国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx

基于BP神經(jīng)網(wǎng)絡(luò)的Ni-Al2O3鍍層粒子復(fù)合量預(yù)測(cè)研究*

2016-05-17 03:49:43王金東高媛媛夏法鋒
功能材料 2016年1期
關(guān)鍵詞:BP神經(jīng)網(wǎng)絡(luò)

王金東,趙 巖,高媛媛,曹 陽(yáng),夏法鋒

(1. 東北石油大學(xué) 機(jī)械科學(xué)與工程學(xué)院,黑龍江 大慶 163318;

2. 中國(guó)石油管道大慶輸油氣分公司,黑龍江 大慶 163458)

?

基于BP神經(jīng)網(wǎng)絡(luò)的Ni-Al2O3鍍層粒子復(fù)合量預(yù)測(cè)研究*

王金東1,趙巖1,高媛媛2,曹陽(yáng)2,夏法鋒1

(1. 東北石油大學(xué) 機(jī)械科學(xué)與工程學(xué)院,黑龍江 大慶 163318;

2. 中國(guó)石油管道大慶輸油氣分公司,黑龍江 大慶 163458)

摘要:采用超聲波輔助電沉積法在A3鋼表面制備了Ni-Al2O3鍍層,通過(guò)BP神經(jīng)網(wǎng)絡(luò)對(duì)不同工藝參數(shù)下制備鍍層的Al2O3粒子復(fù)合量進(jìn)行預(yù)測(cè),最后利用透射電鏡(TEM)觀察鍍層結(jié)構(gòu)組織。結(jié)果表明,該BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)為3×8×1時(shí),其預(yù)測(cè)值與真實(shí)值的擬合度R=0.9991,相對(duì)誤差的最大值與最小值分別為1.71%與0.74%。TEM分析表明,當(dāng)Al2O3粒子濃度9 g/L,電流密度3 A/dm2,溫度40 ℃時(shí),Ni-Al2O3鍍層組織較為緊密,其平均粒徑約為20 nm。

關(guān)鍵詞:BP神經(jīng)網(wǎng)絡(luò);Ni-Al2O3鍍層;粒子復(fù)合量

1引言

超聲波輔助電沉積是一種通過(guò)在電沉積過(guò)程中施加超聲波場(chǎng),使鍍液中粒子能夠均勻的沉積于鍍層表面的方法[1-4]。目前,有關(guān)不同工藝參數(shù)對(duì)Ni-Al2O3鍍層性能影響的報(bào)道較多,但基于BP神經(jīng)網(wǎng)絡(luò)對(duì)Ni-Al2O3鍍層粒子復(fù)合量預(yù)測(cè)的研究較少[5-7]。為此,本文通過(guò)超聲波輔助電沉積法在A3鋼表面制備N(xiāo)i-Al2O3鍍層,并采用BP神經(jīng)網(wǎng)絡(luò)對(duì)鍍層粒子復(fù)合量進(jìn)行預(yù)測(cè)研究,最后利用透射電鏡(TEM)觀察鍍層的組織結(jié)構(gòu)。該研究可為Ni-Al2O3鍍層在機(jī)械設(shè)備再制造技術(shù)的應(yīng)用提供一定技術(shù)參考。

2實(shí)驗(yàn)

2.1實(shí)驗(yàn)材料及工藝參數(shù)

采用尺寸20 mm×20 mm×1 mm的A3鋼片作為實(shí)驗(yàn)基材,使用純度大于99%的鎳板作為陽(yáng)極。實(shí)驗(yàn)所用鍍液為瓦特型鍍鎳液,Ni-Al2O3鍍層制備過(guò)程所需試劑及工藝參數(shù)見(jiàn)表1。

2.2實(shí)驗(yàn)過(guò)程

采用超聲波輔助電沉積方法在A3鋼表面制備N(xiāo)i-Al2O3鍍層。其中,脈沖電源是E/PS 3016-10B型脈沖電源,超聲波場(chǎng)由KQ-1500VDE型超聲波清洗器產(chǎn)生,利用XRD-7000型X射線衍射儀(XRD)對(duì)Ni-Al2O3鍍層中Al2O3粒子含量進(jìn)行測(cè)量。最后,通過(guò)Tecnai-G2-20型透射電鏡(TEM)觀察不同工藝參數(shù)下制備N(xiāo)i-Al2O3鍍層組織結(jié)構(gòu)。

表1Ni-Al2O3鍍層的鍍液成分及制備工藝

Table 1 Plating conditions and process for preparing Ni-Al2O3coatings

化學(xué)試劑參數(shù)工藝條件參數(shù)NiSO4·6H2O300g/L超聲波功率180WNiCl2·6H2O40g/L電流密度1~5A/dm2H3BO335g/LAl2O3粒子濃度5~10g/L表面活性劑20mg/LpH值4.5西曲溴銨0.5mg/L溫度20~50℃

2.3粒子復(fù)合量計(jì)算

Ni-Al2O3鍍層粒子復(fù)合量的計(jì)算公式

(1)

式中,W表示鍍層中Al2O3質(zhì)量分?jǐn)?shù)(%),M1表示Al2O3相對(duì)分子質(zhì)量,M2表示Al相對(duì)原子質(zhì)量,W0表示XRD測(cè)量鍍層中鋁元素含量(%)。

2.4BP神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)及表征

根據(jù)Ni-Al2O3鍍層制備工藝,本文采用3個(gè)分量作為BP神經(jīng)網(wǎng)絡(luò)的輸入層,即Al2O3粒子濃度(x1)、電流密度(x2)和溫度(x3),采用1個(gè)分量作為輸出層,即Ni-Al2O3鍍層粒子復(fù)合量(y),該BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)如圖1所示。

圖1 BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖

3結(jié)果與分析

3.1BP神經(jīng)網(wǎng)絡(luò)測(cè)試

利用Matlab7.0軟件建立BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)[8-9],圖2為BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)在該條件下的均方根誤差、隱含層和神經(jīng)元數(shù)量的關(guān)系。由圖可見(jiàn),當(dāng)BP模型的神經(jīng)元數(shù)為16個(gè)、隱含層數(shù)為8個(gè)時(shí),BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的均方根誤差最小,其最小值為1.32%。因此,本文采用BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)為3×8×1,經(jīng)計(jì)算,該結(jié)構(gòu)實(shí)驗(yàn)值與預(yù)測(cè)值的擬合相似度R=0.9991。

圖2BP神經(jīng)網(wǎng)絡(luò)均方根誤差、隱含層與神經(jīng)元數(shù)量之間的關(guān)系

Fig 2 Errors of the BP model obtained at different hidden layers and neuron numbers

3.2BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)

圖3為BP神經(jīng)網(wǎng)絡(luò)模擬Ni-Al2O3鍍層粒子復(fù)合量曲線。由圖可知,利用BP神經(jīng)網(wǎng)絡(luò)對(duì)Ni-Al2O3鍍層1~30#樣本數(shù)據(jù)進(jìn)行測(cè)試,其預(yù)測(cè)值與真實(shí)值變化基本一致,故BP神經(jīng)網(wǎng)絡(luò)能夠較好的模擬Ni-Al2O3鍍層中粒子復(fù)合量變化規(guī)律。因此,本文采用BP神經(jīng)網(wǎng)絡(luò)對(duì)31~40#樣本進(jìn)行預(yù)測(cè),以此檢驗(yàn)其預(yù)測(cè)效果,其預(yù)測(cè)結(jié)果見(jiàn)表2。從表2中看出,BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的預(yù)測(cè)值與真實(shí)值相差不大,其相對(duì)誤差的最大值與最小值分別為1.71%與0.74%。因此,BP神經(jīng)網(wǎng)絡(luò)能夠較好的模擬Ni-Al2O3鍍層粒子復(fù)合量,并為其它金屬鍍層的性能預(yù)測(cè)提供一種新方法。

圖3 Ni-Al2O3鍍層的BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果

Fig 3 The prediction results of BP neural network of Ni-Al2O3coatings

表2BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果及相對(duì)誤差

Table 2 The predicted results and relative errors by using BP neural network

樣品編號(hào)預(yù)測(cè)值/%實(shí)際值/%相對(duì)誤差/%314.2354.2871.21324.3654.4411.71334.0884.1321.06344.3994.3521.07354.2794.2450.80364.1464.1770.74374.4434.4820.87384.0654.1281.52394.2394.2911.21404.2164.2550.91

3.3工藝參數(shù)對(duì)組織結(jié)構(gòu)的影響

圖4為不同工藝參數(shù)下制備N(xiāo)i-Al2O3鍍層的TEM照片。由圖4可知,當(dāng)Al2O3粒子濃度9 g/L,電流密度3 A/dm2,溫度40 ℃時(shí),所制備的Ni-Al2O3鍍層組織較為緊密,Al2O3粒子復(fù)合量較高,其平均粒徑約為20 nm。當(dāng)Al2O3粒子濃度6 g/L,電流密度2 A/dm2,溫度30 ℃時(shí),所制備的Ni-Al2O3鍍層組織疏松,Al2O3粒子復(fù)合量較低,其平均粒徑約為50 nm。由此可見(jiàn),在適宜的Al2O3粒子濃度、電流密度及溫度等工藝參數(shù)下,可制得Al2O3粒子復(fù)合量較高的Ni-Al2O3鍍層。

圖4 不同工藝參數(shù)制備N(xiāo)i-Al2O3鍍層TEM照片

Fig 4 TEM photos of Ni-Al2O3coatings prepared by different parameters

4結(jié)論

采用超聲波輔助電沉積法在A3鋼表面制備了Ni-Al2O3鍍層,并建立了3×8×1的BP神經(jīng)網(wǎng)絡(luò)模型,其輸入層為Al2O3粒子濃度、電流密度和溫度,輸出層為鍍層中Al2O3粒子復(fù)合量。該BP神經(jīng)網(wǎng)絡(luò)的相對(duì)誤差最大值與最小值分別為1.71%與0.74%。TEM分析表明,當(dāng)采用Al2O3粒子濃度9 g/L、電流密度3 A/dm2及溫度50 ℃時(shí),所制備的Ni-Al2O3鍍層組織較為緊密,Al2O3粒子復(fù)合量較高,其平均粒徑約為20 nm。

參考文獻(xiàn):

[1]Wu Menghua, Li Zhi, Xia Fafeng, et al. Study on the preparation of nano Ni-Al2O3composite layer by ultrasonic-electrodepositing method [J]. Journal of Functional Materials, 2004, 35(6): 776-778.

吳蒙華, 李智, 夏法鋒, 等. 納米Ni-Al2O3復(fù)合層的超聲電沉積制備[J]. 功能材料, 2004, 35(6): 776-778.

[2]Xia Fafeng, Liu Chao, Wang Fan, et al. Preparation and characterization of Ni-TiN coatings deposited by ultrasonic electrodeposition [J]. Journal of Alloys and Compounds, 2010, 490(1-2): 431-435.

[3]Ma Chunyang, Wu Menghua, Qu Zhijia.Technology of ultrasonic-electroless plating Ni-P-SiC nanocomposite coating [J]. Heat Treatment of Metals, 2011, 36(4): 89-92.

馬春陽(yáng), 吳蒙華, 曲智家. 超聲波-化學(xué)鍍Ni-P-SiC納米復(fù)合鍍層的工藝研究[J]. 金屬熱處理, 2011, 36(4): 89-92.

[4]Xia Fafeng, Huang Ming, Ma Chunyang, et al. Effect of electrodeposition methods on corrosion resistance of Ni-SiC nanocomposite coatings [J]. Journal of Functional Materials, 2013, 44(16): 2429-2431.

夏法鋒, 黃明, 馬春陽(yáng), 等. 電沉積方式對(duì)Ni-SiC納米鍍層耐腐蝕性能的影響[J]. 功能材料, 2013, 44(16): 2429-2431.

[5]Li Xingyuan, Zhu Yongyong, Xiao Guorong. Application of articial neural networks to predict sliding wear resistance of Ni-TiN nanocomposite coatings deposited by pulse electrodeposition [J]. Ceramics International, 2014, 40(8): 11767-11772.

[6]Xia Fafeng, Jiao Jinlong, Ma Chunyang, et al. Forecast the microhardnesses of the Ni-TiN nanocoatings by AR model [J]. Journal of Functional Materials, 2012, 43(2): 140-143.

夏法鋒, 焦金龍, 馬春陽(yáng), 等. 基于AR模型的Ni-TiN納米鍍層顯微硬度預(yù)測(cè)研究[J]. 功能材料, 2012, 43(2): 140-143.

[7]Abdel A. Hard and corrosion resistant nanocomposite coating for Al alloy [J]. Materials Science and Engineering A, 2008, 474: 181-187.

[8]Han Zhiguo, Wang Jiming, Chen Zhigao. Management performance evaluation in petrochemical engineering construction project by using artificial neural network [J].Acta Petrolei Sinica (Petroleum Processing Section), 2010, 26(3): 317-323.

[9]Zhou Huangbin, Zhou Yonghua, Zhu Lijuan. Implementation and comparison of improving BP neural network based on MATLAB [J]. Computing Technology and Automation, 2008, 27(1): 28-31.

周黃斌, 周永華, 朱麗娟. 基于MATLAB的改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)與比較[J]. 計(jì)算技術(shù)與自動(dòng)化, 2008, 27(1): 28-31.

Prediction on the Al2O3contents in Ni-Al2O3coatings by using BP neural network

WANG Jindong1, ZHAO Yan1, GAO Yuanyuan2, CAO Yang2, XIA Fafeng1

(1. School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China;2. Daqing Oil and Gas Branch, China Petroleum Pipeline, Daqing 163458, China)

Abstract:Ni-Al2O3 coatings were prepared by ultrasonic-electrodeposition method on the surface of A3 steel, and the particle contents of Ni-Al2O3 coatings were predicted by BP neural network. The microsturctures of Ni-Al2O3 coatings were observed by using TEM. The results indicate that the schematic of the BP model is 3×8×1, and the fitting similarity is 0.9991. The maximal and minimal relatives of this model are 1.71% and 0.74%, respectively. TEM presents that the microstructure of Ni-Al2O3 coatings, which deposited at Al2O3 particle concentration of 9 g/L, current density of 3 A/dm2 and temperature of 40 ℃, has a fine structure and the average particle size is approximately 20 nm.

Key words:BP neural network;Ni-Al2O3 coating;particle content

DOI:10.3969/j.issn.1001-9731.2016.01.048

文獻(xiàn)標(biāo)識(shí)碼:A

中圖分類(lèi)號(hào):TG1.43

作者簡(jiǎn)介:王金東(1962-),男,山東濰坊人,博士,教授,博士生導(dǎo)師,從事石油設(shè)備再制造技術(shù)研究。

基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51474072);中國(guó)博士后科學(xué)基金資助項(xiàng)目(2015M581425)

文章編號(hào):1001-9731(2016)01-01226-03

收到初稿日期:2015-04-15 收到修改稿日期:2015-07-20 通訊作者:夏法鋒,E-mail: xiaff@126.com

猜你喜歡
BP神經(jīng)網(wǎng)絡(luò)
基于神經(jīng)網(wǎng)絡(luò)的北京市房?jī)r(jià)預(yù)測(cè)研究
商情(2016年43期)2016-12-23 14:23:13
一種基于OpenCV的車(chē)牌識(shí)別方法
基于遺傳算法—BP神經(jīng)網(wǎng)絡(luò)的乳腺腫瘤輔助診斷模型
一種基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)T/R組件溫度的方法
基于BP神經(jīng)網(wǎng)絡(luò)的光通信系統(tǒng)故障診斷
科技視界(2016年26期)2016-12-17 17:57:49
提高BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)速率的算法研究
考試周刊(2016年21期)2016-12-16 11:02:03
就bp神經(jīng)網(wǎng)絡(luò)銀行選址模型的相關(guān)研究
基于DEA—GA—BP的建設(shè)工程評(píng)標(biāo)方法研究
基于BP神經(jīng)網(wǎng)絡(luò)的旅行社發(fā)展方向研究
商情(2016年39期)2016-11-21 09:30:36
復(fù)雜背景下的手勢(shì)識(shí)別方法
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
信阳市| 承德县| 九龙坡区| 平罗县| 巴林左旗| 龙门县| 云霄县| 晋宁县| 梁山县| 霸州市| 巩义市| 黄大仙区| 临高县| 靖州| 晋州市| 砚山县| 巴林左旗| 应城市| 卫辉市| 洪江市| 宜君县| 佛坪县| 凌云县| 金堂县| 梁河县| 沂南县| 介休市| 柳州市| 巢湖市| 银川市| 金寨县| 普定县| 黄山市| 水富县| 象山县| 康马县| 扎赉特旗| 舒城县| 盱眙县| 庐江县| 和林格尔县|