劉芙蓉, 張?jiān)伱? 鄧書林
1 中國科學(xué)院成都生物研究所, 成都 610041
2 中國科學(xué)院大學(xué), 北京 100049
?
增溫和CO2濃度加倍對川西亞高山針葉林土壤可溶性氮的影響
劉芙蓉1,2, 張?jiān)伱?,*, 鄧書林1,2
1 中國科學(xué)院成都生物研究所, 成都610041
2 中國科學(xué)院大學(xué), 北京100049
摘要:采用全自動微氣候控制的“人工模擬氣候?qū)嶒?yàn)系統(tǒng)”研究了增溫和CO2濃度加倍對川西亞高山針葉林土壤硝態(tài)氮-N)、銨態(tài)氮-N)、游離氨基酸(FAA)、可溶性有機(jī)氮(DON)和可溶性總氮(TSN)的影響。結(jié)果表明:①在種植油松苗木組,增溫處理顯著降低了土壤-N含量,不同處理0—15 cm土層-N含量均顯著小于15—30 cm層;而在未種樹組,增溫處理顯著增加了土壤-N含量, 0—15 cm土層-N含量顯著高于15—30 cm層,這表明增溫促進(jìn)了油松苗對-N的吸收。②在種植油松苗木組,增溫(ET)、增CO2(EC)及兩者的共同作用(ETC)均顯著增加了土壤-N、DON和TSN含量;在未種樹組,ET顯著增加了土壤-N、FAA、DON和TSN含量,EC和ETC對、FAA、DON和TSN含量具有微弱影響或沒有顯著影響。不同處理0—15cm層土壤-N、FAA、DON和TSN的含量顯著大于15—30 cm層。③種植油松苗木組土壤-N、FAA、DON和TSN含量均顯著低于未種樹組,這是由植物對氮素的吸收消耗造成的。研究結(jié)果表明,EC、ETC主要通過植物根系作用促進(jìn)了-N、DON和TSN含量增加,而ET處理通過影響土壤微生物和植物根系來促進(jìn)-N、FAA、DON和TSN含量的增加。
關(guān)鍵詞:增溫; 增CO2; 硝態(tài)氮; 銨態(tài)氮; 游離氨基酸; 可溶性有機(jī)氮; 可溶性總氮
氮素作為植物生長的主要營養(yǎng)元素之一,在生態(tài)系統(tǒng)養(yǎng)分循環(huán)過程中起著重要作用[1]。曾經(jīng)一些研究者認(rèn)為自然生態(tài)系統(tǒng)中植物吸收的氮主要來自于無機(jī)氮,而有機(jī)態(tài)氮素難以被植物吸收利用,需要在微生物和土壤動物的作用下,通過氮礦化過程轉(zhuǎn)化成無機(jī)氮后才能被植物吸收利用[2]。森林生態(tài)系統(tǒng)中氮絕大部分以有機(jī)氮的形式存在,可被植物和微生物吸收利用的土壤礦質(zhì)態(tài)氮含量一般低于土壤總氮的1%,因此土壤氮素轉(zhuǎn)化是森林生態(tài)系統(tǒng)氮素循環(huán)的重要組成部分,氮礦化作用是氮循環(huán)的核心過程。而近年來有一些研究報(bào)道,部分植物還可以利用小分子有機(jī)態(tài)氮[3- 6],這一研究結(jié)果受到越來越多生態(tài)學(xué)家和土壤學(xué)家的關(guān)注。由于無機(jī)氮在植物體內(nèi)儲存需要較高的維持性消耗,而以氨基酸或蛋白質(zhì)形式儲存的有機(jī)氮更有利于植物的氮素儲備,當(dāng)外界氮的供應(yīng)降低時植物很容易利用這部分有機(jī)氮[7],因此可溶性有機(jī)氮與無機(jī)氮共同影響著植物氮素的營養(yǎng)平衡[8]。目前,國內(nèi)外學(xué)者在土壤碳循環(huán)對氣候變化響應(yīng)的研究較多,但在可溶性氮響應(yīng)方面的研究還相當(dāng)缺乏。
森林土壤氮素轉(zhuǎn)化十分復(fù)雜,其含量往往受到溫度、濕度、凋落物化學(xué)組成、土壤pH值、土壤養(yǎng)分狀況等因子調(diào)控。增溫和CO2濃度升高對生態(tài)系統(tǒng)的影響是全球氣候變化研究的重要內(nèi)容,政府間氣候變化專門委員會(IPCC)評估報(bào)告指出:自工業(yè)化時代以來,人類活動已引起全球溫室氣體排放增加,破環(huán)了氣候系統(tǒng)的平衡,預(yù)測在本世紀(jì)末全球平均氣溫將上升1.4—5.8 ℃,大氣CO2濃度也將達(dá)到490—1260 μL/L[9]。川西亞高山針葉林是青藏高原東緣高寒林區(qū)的重要組成部分,對全球氣候變化十分敏感[10]。近年來,已有許多學(xué)者在該區(qū)森林生態(tài)系統(tǒng)對全球變暖的響應(yīng)方面進(jìn)行了模擬,但大多研究主要集中在模擬氣候變化對植物生理、凋落物分解和碳循環(huán)的影響方面[11- 16],對土壤可溶性氮的響應(yīng)研究較少。油松作為川西地區(qū)典型的樹種之一,在植被恢復(fù)過程中發(fā)揮著重要的生態(tài)功能[17]。因此,本文運(yùn)用全自動微氣候控制的“人工模擬氣候?qū)嶒?yàn)系統(tǒng)”對川西亞高山油松林下土壤可溶性氮進(jìn)行研究,探索增溫與增CO2對土壤可溶性氮的影響,以期揭示全球氣候變化背景下青藏高原東緣亞高山針葉林土壤可溶性氮的變化特征,為預(yù)測該區(qū)森林生態(tài)系統(tǒng)對全球氣候變暖的響應(yīng)提供基礎(chǔ)數(shù)據(jù)和理論依據(jù)。
1研究地區(qū)與研究方法
1.1研究地區(qū)概況
研究地點(diǎn)位于四川省阿壩州中國科學(xué)院茂縣山地森林生態(tài)系統(tǒng)定位研究站,海拔1826 m,地理位置為103°54′E,31°42′N。該區(qū)地處青藏高原橫斷山系北段高山峽谷地帶的長江支流岷江上游中部,屬暖溫帶氣候,年均溫為9.3 ℃,年平均降雨量達(dá)825.2 mm,年平均蒸發(fā)量968.7 mm,年日照時數(shù)約1373.8h,無霜期200d左右。該地區(qū)是青藏高原東緣和長江上游生態(tài)環(huán)境的高山峽谷區(qū)典型代表,土壤類型主要為棕壤,植被以油松、云杉和冷杉林為主[18]。
1.2實(shí)驗(yàn)設(shè)置
2010年3月,采集同一油松林原位土壤樣品,0—10 cm土層有機(jī)碳初始值為9.80 g/kg,全氮為1.16 g/kg。按照林下土壤自然發(fā)生層裝入96個花盆,(Φ35 cm×35 cm)中,將花盆移入8個“人工模擬氣候?qū)嶒?yàn)系統(tǒng)”的生長室內(nèi),每個生長室內(nèi)放置12個花盆(花盆分為兩組:其中6盆各種植1株5年生油松苗木;另6盆不栽植苗木),即重復(fù)數(shù)為2個生長室×6個花盆。油松苗平均高25.53 cm,地徑3.38 mm,根系深度30 cm。同時,在生長室頂部采用遮陽網(wǎng)覆蓋,以控制生長室內(nèi)的光照強(qiáng)度與采樣的自然生長的林下光照強(qiáng)度基本一致(自然光的70%),并通過TDR土壤水分速測儀實(shí)時監(jiān)控保持土壤含水量在30%左右(體積百分含量)。根據(jù)IPCC對未來氣候變化趨勢的預(yù)測結(jié)果,設(shè)置的試驗(yàn)包括8個處理,即:(1)現(xiàn)行環(huán)境溫度增加(2.5±0.5)℃+CO2濃度加倍+種樹處理(ETCP);(2)現(xiàn)行環(huán)境溫度增加(2.5±0.5)℃+CO2濃度加倍+不種樹處理(ETCS);(3)現(xiàn)行環(huán)境溫度增加(2.5±0.5)℃+種樹處理(ETP);(4)現(xiàn)行環(huán)境溫度增加(2.5±0.5)℃+不種樹處理(ETS);(5)現(xiàn)行環(huán)境CO2濃度加倍+種樹處理(ECP);(6)現(xiàn)行環(huán)境CO2濃度加倍+不種樹處理(ECS);(7)現(xiàn)行環(huán)境溫度和CO2濃度+種樹處理(CKP);(8)現(xiàn)行環(huán)境溫度和CO2濃度+不種樹處理(CKS)。每年在生長季4—10月采用全自動微氣候控制的“人工模擬氣候?qū)嶒?yàn)系統(tǒng)”對8個獨(dú)立、自控、封閉的生長室(Chamber)進(jìn)行控制,生長室底面積9.5 m2,體積約24.5 m3?!叭斯つM氣候?qū)嶒?yàn)系統(tǒng)”的構(gòu)成和詳細(xì)控制參數(shù)詳情見已發(fā)表文獻(xiàn)[19]。
1.3 土壤樣品采集與處理
2012年7月,用土鉆按0—15 cm,15—30 cm分層采集花盆中原位土壤,每個處理3盆,去除土樣中石塊和動植物殘?bào)w,過2 mm篩后裝入布袋,帶回實(shí)驗(yàn)室,貯存于4℃冰箱,盡快用于硝態(tài)氮、銨態(tài)氮、游離氨基酸和可溶性有機(jī)氮含量的測定,可溶性總氮為硝態(tài)氮、銨態(tài)氮和可溶性有機(jī)氮三者之和。
硝態(tài)氮測定:采用雙波長紫外分光光度校正因數(shù)法,稱取土樣按土液比1∶5加入去離子水,250 r/min振蕩1 h,懸液靜置后過濾,測定浸提液在220 nm和275 nm處的吸光度值。
銨態(tài)氮測定:采用KCl浸提-靚酚藍(lán)比色法,稱取土樣放按土液比1∶5加入去離子水,250 r/min振蕩1 h,懸液靜置后過濾。吸取濾液10 mL,放入50 mL容量瓶中,依次加入5 mL酚溶液和5 mL NaClO堿性溶液,搖勻后在20℃左右室溫下放置1 h,加入1 ml掩蔽劑以溶解可能生成的沉淀物,用水定容后在625 nm波長處進(jìn)行比色。
游離氨基酸測定:采用茚三酮比色法測定。
可溶性有機(jī)氮測定:稱取土樣按土液比1∶5加入去離子水,250 r/min震蕩1 h,將土壤上清液過 0.45 um濾膜獲得濾液,用德國Elementar Vario TOC 分析儀測定DON 含量。
1.4數(shù)據(jù)處理
利用SPSS 19進(jìn)行統(tǒng)計(jì)和數(shù)據(jù)分析,采用多因素方差分析和Duncan法進(jìn)行差異比較;利用Origin 8.0軟件進(jìn)行圖形繪制。
2結(jié)果與分析
2.1增溫與增CO2對土壤硝態(tài)氮含量的影響
圖1 增溫、增CO2及其共同作用對不同土層土壤含量的影響Fig.1 Effects of ET、EC、ETC on the content of soil at different soil layers.直方柱上不同小寫字母表示同一土層不同處理間差異顯著 (P < 0.05); ETCP:elevated temperature and CO2 doubling in seeding treatment (增溫+增CO2+種樹),ECP:CO2 doubling in seeding treatment (增CO2+種樹),ETP:elevated temperature in seedling treatment (增溫+種樹),CKP:ambient temperature and CO2 in seedling treatment (僅種樹);ETCS:elevated temperature and CO2 doubling in plant-free treatment (增溫+增CO2+不種樹),ECS:CO2 doubling in plant-free treatment (增CO2+不種樹),ETS:elevated temperature in plant-free treatment (增溫+不種樹),CKS:ambient temperature and CO2 in plant-free treatment (不種樹)
2.2增溫與增CO2對土壤銨態(tài)氮含量的影響
圖2 增溫、增CO2及其共同作用對不同土層土壤含量的影響Fig.2 Effects of ET、EC、ETC on the content of soil at different soil layers.直方柱上不同小寫字母表示同一土層不同處理間差異顯著 (P < 0.05)
2.3增溫與增CO2對土壤游離氨基酸含量的影響
由圖3可知,增溫對土壤游離氨基酸含量產(chǎn)生了顯著影響,種植油松苗木組土壤游離氨基酸含量顯著低于未種樹組,且不同處理下 0—15 cm層土壤游離氨基酸含量顯著高于15—30cm土層。種植油松苗木組,不同處理下土壤游離氨基酸含量為0.09—0.19 mg/kg,與CKP相比,0—15 cm土層ETP處理顯著增加了土壤游離氨基酸含量,而ETCP、ECP、CKP之間差異不顯著;15—30 cm層,不同處理間土壤游離氨基酸差異均不顯著。
未種樹組,0—15 cm土層,不同處理下土壤游離氨基酸含量為0.20—0.38 mg/kg,ETS顯著增加了土壤游離氨基酸含量,而ETCS、ECS與CKS均沒有顯著差異;15—30 cm土層,不同處理的土壤游離氨基酸含量為0.07—0.29 mg/kg,ETS顯著增加了土壤游離氨基酸含量。
圖3 增溫、增CO2及其共同作用對不同土層土壤游離氨基酸含量的影響Fig.3 Effects of ET、EC and ETC on the content of soil free amino acids (FAA) at different soil layers直方柱上不同小寫字母表示同一土層不同處理間差異顯著 (P < 0. 05)
2.4增溫與增CO2對可溶性有機(jī)氮含量的影響
由圖4可知,增溫處理對DON含量產(chǎn)生了顯著影響,種植油松苗木組土壤DON含量顯著低于未種樹組,且0—15 cm層土壤DON含量顯著高于15—30 cm土層。在種植油松苗木組,0—15 cm土層,ETP、ECP和ETCP均顯著增加了土壤DON含量;15—30 cm土層,ECP和ETCP也顯著增加了土壤DON含量。在未種樹組,0—15 cm土層與15—30 cm土層相似,ETS顯著增加了土壤DON含量。
圖4 增溫、增CO2及其共同作用對不同土層土壤可溶性有機(jī)氮含量的影響[18]Fig.4 Effects of ET、EC and ETC on the content of soil soluble organic nitrogen (DON) at different soil layers.直方柱上不同小寫字母表示同一土層不同處理間差異顯著 (P < 0. 05)
圖5 增溫、增CO2及其共同作用對不同土層土壤可溶性總氮含量的影響Fig.5 Effects of ET、EC、ETC on the content of soil total soluble nitrogen (TSN) at different soil layers.直方柱上不同小寫字母表示同一土層不同處理間差異顯著 (P < 0. 05)
2.5增溫與增CO2對可溶性總氮含量的影響
由圖5可知,與未種樹相比較,種植油松苗木顯著降低了土壤TSN含量,且0—15 cm層土壤TSN含量顯著高于15—30 cm土層。在種植油松苗木組,0—15 cm土層,與CKP相比,ETP、ECP和ETCP均顯著增加了土壤TSN含量,ETCP、ETP、ECP三者間差異不顯著;15—30 cm土層,ETCP、ECP和ETP均增加了土壤TSN含量,且ECP和ETP達(dá)到顯著水平。在未種樹組,0—15 cm土層,ETS顯著增加了土壤TSN含量,增加幅度達(dá)48.6%,而ETCS、ECS與CKS差異不顯著;15—30 cm土層,ETCS、ETS顯著增加了土壤TSN含量,而ECS顯著降低了土壤TSN含量。
3討論
3.1增溫與增CO2對可溶性氮的影響
3.1.1增溫與增CO2對硝態(tài)氮的影響
3.1.2增溫與增CO2對土壤銨態(tài)氮含量的影響
3.1.3增溫與增CO2對土壤游離氨基酸的影響
在種植油松苗木組和未種樹組,增溫處理均顯著增加了土壤游離氨基酸含量,而EC、ETC與CK的差異不顯著。土壤游離氨基酸主要來源于根系、土壤微生物分泌物和土壤中各種有機(jī)物質(zhì)的降解產(chǎn)物,雖然游離氨基酸占土壤 TSN的比例較小,但其在土壤中具有很高的周轉(zhuǎn)速率。增溫處理使土壤微生物活性及代謝作用增強(qiáng),促進(jìn)了土壤氮礦化作用[20],同時增溫有利于促進(jìn)種樹組植物根系分泌物的增加[29],根系和土壤微生物分泌物是土壤游離氨基酸的重要來源,因此增溫有利于土壤游離氨基酸的含量增加。
3.1.4增溫與增CO2對土壤可溶性有機(jī)氮的影響
種植油松苗木組,ETCP、ETP和ECP均顯著增加了土壤DON含量。ETCP、ETP和ECP處理加速了植物生長,有利于根系分泌物的增加[29-30],加速土壤DON含量的生成。 Bengtson和Barker[31]進(jìn)行的增溫實(shí)驗(yàn)也得出了相似結(jié)論,增溫有利于土壤有機(jī)質(zhì)快速降解,使可溶性有機(jī)質(zhì)含量增加。
未種樹組,增溫顯著增加了土壤DON含量,而ECS卻顯著降低了土壤表層DON含量。增溫處理有利于增加微生物數(shù)量[28],有利于對土壤有機(jī)質(zhì)的降解,且微生物代謝產(chǎn)物是可溶性有機(jī)物的重要組成部分,因此增溫增加了土壤DON含量。而增CO2處理使土壤空隙的CO2濃度增加[22],在一定程度上改變了土壤中微生物的生長環(huán)境和群落結(jié)構(gòu)[32],進(jìn)而引起土壤DON含量的變化。
DON是林地土壤中可溶性氮的主要組分[33],本研究得出土壤DON含量變化于2.3—16.1 mg/kg之間,平均值約占土壤可溶性總氮的38.9%,這與大量研究結(jié)果一致,Chen等[34]綜合統(tǒng)計(jì)了116份已發(fā)表數(shù)據(jù),表明林地土壤生態(tài)系統(tǒng)DON含量變化于1—448 mg/kg,占土壤可溶性總氮比例的48%。
3.1.5增溫與增CO2對土壤可溶性總氮的影響
在種植油松苗木組,ETCP、ETP和ECP均顯著增加了土壤可溶性總氮含量,可溶性有機(jī)氮和銨態(tài)氮含量的增加是其增加的主要原因。溫度的升高和 CO2濃度的上升有利于增加植物細(xì)根的生長、根系周轉(zhuǎn)速率、根際微生物數(shù)量和根系分泌物數(shù)量等[29,35- 36],因此促使土壤可溶性總氮含量增加。
在未種樹組,增溫顯著增加了土壤可溶性總氮含量,這主要源于增溫促使了可溶性無機(jī)氮和可溶性有機(jī)氮的整體增加。由于增溫處理加快了土壤有機(jī)質(zhì)的降解和微生物的轉(zhuǎn)化速率,因此增溫處理使土壤可溶性總氮含量增加。
3.2植物對不同形態(tài)氮的吸收
種植油松苗木組土壤硝態(tài)氮、銨態(tài)氮、游離氨基酸、可溶性有機(jī)氮和可溶性總氮含量均顯著低于未種樹組,這可能是由于土壤有效氮與植物生長密切相關(guān),油松苗在生長過程中對土壤養(yǎng)分的消耗使土壤有效氮含量顯著降低。Carrillo等[37]在草原上進(jìn)行的研究也表明,是否栽種植物顯著地影響著可溶性有機(jī)氮和無機(jī)氮含量,未栽植物的土壤中硝態(tài)氮含量是栽種植物土壤的6倍。
4結(jié)論
參考文獻(xiàn)(References):
[1]薛曉萍, 王建國, 郭文琦, 陳兵林, 尤軍, 周治國. 氮素水平對初花后棉株生物量、氮素累積特征及氮素利用率動態(tài)變化的影響. 生態(tài)學(xué)報(bào), 2006, 26(11): 3631- 3640.
[2]莫良玉, 吳良?xì)g, 陶勤南. 高等植物對有機(jī)氮吸收與利用研究進(jìn)展. 生態(tài)學(xué)報(bào), 2002, 22(1): 118- 124.
[3]Chapin F S, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature, 1993, 361(6408): 150- 153.
[4]Weigelt A, Bol R, Bardgett R D. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia, 2005, 142(4): 627- 635.
[5]Jones D L, Healey J R, Willett V B, Farrar J F, Hodge A. Dissolved organic nitrogen uptake by plants—an important N uptake pathway?. Soil Biology and Biochemistry, 2005, 37(3): 413- 423.
[6]Jones D L, Hodge A. Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biology and Biochemistry, 1999, 31(9): 1331- 1342.
[7]Jones D L, Owen A G, Farrar J F. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biology and Biochemistry, 2002, 34(12): 1893- 1902.
[8]Kuzyakov Y, Xu X L. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 2013, 198(3): 656- 669.
[9]IPCC. Climate Change 2007: the physical science basis // Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. Contribution of Working Group I to The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
[10]尹華軍, 賴挺, 程新穎, 蔣先敏, 劉慶. 增溫對川西亞高山針葉林內(nèi)不同光環(huán)境下紅樺和岷江冷杉幼苗生長和生理的影響. 植物生態(tài)學(xué)報(bào), 2008, 32(5): 1072- 1083.
[11]Xu Z F, Pu X Z, Yin H J, Zhao C Z, Liu Q, Wu F. Warming effects on the early decomposition of three litter types, Eastern Tibetan Plateau, China. European Journal of Soil Science, 2011, 63(3): 360- 367.
[12]Xu Z F, Yin H J, Xiong P, Wan C, Liu Q. Short-term responses ofPiceaasperataseedlings of different ages grown in two contrasting forest ecosystems to experimental warming. Environmental and Experimental Botany, 2012, 77: 1- 11.
[13]Yin H J, Liu Q, Lai T. Warming effects on growth and physiology in the seedlings of the two conifersPiceaasperataandAbiesfaxonianaunder two contrasting light conditions. Ecological Research, 2008, 23(2): 459- 469.
[14]Xu Z F, Wan C, Xiong P, Tang Z, Hu R, Cao G, Liu Q. Initial responses of soil CO2efflux and C, N pools to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China. Plant and Soil, 2010, 336(1/2): 183- 195.
[15]Xu G, Jiang H, Zhang Y B, Korpelainen H, Li C Y. Effect of warming on extracted soil carbon pools ofAbiesfaxonianaforest at two elevations. Forest Ecology and Management, 2013, 310: 357- 365.
[16]Zhao C Z, Liu Q. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research, 2009, 39(1): 1- 11.
[17]江元明, 龐學(xué)勇, 包維楷. 岷江上游油松與云杉人工林土壤微生物生物量及其影響因素. 生態(tài)學(xué)報(bào), 2011, 31(3): 801- 811.
[18]劉芙蓉, 王紅梅, 張?jiān)伱? 增溫和CO2濃度加倍對川西亞高山針葉林土壤可溶性有機(jī)碳、氮的影響. 生態(tài)學(xué)雜志, 2013, 32(11): 2844- 2849.
[19]Zhang Y B, Duan B L, Qiao Y Z, Wang K Y, Korpelainen H, Li C Y. Leaf photosynthesis ofBetulaalbosinensisseedlings as affected by elevated CO2and planting density. Forest Ecology and Management, 2008, 255(5/6): 1937- 1944.
[20]Yin H J, Chen Z, Liu Q. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China. Soil Biology and Biochemistry, 2012, 50: 77- 84.
[21]Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126(4): 543- 562.
[22]Jackson R B, Cook C W, Pippen J S, Palmer S M. Increased belowground biomass and soil CO2fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology, 2009, 90(12): 3352- 3366.
[23]賀紀(jì)正, 張麗梅. 土壤氮素轉(zhuǎn)化的關(guān)鍵微生物過程及機(jī)制. 微生物學(xué)通報(bào), 2013, 40(1): 98- 108.
[24]俞慎, 李振高. 稻田生態(tài)系統(tǒng)生物硝化-反硝化作用與氮素?fù)p失. 應(yīng)用生態(tài)學(xué)報(bào), 1999, 10(5): 630- 634.
[25]Luo Y Q, Gerten D, Le Maire G, Parton W J, Weng E, Zhou X H, Keough C, Beier C, Ciais P, Cramer W, Dukes J S, Emmett B, Hanson P J, Knapp A, Linder S, Nepstad DAN, Rustad L. Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 2008, 14(9): 1986- 1999.
[26]Dieleman W I, Vicca S, Dijkstra F A, Hagedorn F, Hovenden M J, Larsen K S, Morgan J A, Volder A, Beier C, Dukes J S. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2and temperature. Global Change Biology, 2012, 18(9): 2681- 2693.
[27]Wang L, Pedas P, Eriksson D, Schjoerring J K. Elevated atmospheric CO2decreases the ammonia compensation point of barley plants. Journal of Experimental Botany, 2013, 64(10): 2713- 2724.
[28]Ziegler S E, Billings S A, Lane C S, Li J W, Fogel M L. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology & Biochemistry, 2013, 60: 23- 32.
[29]Yin H J, Li Y F, Xiao J, Xu Z F, Cheng X Y, Liu Q. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 2013, 19(7): 2158- 2167.
[30]Phillips R P, Bernhardt E S, Schlesinger W H. Elevated CO2increases root exudation from loblolly pine (Pinustaeda) seedlings as an N-mediated response. Tree Physiology, 2009, 29(12): 1513- 1523.
[31]Bengtson P, Bengtsson G. Rapid turnover of DOC in temperate forests accounts for increased CO2production at elevated temperatures. Ecology Letters, 2007, 10(9): 783- 790.
[32]Billings S, Ziegler S. Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2. Global Change Biology, 2005, 11(2): 203- 212.
[33]Xing S H, Chen C R, Zhou B Q, Zhang H, Nang Z M, Xu Z H. Soil soluble organic nitrogen and active microbial characteristics under adjacent coniferous and broadleaf plantation forests. Journal of Soils and Sediments, 2010, 10(4): 748- 757.
[34]Chen C R, Xu Z H. Analysis and behavior of soluble organic nitrogen in forest soils. Journal of Soils and Sediments, 2008, 8(6): 363- 378.
[35]Phillips D A, Fox TC, Six J. Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Global Change Biology, 2006, 12(3): 561- 567.
[36]Phillips R P, Finzi AC, Bernhardt E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2fumigation. Ecology Letters, 2011, 14(2): 187- 194.
[37]Carrillo Y, Dijkstra F A, Pendall E, Morgan J A, Blumenthal D M. Controls over soil nitrogen pools in a semiarid grassland under elevated CO2and warming. Ecosystems, 2012, 15(5): 761- 774.
[38]何文壽, 李生秀, 李輝桃. 六種作物不同生育期吸收銨、硝態(tài)氮的特性. 作物學(xué)報(bào), 1999, 25(2): 222- 226.
[39]周曉紅, 王國祥, 楊飛, 何偉, 楊周. 空心菜對不同形態(tài)氮吸收動力學(xué)特性研究. 水土保持研究, 2008, 15(5): 84- 87.
[40]Owen A G, Jones D L. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plantNacquisition. Soil Biology &Biochemistry, 2001, 33(4/5): 651- 657.
Effects of elevated temperature and CO2concentration doubling on soil total
soluble nitrogen in subalpine coniferous forest of western Sichuan, China
LIU Furong1,2, ZHANG Yongmei1,*, DENG Shulin1,2
1ChengduInstituteofBiology,ChineseAcademyofSciences,Chengdu610041,China2UniversityofChineseAcademyofSciences,Beijing100049,China
Abstract:The Qinghai-Tibetan Plateau, often referred to as “the Third Pole” of the world, plays an important role in the Earth′s climate system. Chinese pine (Pinus tabulaeformis) forest is one of the most important vegetation types in the subalpine regions of western Sichuan, China, but our knowledge about the response of soil in this forest ecosystem, especially soil total soluble nitrogen to climate change is limited. The effects of elevated temperate (ET, ambient temperature + (2.5±0.5)℃), CO2concentration doubling (EC, ambient CO2 concentration + 350 μmol/mol) and their interaction (ETC) on soil total soluble nitrogen, including nitrate nitrogen -N), ammonium nitrogen -N), free amino acid (FAA), dissolved organic nitrogen (DON) and total soluble nitrogen (TSN) of Chinese pine forest soils were investigated by using an automatic micro-climate controlled system.1) Compared with the control (CKP), ET significantly decreased -N concentrations in the seedling treatment, and the concentration of -N in the 0—15 cm soil layer was lower than that in the 15—30 cm layer. By contrast, ET markedly increased -N concentrations in the plant-free treatment, and the concentration of -N in the 0—15 cm soil layer was higher than that in the 15—30 cm layer. These results indicated that the absorption of -N by Chinese pine seedlings of was enhanced under ET to meet the demands of growth, especially in the 0—15 cm soil layer. This was likely due to the occurrence of more fine roots in the upper soil layer than the deeper layer. -N appears to be one of the most important forms of soil soluble nitrogen utilized by Chinese pine. 2) Furthermore, ET, EC and ETC induced an increase in the concentrations of -N, DON and TSN in the seedling treatment. However, in the plant-free treatment -N, FAA, DON and TSN concentrations were significantly enhanced under ET; but EC and ETC had little influence on their concentrations. These results suggest that EC and ETC increased -N, DON and TSN concentrations mainly through the plant roots, but ET acted by influencing both soil microorganisms and plant root systems. 3) -N, -N, FAA, DON and TSN concentrations in the seedling treatment were significantly lower than those in the plant-free group, which might be attributable to the absorption of soil soluble nitrogen by plants to meet growth demands. Overall, in the plant-free group, the signicant increases in -N, -N, FAA, DON and TSN under ET compared with the control (CKS) indicate that warming contributed to the enhanced efficiency of soil microbes. However, in the seedling treatment, -N, -N, DON and TSN concentrations were influenced by both soil microorganisms and plants. Moreover, the amount of soil soluble nitrogen absorbed by Pinus tabulaeformis mainly varied among the different forms of nitrogen.
Key Words:elevated temperature; CO2 concentration doubling; nitrate nitrogen -N); ammonia nitrogen -N); free amino acid (FAA); dissolved organic nitrogen (DON); total soluble nitrogen (TSN)
DOI:10.5846/stxb201405080906
*通訊作者
Corresponding author.E-mail: zhangym@cib.ac.cn
收稿日期:2014- 05- 08; 網(wǎng)絡(luò)出版日期:2015- 06- 12
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(30972345,31100383)
劉芙蓉, 張?jiān)伱? 鄧書林.增溫和CO2濃度加倍對川西亞高山針葉林土壤可溶性氮的影響.生態(tài)學(xué)報(bào),2016,36(3):652- 660.
Liu F R, Zhang Y M, Deng S L.Effects of elevated temperature and CO2concentration doubling on soil total soluble nitrogen in subalpine coniferous forest of western Sichuan, China.Acta Ecologica Sinica,2016,36(3):652- 660.