(fā)動機整體葉盤強度分析*
基于HHT和Prony算法的電力系統(tǒng)低頻振蕩模態(tài)識別
由單個模態(tài)構(gòu)造對稱簡支梁的抗彎剛度
計算物理(2014年2期)2014-03-11 17:01:39
基于FE-ERSM航空發(fā)動機葉盤結(jié)構(gòu)可靠性研究
級間接觸耦合的失諧葉盤模態(tài)局部化問題研究
振動與沖擊(2011年9期)2011-02-13 11:54:56
武邑县| 凤阳县| 花垣县| 化州市| 玉山县| 山阳县| 闸北区| 蒲江县| 大洼县| 措勤县| 久治县| 镶黄旗| 鹰潭市| 禄劝| 监利县| 武胜县| 望城县| 稻城县| 拉萨市| 铁力市| 容城县| 留坝县| 灵川县| 惠安县| 珲春市| 双城市| 黄陵县| 亳州市| 西吉县| 新安县| 华池县| 南城县| 右玉县| 扬中市| 饶平县| 武功县| 集安市| 诏安县| 新沂市| 濮阳县| 博爱县|