王金東,趙 巖,高媛媛,曹 陽(yáng),夏法鋒
(1. 東北石油大學(xué) 機(jī)械科學(xué)與工程學(xué)院,黑龍江 大慶 163318;
2. 中國(guó)石油管道大慶輸油氣分公司,黑龍江 大慶 163458)
?
基于BP神經(jīng)網(wǎng)絡(luò)的Ni-Al2O3鍍層粒子復(fù)合量預(yù)測(cè)研究*
王金東1,趙巖1,高媛媛2,曹陽(yáng)2,夏法鋒1
(1. 東北石油大學(xué) 機(jī)械科學(xué)與工程學(xué)院,黑龍江 大慶 163318;
2. 中國(guó)石油管道大慶輸油氣分公司,黑龍江 大慶 163458)
摘要:采用超聲波輔助電沉積法在A3鋼表面制備了Ni-Al2O3鍍層,通過(guò)BP神經(jīng)網(wǎng)絡(luò)對(duì)不同工藝參數(shù)下制備鍍層的Al2O3粒子復(fù)合量進(jìn)行預(yù)測(cè),最后利用透射電鏡(TEM)觀察鍍層結(jié)構(gòu)組織。結(jié)果表明,該BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)為3×8×1時(shí),其預(yù)測(cè)值與真實(shí)值的擬合度R=0.9991,相對(duì)誤差的最大值與最小值分別為1.71%與0.74%。TEM分析表明,當(dāng)Al2O3粒子濃度9 g/L,電流密度3 A/dm2,溫度40 ℃時(shí),Ni-Al2O3鍍層組織較為緊密,其平均粒徑約為20 nm。
關(guān)鍵詞:BP神經(jīng)網(wǎng)絡(luò);Ni-Al2O3鍍層;粒子復(fù)合量
1引言
超聲波輔助電沉積是一種通過(guò)在電沉積過(guò)程中施加超聲波場(chǎng),使鍍液中粒子能夠均勻的沉積于鍍層表面的方法[1-4]。目前,有關(guān)不同工藝參數(shù)對(duì)Ni-Al2O3鍍層性能影響的報(bào)道較多,但基于BP神經(jīng)網(wǎng)絡(luò)對(duì)Ni-Al2O3鍍層粒子復(fù)合量預(yù)測(cè)的研究較少[5-7]。為此,本文通過(guò)超聲波輔助電沉積法在A3鋼表面制備N(xiāo)i-Al2O3鍍層,并采用BP神經(jīng)網(wǎng)絡(luò)對(duì)鍍層粒子復(fù)合量進(jìn)行預(yù)測(cè)研究,最后利用透射電鏡(TEM)觀察鍍層的組織結(jié)構(gòu)。該研究可為Ni-Al2O3鍍層在機(jī)械設(shè)備再制造技術(shù)的應(yīng)用提供一定技術(shù)參考。
2實(shí)驗(yàn)
2.1實(shí)驗(yàn)材料及工藝參數(shù)
采用尺寸20 mm×20 mm×1 mm的A3鋼片作為實(shí)驗(yàn)基材,使用純度大于99%的鎳板作為陽(yáng)極。實(shí)驗(yàn)所用鍍液為瓦特型鍍鎳液,Ni-Al2O3鍍層制備過(guò)程所需試劑及工藝參數(shù)見(jiàn)表1。
2.2實(shí)驗(yàn)過(guò)程
采用超聲波輔助電沉積方法在A3鋼表面制備N(xiāo)i-Al2O3鍍層。其中,脈沖電源是E/PS 3016-10B型脈沖電源,超聲波場(chǎng)由KQ-1500VDE型超聲波清洗器產(chǎn)生,利用XRD-7000型X射線衍射儀(XRD)對(duì)Ni-Al2O3鍍層中Al2O3粒子含量進(jìn)行測(cè)量。最后,通過(guò)Tecnai-G2-20型透射電鏡(TEM)觀察不同工藝參數(shù)下制備N(xiāo)i-Al2O3鍍層組織結(jié)構(gòu)。
表1Ni-Al2O3鍍層的鍍液成分及制備工藝
Table 1 Plating conditions and process for preparing Ni-Al2O3coatings
化學(xué)試劑參數(shù)工藝條件參數(shù)NiSO4·6H2O300g/L超聲波功率180WNiCl2·6H2O40g/L電流密度1~5A/dm2H3BO335g/LAl2O3粒子濃度5~10g/L表面活性劑20mg/LpH值4.5西曲溴銨0.5mg/L溫度20~50℃
2.3粒子復(fù)合量計(jì)算
Ni-Al2O3鍍層粒子復(fù)合量的計(jì)算公式
(1)
式中,W表示鍍層中Al2O3質(zhì)量分?jǐn)?shù)(%),M1表示Al2O3相對(duì)分子質(zhì)量,M2表示Al相對(duì)原子質(zhì)量,W0表示XRD測(cè)量鍍層中鋁元素含量(%)。
2.4BP神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)及表征
根據(jù)Ni-Al2O3鍍層制備工藝,本文采用3個(gè)分量作為BP神經(jīng)網(wǎng)絡(luò)的輸入層,即Al2O3粒子濃度(x1)、電流密度(x2)和溫度(x3),采用1個(gè)分量作為輸出層,即Ni-Al2O3鍍層粒子復(fù)合量(y),該BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)如圖1所示。
圖1 BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖
3結(jié)果與分析
3.1BP神經(jīng)網(wǎng)絡(luò)測(cè)試
利用Matlab7.0軟件建立BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)[8-9],圖2為BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)在該條件下的均方根誤差、隱含層和神經(jīng)元數(shù)量的關(guān)系。由圖可見(jiàn),當(dāng)BP模型的神經(jīng)元數(shù)為16個(gè)、隱含層數(shù)為8個(gè)時(shí),BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的均方根誤差最小,其最小值為1.32%。因此,本文采用BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)為3×8×1,經(jīng)計(jì)算,該結(jié)構(gòu)實(shí)驗(yàn)值與預(yù)測(cè)值的擬合相似度R=0.9991。
圖2BP神經(jīng)網(wǎng)絡(luò)均方根誤差、隱含層與神經(jīng)元數(shù)量之間的關(guān)系
Fig 2 Errors of the BP model obtained at different hidden layers and neuron numbers
3.2BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)
圖3為BP神經(jīng)網(wǎng)絡(luò)模擬Ni-Al2O3鍍層粒子復(fù)合量曲線。由圖可知,利用BP神經(jīng)網(wǎng)絡(luò)對(duì)Ni-Al2O3鍍層1~30#樣本數(shù)據(jù)進(jìn)行測(cè)試,其預(yù)測(cè)值與真實(shí)值變化基本一致,故BP神經(jīng)網(wǎng)絡(luò)能夠較好的模擬Ni-Al2O3鍍層中粒子復(fù)合量變化規(guī)律。因此,本文采用BP神經(jīng)網(wǎng)絡(luò)對(duì)31~40#樣本進(jìn)行預(yù)測(cè),以此檢驗(yàn)其預(yù)測(cè)效果,其預(yù)測(cè)結(jié)果見(jiàn)表2。從表2中看出,BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的預(yù)測(cè)值與真實(shí)值相差不大,其相對(duì)誤差的最大值與最小值分別為1.71%與0.74%。因此,BP神經(jīng)網(wǎng)絡(luò)能夠較好的模擬Ni-Al2O3鍍層粒子復(fù)合量,并為其它金屬鍍層的性能預(yù)測(cè)提供一種新方法。
圖3 Ni-Al2O3鍍層的BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果
Fig 3 The prediction results of BP neural network of Ni-Al2O3coatings
表2BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果及相對(duì)誤差
Table 2 The predicted results and relative errors by using BP neural network
樣品編號(hào)預(yù)測(cè)值/%實(shí)際值/%相對(duì)誤差/%314.2354.2871.21324.3654.4411.71334.0884.1321.06344.3994.3521.07354.2794.2450.80364.1464.1770.74374.4434.4820.87384.0654.1281.52394.2394.2911.21404.2164.2550.91
3.3工藝參數(shù)對(duì)組織結(jié)構(gòu)的影響
圖4為不同工藝參數(shù)下制備N(xiāo)i-Al2O3鍍層的TEM照片。由圖4可知,當(dāng)Al2O3粒子濃度9 g/L,電流密度3 A/dm2,溫度40 ℃時(shí),所制備的Ni-Al2O3鍍層組織較為緊密,Al2O3粒子復(fù)合量較高,其平均粒徑約為20 nm。當(dāng)Al2O3粒子濃度6 g/L,電流密度2 A/dm2,溫度30 ℃時(shí),所制備的Ni-Al2O3鍍層組織疏松,Al2O3粒子復(fù)合量較低,其平均粒徑約為50 nm。由此可見(jiàn),在適宜的Al2O3粒子濃度、電流密度及溫度等工藝參數(shù)下,可制得Al2O3粒子復(fù)合量較高的Ni-Al2O3鍍層。
圖4 不同工藝參數(shù)制備N(xiāo)i-Al2O3鍍層TEM照片
Fig 4 TEM photos of Ni-Al2O3coatings prepared by different parameters
4結(jié)論
采用超聲波輔助電沉積法在A3鋼表面制備了Ni-Al2O3鍍層,并建立了3×8×1的BP神經(jīng)網(wǎng)絡(luò)模型,其輸入層為Al2O3粒子濃度、電流密度和溫度,輸出層為鍍層中Al2O3粒子復(fù)合量。該BP神經(jīng)網(wǎng)絡(luò)的相對(duì)誤差最大值與最小值分別為1.71%與0.74%。TEM分析表明,當(dāng)采用Al2O3粒子濃度9 g/L、電流密度3 A/dm2及溫度50 ℃時(shí),所制備的Ni-Al2O3鍍層組織較為緊密,Al2O3粒子復(fù)合量較高,其平均粒徑約為20 nm。
參考文獻(xiàn):
[1]Wu Menghua, Li Zhi, Xia Fafeng, et al. Study on the preparation of nano Ni-Al2O3composite layer by ultrasonic-electrodepositing method [J]. Journal of Functional Materials, 2004, 35(6): 776-778.
吳蒙華, 李智, 夏法鋒, 等. 納米Ni-Al2O3復(fù)合層的超聲電沉積制備[J]. 功能材料, 2004, 35(6): 776-778.
[2]Xia Fafeng, Liu Chao, Wang Fan, et al. Preparation and characterization of Ni-TiN coatings deposited by ultrasonic electrodeposition [J]. Journal of Alloys and Compounds, 2010, 490(1-2): 431-435.
[3]Ma Chunyang, Wu Menghua, Qu Zhijia.Technology of ultrasonic-electroless plating Ni-P-SiC nanocomposite coating [J]. Heat Treatment of Metals, 2011, 36(4): 89-92.
馬春陽(yáng), 吳蒙華, 曲智家. 超聲波-化學(xué)鍍Ni-P-SiC納米復(fù)合鍍層的工藝研究[J]. 金屬熱處理, 2011, 36(4): 89-92.
[4]Xia Fafeng, Huang Ming, Ma Chunyang, et al. Effect of electrodeposition methods on corrosion resistance of Ni-SiC nanocomposite coatings [J]. Journal of Functional Materials, 2013, 44(16): 2429-2431.
夏法鋒, 黃明, 馬春陽(yáng), 等. 電沉積方式對(duì)Ni-SiC納米鍍層耐腐蝕性能的影響[J]. 功能材料, 2013, 44(16): 2429-2431.
[5]Li Xingyuan, Zhu Yongyong, Xiao Guorong. Application of articial neural networks to predict sliding wear resistance of Ni-TiN nanocomposite coatings deposited by pulse electrodeposition [J]. Ceramics International, 2014, 40(8): 11767-11772.
[6]Xia Fafeng, Jiao Jinlong, Ma Chunyang, et al. Forecast the microhardnesses of the Ni-TiN nanocoatings by AR model [J]. Journal of Functional Materials, 2012, 43(2): 140-143.
夏法鋒, 焦金龍, 馬春陽(yáng), 等. 基于AR模型的Ni-TiN納米鍍層顯微硬度預(yù)測(cè)研究[J]. 功能材料, 2012, 43(2): 140-143.
[7]Abdel A. Hard and corrosion resistant nanocomposite coating for Al alloy [J]. Materials Science and Engineering A, 2008, 474: 181-187.
[8]Han Zhiguo, Wang Jiming, Chen Zhigao. Management performance evaluation in petrochemical engineering construction project by using artificial neural network [J].Acta Petrolei Sinica (Petroleum Processing Section), 2010, 26(3): 317-323.
[9]Zhou Huangbin, Zhou Yonghua, Zhu Lijuan. Implementation and comparison of improving BP neural network based on MATLAB [J]. Computing Technology and Automation, 2008, 27(1): 28-31.
周黃斌, 周永華, 朱麗娟. 基于MATLAB的改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)與比較[J]. 計(jì)算技術(shù)與自動(dòng)化, 2008, 27(1): 28-31.
Prediction on the Al2O3contents in Ni-Al2O3coatings by using BP neural network
WANG Jindong1, ZHAO Yan1, GAO Yuanyuan2, CAO Yang2, XIA Fafeng1
(1. School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China;2. Daqing Oil and Gas Branch, China Petroleum Pipeline, Daqing 163458, China)
Abstract:Ni-Al2O3 coatings were prepared by ultrasonic-electrodeposition method on the surface of A3 steel, and the particle contents of Ni-Al2O3 coatings were predicted by BP neural network. The microsturctures of Ni-Al2O3 coatings were observed by using TEM. The results indicate that the schematic of the BP model is 3×8×1, and the fitting similarity is 0.9991. The maximal and minimal relatives of this model are 1.71% and 0.74%, respectively. TEM presents that the microstructure of Ni-Al2O3 coatings, which deposited at Al2O3 particle concentration of 9 g/L, current density of 3 A/dm2 and temperature of 40 ℃, has a fine structure and the average particle size is approximately 20 nm.
Key words:BP neural network;Ni-Al2O3 coating;particle content
DOI:10.3969/j.issn.1001-9731.2016.01.048
文獻(xiàn)標(biāo)識(shí)碼:A
中圖分類(lèi)號(hào):TG1.43
作者簡(jiǎn)介:王金東(1962-),男,山東濰坊人,博士,教授,博士生導(dǎo)師,從事石油設(shè)備再制造技術(shù)研究。
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51474072);中國(guó)博士后科學(xué)基金資助項(xiàng)目(2015M581425)
文章編號(hào):1001-9731(2016)01-01226-03
收到初稿日期:2015-04-15 收到修改稿日期:2015-07-20 通訊作者:夏法鋒,E-mail: xiaff@126.com