雷小龍,廖宜濤,李兆東,張聞宇,曹秀英,李姍姍,廖慶喜
(華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢430070)
種層厚度對油麥兼用集排器供種裝置充種性能的影響
雷小龍,廖宜濤,李兆東,張聞宇,曹秀英,李姍姍,廖慶喜※
(華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢430070)
為研究種層厚度對油麥兼用集排器供種裝置充種性能的影響,該文運(yùn)用EDEM(engineering discrete element method)軟件和高速攝像技術(shù),對不同種層調(diào)節(jié)板傾角和種層厚度的種群運(yùn)動與供種性能進(jìn)行了仿真與試驗研究。EDEM仿真分析了種層厚度與轉(zhuǎn)速對種群壓力、種群與供種機(jī)構(gòu)切向力和充種數(shù)量的影響;臺架試驗研究了種層厚度對充填角和供種性能的影響。結(jié)果表明:傾角為60°種層調(diào)節(jié)板的種群壓力較大,充填角和充種性能均較優(yōu);種群壓力和切向力隨縱向距離增加而增加,隨橫向距離增加而降低;隨轉(zhuǎn)速增加,種群壓力趨于穩(wěn)定,切向力隨之增加,單個型孔充種數(shù)量降低5%。轉(zhuǎn)速為10~50 r/min時,初始充填角、充填角和供種速率均隨縱向距離增加和橫向距離降低而增加,但充種數(shù)量變異系數(shù)呈先降后升的趨勢。種群壓力、切向力、初始充填角、充填角與供種速率均呈極顯著正相關(guān),種群壓力和切向力與初始充填角和充填角均呈極顯著正相關(guān),種層厚度和轉(zhuǎn)速影響充填角分別源于種群壓力和切向力。在縱向距離分別為15和20 mm,橫向距離為46 mm條件下,油菜、小麥供種速率變異系數(shù)和破損率分別均低于1.0%和0.1%。田間試驗表明該優(yōu)化種層厚度條件下的集排器油菜種植密度滿足農(nóng)藝種植要求。該研究明確了種層厚度影響油麥兼用集排器供種裝置充種性能的原因,為油麥兼用集排器供種裝置種層厚度調(diào)節(jié)和結(jié)構(gòu)改進(jìn)提供了參考。
農(nóng)業(yè)機(jī)械;作物;EDEM仿真;高速攝像;供種裝置;充種性能;油菜;小麥
雷小龍,廖宜濤,李兆東,張聞宇,曹秀英,李姍姍,廖慶喜.種層厚度對油麥兼用集排器供種裝置充種性能的影響[J].農(nóng)業(yè)工程學(xué)報,2016,32(6):11-19.doi:10.11975/j.issn.1002-6819.2016.06.002 http://www.tcsae.org
Lei Xiaolong,Liao Yitao,Li Zhaodong,Zhang Wenyu,Cao Xiuying,Li Shanshan,Liao Qingxi.Effects of seed layer thickness on seed filling performance of seed feeding device for rapeseed and wheat[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6):11-19.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.002 http://www.tcsae.org
精量播種和通用性強(qiáng)已成為油菜、小麥等作物種植的發(fā)展方向[1],能顯著提高作物產(chǎn)量和機(jī)具利用率。氣送式集排器具有高速、高效和種子適應(yīng)性強(qiáng)等優(yōu)點,廣泛應(yīng)用于多種作物播種[2]。
氣送式集排器供種裝置采用機(jī)械定量供種方式,充種環(huán)節(jié)尤為關(guān)鍵[3],其充種性能顯著影響供種質(zhì)量。機(jī)械式排種器充種性能的影響因素主要包括充填力大小、型孔結(jié)構(gòu)和充種室內(nèi)種群形態(tài)等[4],其中充種室內(nèi)種群形態(tài)受種層厚度和種子流動特性的影響。種子流動特性與內(nèi)摩擦系數(shù)有關(guān),特定種子的內(nèi)摩擦系數(shù)為常數(shù)[5],種層厚度成為影響充種性能的重要來源。相關(guān)學(xué)者采用振動方式擾動種群,使種群呈“沸騰”狀態(tài),降低種子間摩擦力和提高充種性能[6-8]。羅錫文等[9]設(shè)計2個充種室以改善排種輪型孔的充種性能,邢赫等[10]采用分層充種室提高了水稻氣力式精量穴播排種器性能。李兆東等[11]發(fā)現(xiàn)排種均勻性變異系數(shù)和各行排量一致性變異系數(shù)以種子充填高度影響最大。種層厚度較低時,充填率顯著下降,從而降低充種性能;種層厚度較大時,種層“拖帶現(xiàn)象”嚴(yán)重,不利于精量充種。因此,適宜的種層厚度可提高充種性能,進(jìn)而提高播種質(zhì)量。
油菜、小麥種子屬散粒體物料,其物理和機(jī)械特性復(fù)雜,難以準(zhǔn)確描述受到的種群壓力及其運(yùn)動規(guī)律。離散單元法DEM(discrete element method)作為仿真顆粒物料運(yùn)動和機(jī)械特性可靠的數(shù)值技術(shù)[12-13],可準(zhǔn)確描述顆粒間、顆粒與外殼和顆粒與液(氣)體間的作用力和運(yùn)動狀態(tài)[14-18]。史嵩等[3]采用EDEM軟件分析種群內(nèi)摩擦力,發(fā)現(xiàn)種群擾動通過降低種子瞬態(tài)的法向應(yīng)力以提高充種性能;李耀明等[19]采用離散元法分析振動對種群運(yùn)動的影響,得出較優(yōu)的初始種層厚度。高速攝像技術(shù)廣泛應(yīng)用于工業(yè)和農(nóng)業(yè)[20],可為深入研究排種器充種機(jī)理提供依據(jù)。王在滿等[21]采用高速攝像技術(shù)研究稻種的充種姿態(tài)和流動性能,確定充種過程主要發(fā)生在第2充種區(qū)。叢錦玲等[22]結(jié)合高速攝像解析充種區(qū)種子層的流動特性和充填角,闡明嵌入導(dǎo)種條的油麥兼用排種器充種機(jī)理。因此,綜合高速攝像技術(shù)和EDEM(engineering discrete element method)仿真可揭示排種器充種機(jī)理和優(yōu)化性能參數(shù)。
為實現(xiàn)油麥兼用供種,前期已設(shè)計一種油麥兼用型傾斜錐孔輪式供種裝置[23],通過充種過程力學(xué)分析,明確影響其充種性能的因素包括型孔傾角、種群壓力和轉(zhuǎn)速等。文獻(xiàn)[23]已優(yōu)化錐柱狀型孔傾角,而種群壓力難以通過數(shù)學(xué)模型描述,主要受種層厚度的影響。本文結(jié)合離散元仿真軟件EDEM和高速攝像技術(shù),分析種層厚度和轉(zhuǎn)速對油菜、小麥充種性能的影響及其機(jī)理,明確較優(yōu)的種層厚度,為改進(jìn)種層調(diào)節(jié)板傾角和優(yōu)化油麥兼用供種裝置結(jié)構(gòu)提供理論依據(jù)。
1.1 供種裝置結(jié)構(gòu)
油麥兼用型氣送式集排器如圖1所示,包括供種裝置、供料裝置、送種管道、增壓管、分配器、導(dǎo)種管、風(fēng)機(jī)和變速裝置等。供種裝置向供料裝置定量供種,風(fēng)機(jī)產(chǎn)生的高速氣流將種子流吹入送種管道進(jìn)行混合、輸送,在分配器中均勻分配成行,經(jīng)輸種管進(jìn)入開溝器完成播種。本文以幅寬為2 m的油麥兼用型氣送式集排器進(jìn)行研究,其主要技術(shù)參數(shù)如表1所示,其中供種裝置是調(diào)節(jié)供種量和影響播種質(zhì)量的關(guān)鍵部件。
圖1 油麥兼用型氣送式集排器結(jié)構(gòu)示意圖Fig.1 Structure of air-assisted centralized metering device for rapeseed and wheat
表1 氣送式集排器主要技術(shù)參數(shù)Table 1 Main parameters of air-assisted centralized metering device
供種裝置結(jié)構(gòu)如圖2所示,其工作包括充種、攜種和供種3個過程。供種裝置工作時,種子由進(jìn)種口進(jìn)入由殼體、種層調(diào)節(jié)板和供種機(jī)構(gòu)形成的充種室中,供種機(jī)構(gòu)順時針轉(zhuǎn)動形成種子強(qiáng)制運(yùn)動層和摩擦拖動層,種子在錐孔輪型孔間的斜齒擾動、重力和種群壓力(攪種裝置順時針轉(zhuǎn)動向充種區(qū)輸送小麥種子增大種群側(cè)向壓力)共同作用下充入型孔。充種后經(jīng)攜種區(qū)和供種區(qū)完成定量供種過程。種層調(diào)節(jié)板通過調(diào)節(jié)縱向距離h(種層調(diào)節(jié)板底面與錐孔輪水平中心面的間距)與橫向距離l(供種機(jī)構(gòu)中心與種層調(diào)節(jié)板底角的橫向距離)改變充種區(qū)種層厚度,從而改變充種性能。
圖2 油麥兼用型供種裝置結(jié)構(gòu)示意圖Fig.2 Structure of seed feed device for rapeseed and wheat
1.2 材料特性
EDEM仿真中將供種裝置幾何體模型簡化為外殼、供種機(jī)構(gòu)和攪種裝置3個部分,根據(jù)供種裝置加工所用材料,外殼設(shè)定為鋁合金,供種機(jī)構(gòu)和攪種裝置為工程塑料ABS(acrylonitrile butadiene styrene copolymer)。油菜籽的球形度較高,小麥種子呈橢球狀,根據(jù)油菜和小麥種子的三軸尺寸建立的仿真顆粒模型如圖3所示。油菜和小麥種子表面均光滑,仿真中選取Hertz-Mindlin無滑動接觸模型。種子、鋁合金和工程塑料ABS的材料特性及其相互間的力學(xué)特性參數(shù)[24-26]見表2。
圖3 油菜與小麥種子的仿真顆粒模型Fig.3 Simulation model of rapeseed and wheat seed
表2 種子與材料特性參數(shù)Table 2 Values of seed and material properties used in,EDEM
1.3 模型的驗證
為檢驗仿真模型及參數(shù)的合理性,對比分析了供種裝置EDEM仿真與臺架試驗結(jié)果。試驗以氣送式集排器供種裝置為試驗裝置和錐柱孔傾角[23](0°、10°、20°和30°)為試驗因素,錐孔輪數(shù)量和轉(zhuǎn)速分別為2和20 r/min,小麥供種時攪種裝置與供種機(jī)構(gòu)的轉(zhuǎn)速比為1.0(下同),每個處理重復(fù)6次。以20個型孔充種數(shù)量平均值為評價指標(biāo),比較EDEM仿真與臺架試驗條件下充種數(shù)量的相對誤差。
仿真與臺架試驗結(jié)果比較分析(表3):在不同錐柱孔傾角條件下,型孔充種數(shù)量仿真值與試驗值的相對誤差在9%范圍內(nèi),表明該模型與參數(shù)選擇能較好地模擬供種裝置充種過程和反映種子顆粒的運(yùn)動與力學(xué)特性。
表3 仿真與臺架試驗結(jié)果對比Table 3 Results between simulation test and bench experiment
2.1 試驗方法
為研究種層調(diào)節(jié)板傾角對種群充種性能的影響,開展了種層調(diào)節(jié)板傾角對種群作用力影響的仿真研究。仿真模型設(shè)定3種種層調(diào)節(jié)板傾角,分別為50°、60°和70°,如圖4所示。油菜和小麥種子數(shù)量為50 000和6 500,輸出供種機(jī)構(gòu)受到的種群壓力。
為分析不同種層厚度對充種性能的影響,通過改變種層調(diào)節(jié)板安裝位置調(diào)節(jié)種層厚度。研究縱向位置的影響時,供種油菜時設(shè)定縱向距離h為0~25 mm,設(shè)6個水平;供種小麥時縱向距離h為15、20和25 mm,增量均為5 mm,橫向距離為46 mm。研究橫向位置的影響時,橫向距離l設(shè)50、46和42 mm 3個水平,供種油菜時縱向距離為10、15和20 mm 3種條件,供種小麥時縱向距離為20 mm,轉(zhuǎn)速均為20 r/min。速度對充種性能仿真試驗轉(zhuǎn)速為10~50 r/min,設(shè)5個水平,增量為10 r/min,縱向距離h和橫向距離l分別為15和46 mm。仿真中采用60°種層調(diào)節(jié)板,第1.0 s時供種機(jī)構(gòu)開始轉(zhuǎn)動,輸出不同處理下1.2~7 s供種機(jī)構(gòu)受到的種群壓力、種群與供種機(jī)構(gòu)切向力(以下簡稱切向力)和單個型孔充種數(shù)量,取其平均值。
圖4 不同種層調(diào)節(jié)板的結(jié)構(gòu)示意圖Fig.4 Overall diagram of different regulating plate of seed layer
2.2 仿真結(jié)果與分析
2.2.1 種層調(diào)節(jié)板傾角對種群壓力的影響
圖5表明,傾角為50°種層調(diào)節(jié)板時種群對供種機(jī)構(gòu)壓力明顯低于60°和70°種層調(diào)節(jié)板,而60°和70°種層調(diào)節(jié)板之間的種群壓力差異較小。傾角為50°、60°和70°種層調(diào)節(jié)板條件下單個型孔油菜充種數(shù)量分別為11.98、13.42和 13.20,其變異系數(shù)分別為 11.47%、8.91%和10.03%;單個型孔小麥充種數(shù)量分別為0.60、1.49和1.31,其變異系數(shù)分別為92.28%、38.83%和63.67%。傾角為60°種層調(diào)節(jié)板作用下的種群壓力較大,充種數(shù)量及其變異系數(shù)均較優(yōu),說明傾角為60°種層調(diào)節(jié)板具有較好調(diào)節(jié)種層厚度的作用。
圖5 種層調(diào)節(jié)板傾角對種群壓力的影響Fig.5 Effects of regulating plate’s inclined angle on compressive force
2.2.2 種層厚度對種群壓力的影響
縱向距離為0~25 mm范圍內(nèi),供種機(jī)構(gòu)受到的種群壓力和切向力隨縱向距離增加而增加(圖6);充種過程中隨縱向距離增加,供種機(jī)構(gòu)與種群間的作用力的變化劇烈程度增加,說明適當(dāng)增加縱向種層厚度可以提高種群擾動及種群壓力,從而提高充種性能。
圖6 種層厚度對種群壓力和切向力的影響Fig.6 Effects of seed layer thickness on compressive and tangential force
縱向距離為10~20 mm時,油菜供種的種群壓力和切向力均隨橫向距離增加而降低,這是由于供種機(jī)構(gòu)與種層調(diào)節(jié)板的距離減小,供種機(jī)構(gòu)擾動的種群受到種層調(diào)節(jié)板的阻礙,增大了對種群的擠壓力。供種小麥時切向力隨縱向距離和橫向距離增加呈拋物線變化趨勢,明顯高于油菜充種的切向力。因此,在保證種群對供種機(jī)構(gòu)具有較大壓力時,可適當(dāng)增加種層調(diào)節(jié)板與供種機(jī)構(gòu)之間的距離,以保證充種率及降低種子破損率;縱向距離為15~20 mm和橫向距離適中時較優(yōu)。
2.2.3 轉(zhuǎn)速對壓力的影響
從圖7可知,不同轉(zhuǎn)速下種群壓力差異很小,切向力隨轉(zhuǎn)速增加而增加。轉(zhuǎn)速增加10 r/min,單個型孔充種數(shù)量降低5%,其標(biāo)準(zhǔn)差隨轉(zhuǎn)速增加有所增加。結(jié)果表明,相同種層厚度條件下,不同轉(zhuǎn)速的種群壓力趨于穩(wěn)定,轉(zhuǎn)速主要影響其切向力;由于轉(zhuǎn)速增加使單個型孔充種時間縮短,其充種數(shù)量明顯減少。
圖7 轉(zhuǎn)速對壓力與種子數(shù)量的影響Fig.7 Effects of rotational speed on force and No.of seeds
2.2.4 種群壓力與充種性能的關(guān)系
從種群壓力與充種性能的關(guān)系可知(圖8),型孔充種顆粒數(shù)與種群壓力呈正相關(guān),表明增加種群壓力能夠提高型孔的充填率。型孔充種數(shù)量變異系數(shù)隨種群壓力增加呈拋物線變化趨勢,油菜與小麥充種時型孔充種數(shù)量變異系數(shù)分別在0.20~0.25 N和0.28~0.40 N范圍內(nèi)較低。油菜和小麥充種時縱向距離分別為15和20 mm時種群壓力位于該區(qū)間。
圖8 種群壓力與充種性能的關(guān)系Fig.8 Coefficients between compressive force of seeds and seed filling performance
3.1 材料與方法
試驗以華油雜62和鄭麥9023為試驗材料,華油雜62的千粒質(zhì)量為4.67 g,含水率為7.15%;鄭麥9023的千粒質(zhì)量為44.87 g,含水率為8.44%。采用pco.dimax HD(德國PCO公司)、Cam Ware V3.09高速攝像系統(tǒng)和供種裝置試驗臺進(jìn)行供種裝置充種性能試驗,試驗設(shè)備及裝置如圖9所示。試驗中設(shè)定高速攝像時長為30 s,拍攝速度為500幀/s;攝像方向為供種裝置正面水平,攝影區(qū)域忽略供種機(jī)構(gòu)軸向方向。
圖9 供種裝置高速攝像試驗Fig.9 High speed photography experiment of seed feed device
為獲得較優(yōu)的種層厚度以提高供種性能,并驗證EDEM仿真的合理性,開展了不同轉(zhuǎn)速條件下種層厚度對充種性能影響的試驗。種層調(diào)節(jié)板傾角分別為50°、60°和70°,供種油菜和小麥時縱向距離h分別為15和20 mm。種層厚度通過種層調(diào)節(jié)板位置決定,設(shè)縱向距離h和橫向距離l共2個因素,供種油菜時縱向距離h設(shè)15和20 mm 2個水平,橫向距離l設(shè)42、46和50 mm 3個水平;供種小麥時縱向距離h為20mm。油菜供種時轉(zhuǎn)速為10~40 r/min,小麥為20~50 r/min[23],增量為10 r/min。采用高速攝像系統(tǒng)拍攝種群的初始狀態(tài)與供種時的充種狀態(tài),分析圖片獲得種子初始充填角θ0和充填角θ,如圖10所示。
圖10 油菜、小麥充種區(qū)的種群形態(tài)Fig.10 State of seeds in filling zone for rapeseed and wheat
以GB/T 9478-2005“谷物條播機(jī)試驗方法”為依據(jù),開展了種層厚度和轉(zhuǎn)速對供種性能影響的試驗。試驗在供種裝置試驗臺測定,試驗中油菜、小麥供種時錐孔輪數(shù)量分別為1和4。用容器收集供種口排出的種子,稱量凈質(zhì)量,采集時間為1 min,重復(fù)6次,計算供種速率、供種速率穩(wěn)定性變異系數(shù)和種子破損率[23]。應(yīng)用SAS 9.0軟件進(jìn)行方差分析。
3.2 結(jié)果與分析
3.2.1 種層調(diào)節(jié)板傾角對充種性能的影響
表4表明,50°種層調(diào)節(jié)板的初始充填角顯著低于60°和70°。在轉(zhuǎn)速為10~40 r/min條件下,50°種層調(diào)節(jié)板的充填角明顯低于60°和70°,60°與70°種層調(diào)節(jié)板之間差異較小。油菜供種時,50°種層調(diào)節(jié)板的充填角均低于初始充填角,60°和70°種層調(diào)節(jié)板的充填角在40 r/min時高于初始充填角;小麥供種時,3種傾角種層調(diào)節(jié)板的充填角均高于初始充填角,其原因是供種小麥時攪種裝置增強(qiáng)了種群擠壓力。充填角隨轉(zhuǎn)速增加而增加,說明轉(zhuǎn)速增加增強(qiáng)了種群擾動,從而增加了充填角。綜合油麥兼用及EDEM仿真結(jié)果,60°種層調(diào)節(jié)板能保持較高充填角,保證種子充種性能。
表4 種層調(diào)節(jié)板傾角對充種性能的影響Table 4 Effects of regulating plate’s structure on seed filling performance
3.2.2 種層厚度對充種性能的影響
油菜充種的初始充填角隨縱向距離增加而增加(表5),縱向距離越大,種群進(jìn)入充種室的初始充填高度越高;橫向距離減小使種層調(diào)節(jié)板與供種機(jī)構(gòu)的間距縮小,受種子休止角的影響,初始充填角也隨之增加。在轉(zhuǎn)速為10~40 r/min條件下,縱向距離為20 mm充填角明顯高于15 mm;充填角隨轉(zhuǎn)速增加和橫向距離降低而增加。在縱向距離為15 mm,橫向距離為50和46 mm時,充填角低于初始充填角的轉(zhuǎn)速分別為低于30 r/min和20 r/min;橫向距離為42 mm時,充填角均高于初始充填角;縱向距離為20 mm時充填角高于初始充填角的轉(zhuǎn)速較15 mm明顯降低。種層厚度對小麥種子充填角的影響與油菜種子趨勢一致,但其充填角明顯高于初始充填角,在40~50 r/min時充填角高達(dá)80°。充填角低于初始充填角時,供種裝置主要通過型孔囊種;高于初始充填角時,充種依靠切向力引起的“種群拖帶”輔助。由于油菜種子流動性較好,縱向距離15 mm利于保持較優(yōu)的充填角;小麥種子流動性較差,攪種裝置保持連續(xù)輸種并增加種群擠壓力。
表5 種層厚度對油菜、小麥充填角的影響Table 5 Effects of seed layer thickness on seed filling angle for rapeseed and wheat
3.2.3 種層厚度對供種性能的影響
表6和表7表明,在10~40 r/min時,油菜、小麥的供種速率均隨縱向距離增加顯著增加,隨橫向距離增加顯著降低,小麥供種速率隨橫向距離增加速率較油菜大;供種速率隨轉(zhuǎn)速增加呈線性增加趨勢,油菜的供種速率變異系數(shù)均低于1.0%。在縱向距離為15 mm和橫向距離為46 mm時,供種速率變異系數(shù)低于0.4%。小麥供種速率以橫向距離為46 mm較高,其變異系數(shù)在20~40 r/min范圍內(nèi)低于0.75%;種子破損率隨橫向距離降低而增加,但均低于0.1%。綜合考慮種子供種量和供種穩(wěn)定性,油菜、小麥供種時較優(yōu)的縱向距離分別為15和20 mm,橫向距離均為46 mm左右,該結(jié)果與EDEM仿真結(jié)果一致。
表6 種層厚度對油菜供種性能的影響Table 6 Effects of seed layer thickness on seed feed performance for rapeseed
表7 種層厚度對小麥供種性能的影響Table 7 Effects of seed layer thickness on seed feed performance for wheat
3.2.4 種群壓力、充填角與供種性能的相關(guān)關(guān)系
表8表明,種群壓力、切向力、初始充填角、充填角與供種速率均呈極顯著正相關(guān),種群壓力和切向力與初始充填角和充填角均呈極顯著正相關(guān)。種群壓力和切向力與充填角均呈線性關(guān)系(式1),其決定系數(shù)分別為0.956 9和0.920 0。因此,增加縱向距離和降低橫向距離可增加種群壓力、切向力和充填角,從而增加了供種速率。種層厚度和轉(zhuǎn)速影響充填角分別源于種群壓力和切向力。
式中y為充填角,(°);Pc為種群壓力,N;Pt為種群與供種機(jī)構(gòu)間切向力,N。
表8 種群壓力、充填角與供種性能的相關(guān)系數(shù)Table 8 Coefficients between compressive force,filling angle and seed feed performance
為進(jìn)一步驗證EDEM仿真及臺架試驗結(jié)果,考察優(yōu)化的種層厚度條件下的播種效果,分別于2015年9月9日和10月3日在華中農(nóng)業(yè)大學(xué)校內(nèi)現(xiàn)代農(nóng)業(yè)科技園開展了油菜供種性能試驗,如圖11a所示,地表土壤含水率平均為14.74%。試驗以2BFQ-6油菜精量聯(lián)合直播機(jī)為平臺,牽引動力為東方紅-LX854,機(jī)組前進(jìn)速度為2.52 km/h,播種8行,行距為200 mm。依據(jù)仿真與臺架試驗結(jié)果,供種裝置的種層調(diào)節(jié)板設(shè)定縱向距離和橫向距離分別為15和46 mm。油菜播后20 d,在田間選取6段,以1 m為測量單位,測定8行的總苗數(shù)及其穩(wěn)定性變異系數(shù),出苗效果如圖11b所示。該集排器直播油菜田間種植密度為38~50株/m2,穩(wěn)定性變異系數(shù)為10.64%。
圖11 油菜田間試驗與出苗效果Fig.11 Field experiment and emergence performance of rapeseed
1)本文以種群壓力、切向力和充種數(shù)量為指標(biāo),對EDEM仿真結(jié)果進(jìn)行了分析:傾角為60°種層調(diào)節(jié)板作用下的種群壓力較大,充種數(shù)量及其變異系數(shù)均較優(yōu);增加縱向距離和降低橫向距離有助于增加種群壓力和切向力;隨轉(zhuǎn)速增加,種群壓力趨于穩(wěn)定,切向力隨之增加,單個型孔充種數(shù)量降低5%。
2)轉(zhuǎn)速為10~40 r/min時,50°種層調(diào)節(jié)板的充填角明顯低于60°和70°,60°種層調(diào)節(jié)板能保持較高充填角;初始充填角和充填角均隨縱向距離和轉(zhuǎn)速增加而增加,隨橫向距離增加而降低;縱向距離為15 mm時油菜種子依靠型孔結(jié)構(gòu)充種,小麥主要依靠種群拖帶充種。
3)油菜、小麥的供種速率均隨縱向距離增加和橫向距離減小而增加。種群壓力、切向力、充填角與供種速率均呈極顯著正相關(guān),種群壓力和切向力與充填角均呈極顯著正相關(guān)。種層厚度和轉(zhuǎn)速影響充填角分別來自種群壓力和切向力。在油菜、小麥縱向距離分別為15和20 mm,橫向距離為46 mm時,供種速率變異系數(shù)和破損率分別低于1.0%和0.1%。在優(yōu)化種層厚度條件下,田間試驗集排器直播油菜田間密度為38~50株/m2,穩(wěn)定性變異系數(shù)為10.64%,滿足農(nóng)藝種植要求。
本研究中小麥供種較優(yōu)的種層厚度是在特定攪種裝置與錐孔輪的轉(zhuǎn)速比恒定條件下獲得,但攪種裝置對種群壓力和充種性能也有較大影響,需進(jìn)一步深入研究。
[1]李寶筏.農(nóng)業(yè)機(jī)械學(xué)[M].北京:中國農(nóng)業(yè)大學(xué)出版社,2003.
[2]Downs H W,Taylor R K.Evaluation of pneumatic granular herbicide applicators for seeding small grains in Oklahoma[J]. Applied Engineering in Agriculture,1986,2(2):58-63.
[3]史嵩,張東興,楊麗,等.基于EDEM軟件的氣壓組合孔式排種器充種性能模擬與驗證[J].農(nóng)業(yè)工程學(xué)報,2015,31(3):62-69. Shi Song,Zhang Dongxing,Yang Li,et al.Simulation and verification of seed-filling performance of pneumatic-combined holes maize precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015,31(3):62-69.(in Chinese with English abstract)
[4] 劉宏新,徐曉萌,郭麗峰,等.具有復(fù)合充填力的立式淺盆型排種器充種機(jī)理[J].農(nóng)業(yè)工程學(xué)報,2014,30(21):9-16. Liu Hongxin,Xu Xiaomeng,Guo Lifeng,et al.Research on seed-filling mechanism of vertical shallow basin type seedmetering device with composite filling force[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(21):9-16.(in Chinese with English abstract)
[5] 陳進(jìn),李建華,李耀明.氣吸振動盤式精密播種機(jī)吸種高度控制與加種裝置[J].農(nóng)業(yè)機(jī)械學(xué)報,2013,44(增刊1):67-71. Chen Jin,Li Jianhua,Li Yaoming.Analysis of suction height and seed-adding device for suction-vibration precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013,33(Supp.1):67-71.(in Chinese with English abstract)
[6] 陳進(jìn),李耀明.氣吸振動式播種試驗臺內(nèi)種子運(yùn)動規(guī)律的研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2002,33(1):47-50. Chen Jin,Li Yaoming.Study on seeds movement law in sowing test stand with suction and vibration[J].Transactions of the Chinese Society for Agricultural Machinery,2002,33(1):47-50. (in Chinese with English abstract)
[7] 張石平,陳進(jìn),李耀明.振動氣吸式穴盤精量播種裝置種子群“沸騰”運(yùn)動分析[J].農(nóng)業(yè)工程學(xué)報,2008,24(7):20-24. Zhang Shiping,Chenjin,Li Yaoming.Analysisofseeds“Boiling”motion on vibrational air-suction tray seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2008,24(7):20-24.(in Chinese with English abstract)
[8]董春旺,毛樹春,胡斌,等.盤吸式穴盤播種機(jī)拋振系統(tǒng)運(yùn)動分析與優(yōu)化[J].農(nóng)業(yè)工程學(xué)報,2010,26(6):124-128. Dong Chunwang,Mao Shuchun,Hu Bin,et al.Motion analysis and optimization on ejection mechanism of air-suction tray seeder[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2010,26(6):124-128. (in Chinese with English abstract)
[9]羅錫文,蔣恩臣,王在滿,等.開溝起壟式水稻精量穴直播機(jī)的研制[J].農(nóng)業(yè)工程學(xué)報,2008,24(12):52-56. Luo Xiwen,Jiang Enchen,Wang Zaiman,et al.Precision rice hill-drop drilling machine[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2008,24 (12):52-56.(in Chinese with English abstract)
[10]邢赫,臧英,王在滿,等.水稻氣力式排種器分層充種室設(shè)計與試驗[J].農(nóng)業(yè)工程學(xué)報,2015,31(4):42-48. Xing He,Zang Ying,Wang Zaiman,et al.Design and experiment of stratified seed-filling room on rice pneumatic metering device[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31 (4):42-48.(in Chinese with English abstract)
[11]李兆東,李姍姍,曹秀英,等.油菜精量氣壓式集排器排種性能試驗[J].農(nóng)業(yè)工程學(xué)報,2015,31(18):17-25. Li Zhaodong,Li Shanshan,Cao Xiuying,et al.Seeding performance experiment of pneumatic-typed precision centralized metering device[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31 (18):17-25.(in Chinese with English abstract)
[12]Zhu H P,Zhou Z Y,Yang R Y,et al.Discrete particle simulation of particulate systems:A review of major applications and findings[J].Chemical Engineering Science,2008,63:5728-5770.
[13]Tijskens E,Ramon H,Baerdemaeker J D.Discrete element modelling for process simulation in agriculture[J].Journal of Sound and Vibration,2003,266:493-514.
[14]Skrinjar O,Larsson P L.On discrete element modeling of compaction of powders with size ratio[J].Computational Materials Science,2004,31:131-146.
[15]Rajia A O,Favier J F.Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method.II:Compression of oilseeds[J]. Journal of Food Engineering,2004,64:373-380.
[16]Rezvani F,Azargoshasb H,Jamialahmadi O,et al.Experimental study and CFD simulation of phenol removal by immobilization of soybean seed coat in a packed-bed bioreactor[J].Biochemical Engineering Journal,2015,101:32-43.
[17]Wojtkowski M,Pecen J,Horabik J,et al.Rapeseed impact against a flat surface:Physical testing and DEM simulation with two contact models[J].Powder Technology,2010,198:61-68.
[18]Lenaerts B,Aertsen T,Tijskens E,et al.Simulation of grainstraw separation by Discrete Element Modeling with bendable straw particles[J].Computers and Electronics in Agriculture, 2014,101:24-33.
[19]李耀明,趙湛,陳進(jìn),等.氣吸振動式排種器種盤內(nèi)種群運(yùn)動的離散元分析[J].農(nóng)業(yè)機(jī)械學(xué)報,2009,40(3):56-59,76. Li Yaoming,Zhao Zhan,Chen Jin,et al.Discrete element method simulation of seeds motion in vibrated bed of precision vacuum seeder[J].Transactions of the Chinese Society for Agricultural Machinery,2009,40(3):56-59,76.(in Chinese with English abstract)
[20]Karayel D,Wiesehoff M,Ozmerzi A,et al.Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J].Computersand Electronics in Agriculture,2006,50:89-96.
[21]王在滿,羅錫文,黃世醒,等.型孔式水稻排種輪充種過程的高速攝像分析[J].農(nóng)業(yè)機(jī)械學(xué)報,2009,40(12):56-61. Wang Zaiman,Luo Xiwen,Huang Shixing,et al.Rice seeds feeding process in cell wheel based on high-speed photography technology[J].Transactions of the Chinese Society for Agricultural Machinery,2009,40(12):56-61.(in Chinese with English abstract)
[22]叢錦玲,廖慶喜,曹秀英,等.油菜小麥兼用排種盤的排種器充種性能[J].農(nóng)業(yè)工程學(xué)報,2014,30(8):30-39. Cong Jinling,Liao Qingxi,Cao Xiuying,et al.Seed filling performance of dual-purpose seed plate in metering device for both rapeseed&wheat seed[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014,30(8):30-39.(in Chinese with English abstract)
[23]雷小龍,廖宜濤,李兆東,等.油麥兼用型氣送式集排器供種裝置設(shè)計與試驗[J].農(nóng)業(yè)工程學(xué)報,2015,31(20):10-18. Lei Xiaolong,Liao Yitao,Li Zhaodong,et al.Design and experiment of seed feed device in air-assisted centralized metering device for rapeseed and wheat[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(20):10-18.(in Chinese with English abstract)
[24]叢錦玲.油菜小麥兼用型氣力式精量排種系統(tǒng)及其機(jī)理研究[D].武漢:華中農(nóng)業(yè)大學(xué),2014.Cong Jinling.Study on Seeding System and Mechanism of Pneumatic Precision Metering Device for Wheat and Rapeseed [D].Wuhan:Huazhong Agricultural University,2014.(in Chinese with English abstract)
[25]曹秀英,廖宜濤,廖慶喜,等.油菜離心式精量集排器枝狀閥式分流裝置設(shè)計與試驗[J].農(nóng)業(yè)機(jī)械學(xué)報,2015,46(9):77-84. Cao Xiuying,Liao Yitao,Liao Qingxi,et al.Design and experiment on value-branch distributor of centrifugal precision metering device for rapeseed[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(9):77-84.(in Chinese with English abstract)
[26]Zhao Zhan,Li Yaoming,Liang Zhenwei,et al.DEM simulation and physical testing of rice seed impact against a grain loss sensor[J].Biosystem Engineering,2013,116:410-419.
Effects of seed layer thickness on seed filling performance of seed feeding device for rapeseed and wheat
Lei Xiaolong,Liao Yitao,Li Zhaodong,Zhang Wenyu,Cao Xiuying,Li Shanshan,Liao Qingxi※
(College of Engineering,Huazhong Agricultural University,Wuhan 430070,China)
Seed feeding device determines the seeding performance of the air-assisted centralized metering system.Seed filling performance is the key parameter to affect feeding quality of seed feeding device.As seeds′flow properties and compressive force significantly affect seed filling performance,the effects of seed layer thickness on filling performance for rapeseed and wheat were studied in this research.EDEM(engineering discrete element method)software was used for simulating the filling performance and high speed camera technology was used for executing the experiment.Adjustable regulating plate was adjusted for seed layer thickness under different treatments.In EDEM simulation,the experimental factors were inclined angle of adjustable regulating plate with 3 levels(ranging from 50°to 70°),longitudinal distance of regulating plate with 6 levels(ranging from 0 to 25 mm),lateral distance with 3 levels(ranging from 42 to 50 mm)and rotational speed with 5 levels(ranging from 10 to 50 r/min)in single-factor test.Seeds′compressive force,tangential force and number of seeds in model-hole were used as test indices in simulation.Bench test was performed on test rig by using Huayouza 62 and Zhengmai 9023 as materials,while field experiment was carried out in the modern agriculture science park of Huazhong Agricultural University in 2015.The 3 inclined angles of adjustable regulating plate,2 longitudinal distances and 3 lateral distances were evaluated for seed filling performance at 5 rotational speeds(10,20,30,40 and 50 r/ min).Angles of adjustable regulating plate were 50°,60°and 70°using complete randomized design(one-factor), longitudinal distances were 15 and 20 mm and lateral distances were 42,46 and 50 mm with two-factor full factorial test. Seeds′initial filling angle,filling angle which was measured by high speed camera using pco.dimax HD system,seed feeding rate,coefficient of variation of seed feeding rate and damage rate were dependent variables in bench experiments. The relationships between seed feeding rate,coefficient of variation of seed feeding rate and seeds′compressive force, tangential force,filling angle were analyzed.Results showed that:1)Seeds′compressive force,seed filling angle and feeding performance of regulating plate with the angle of 60°were better than other parameters.Seeds′compressive and tangential force increased with the increase of longitudinal distance and the decrease of lateral distance.Coefficient of variance of seeds′number decreased and then rose up.Seeds′compressive force was generally stable and tangential force increased with the increase of rotational speed.The number of seeds in each model-hole decreased by 5%with the rotational speed increasing of 10 r/min.2)When rotational speed was within the range of 10~50 r/min,seed initial filling angle,filling angle and seed feeding rate rose with the increasing of longitudinal distance and the decreasing of lateral distance.In addition,the coefficient of variation of seed feeding rate decreased and then rose up with the increasing of longitudinal distance and the decreasing of lateral distance.Seeds′compressive force,tangential force and seed filling angle were positively and significantly correlated with seed feeding rate.Effects of seed layer thickness and rotational speed on seed filling angle mainly resulted from compressive force and tangential force,respectively.Regarding the agronomic requirements,the ideal parameters were longitudinal distance of 15 and 20 mm for rapeseed and wheat,and lateral distance of 46 mm.Under the combination condition of optimum seed layer thickness,the coefficient of variation of seed feeding rate and the damage rate for the seed feeding device were less than 1.0%and 0.1%,respectively.3)Field experiments demonstrated that planting density was 38~50 plants per square meter and their coefficient of variation was 10.64%using the air-assisted centralized metering device under the condition of optimum seed layer thickness.Results showed that the use of this metering device made the emergence performance of rapeseed meet the agronomic requirements.This study investigated the mechanism of seed layer thickness which affected seed filling performance in seed feeding device for rapeseed and wheat.The investigation of seed layer thickness in this research can provide the basis for optimizing the structure of regulating plate and improving the feeding performance.
agricultural machinery;crops;EDEM simulation;high speed photography;seed feed device;seed filling performance;rapeseed;wheat
10.11975/j.issn.1002-6819.2016.06.002
S223.2+3
A
1002-6819(2016)-06-0011-09
2015-10-26
2016-01-22
國家自然科學(xué)基金資助項目(51575218、51275197、51405180);國家油菜產(chǎn)業(yè)體系專項資助項目(CARS-13);中央高?;究蒲袠I(yè)務(wù)費資助項目(2662015PY133)
雷小龍,男,四川營山人,博士生,主要從事現(xiàn)代農(nóng)業(yè)裝備設(shè)計與測控研究。武漢 華中農(nóng)業(yè)大學(xué)工學(xué)院,430070。Email:leixl1989@163.com※通信作者:廖慶喜,男,湖北江陵人,教授,博士生導(dǎo)師,主要從事油菜機(jī)械化生產(chǎn)技術(shù)與裝備等方面的研究。武漢 華中農(nóng)業(yè)大學(xué)工學(xué)院,430070。Email:liaoqx@mail.hzau.edu.cn