王宏,許建銘
多模態(tài)磁共振功能成像在早產(chǎn)兒腦損傷中的應(yīng)用
王宏,許建銘*
隨著新生兒重癥監(jiān)護(hù)病房(neonatal intensive care unit,NICU)監(jiān)護(hù)和診療技術(shù)的迅速發(fā)展,早產(chǎn)兒、極低出生體重兒的存活率顯著提高,但在這些幸存者隨后的腦發(fā)育進(jìn)程中常出現(xiàn)認(rèn)知和行為異常、注意力和社會(huì)適應(yīng)能力減低、學(xué)習(xí)困難甚至腦癱等神經(jīng)系統(tǒng)后遺癥。近年來,磁共振功能成像技術(shù)如擴(kuò)散加權(quán)成像、擴(kuò)散張量成像、擴(kuò)散峰度成像、磁共振波譜、磁敏感加權(quán)成像、動(dòng)脈自旋標(biāo)記磁共振灌注成像等的快速發(fā)展,為從組織形態(tài)、細(xì)胞代謝到血液動(dòng)力學(xué)多方位研究早產(chǎn)兒腦損傷提供可能,因而針對(duì)多模態(tài)磁共振功能成像在早產(chǎn)兒腦損傷中的臨床應(yīng)用及進(jìn)展作一綜述。
早產(chǎn)兒;腦損傷;擴(kuò)散加權(quán)成像;擴(kuò)散張量成像;擴(kuò)散峰度成像;磁共振波譜;磁敏感加權(quán)成像;動(dòng)脈自旋標(biāo)記;磁共振成像
近年來我國早產(chǎn)兒出生率顯著增加,同時(shí)隨著新生兒重癥監(jiān)護(hù)病房(neonatal intensive care unit,NICU)監(jiān)護(hù)和診療技術(shù)迅速發(fā)展,早產(chǎn)兒、極低出生體重兒的存活率也顯著提高,但值得重視的是,有5%~15%的患兒隨后會(huì)出現(xiàn)包括腦癱在內(nèi)的神經(jīng)運(yùn)動(dòng)障礙[1];25%~50%的患兒將來會(huì)出現(xiàn)認(rèn)知和行為的異常、注意力和社會(huì)適應(yīng)能力的減低、學(xué)習(xí)困難等[2-4]。因此,早期發(fā)現(xiàn)早產(chǎn)兒腦損傷,判斷腦損傷的部位及程度,對(duì)早產(chǎn)兒腦損傷的臨床治療和預(yù)后都極為重要。
1.1 早產(chǎn)兒所處妊娠后期腦發(fā)育進(jìn)程
胎兒腦發(fā)育按時(shí)間先后順序分為原始神經(jīng)管形成、神經(jīng)分割、神經(jīng)增殖與移行、組織化、髓鞘化等不同階段,在妊娠后期,腦內(nèi)神經(jīng)細(xì)胞的增殖遷移仍在進(jìn)行,新生發(fā)的神經(jīng)細(xì)胞集中遷移至皮層板下區(qū)域,稱為皮層板下區(qū)神經(jīng)細(xì)胞(subplate neurons),是形成皮層神經(jīng)元的基礎(chǔ)[5];同時(shí),在妊娠24~40周,少突膠質(zhì)細(xì)胞前體(premyelinating oligodendrocytes,pre-OLs)轉(zhuǎn)化為成熟的少突膠質(zhì)細(xì)胞并進(jìn)一步構(gòu)成神經(jīng)軸突的髓鞘[6];在此期間,大腦深部灰質(zhì)核團(tuán)亦在快速發(fā)育階段,妊娠15~34周,神經(jīng)細(xì)胞從腦室腹側(cè)的生發(fā)基質(zhì)遷移至背側(cè)丘腦,其中主要為GABA能神經(jīng)細(xì)胞,以γ-氨基丁酸為遞質(zhì)的GABA能神經(jīng)元在人的認(rèn)知、皮層整合功能和調(diào)節(jié)神經(jīng)興奮性方面都起著重要作用[5]。
腦發(fā)育的不同階段對(duì)各種有害因素的易患性不同,早產(chǎn)兒所處妊娠后期正是腦內(nèi)神經(jīng)纖維快速髓鞘化的時(shí)期,在這個(gè)時(shí)期,任何不利因素的影響都會(huì)引起患兒腦內(nèi)神經(jīng)纖維髓鞘化不全,導(dǎo)致早產(chǎn)兒腦白質(zhì)損傷(white matter injury,WMI),而近期研究發(fā)現(xiàn),早產(chǎn)兒腦白質(zhì)損傷常同時(shí)伴有腦皮層錐體細(xì)胞數(shù)量的減少,不僅影響腦白質(zhì)功能,還影響大腦皮層、腦干及深部灰質(zhì)核團(tuán)等的功能,進(jìn)一步干擾腦的發(fā)育進(jìn)程[7],從而構(gòu)成了神經(jīng)運(yùn)動(dòng)障礙、認(rèn)知障礙等多種神經(jīng)系統(tǒng)后遺癥的病理基礎(chǔ)。
引起早產(chǎn)兒腦損傷的因素主要有兩個(gè):(1)外源性因素,包括缺血缺氧、感染/炎癥反應(yīng)等圍產(chǎn)期損害因素;(2)內(nèi)源性因素,早產(chǎn)兒腦血管發(fā)育不完善,腦白質(zhì)血管分布較少且發(fā)育不成熟,腦血流處于壓力被動(dòng)性調(diào)節(jié),且調(diào)節(jié)范圍非常有限[8]。
1.2 外源性因素影響
缺血缺氧、感染/炎癥反應(yīng)是圍產(chǎn)期常見的外源性損害因素,大量研究表明[8-12],腦血流量下降及氧供應(yīng)的減少、圍產(chǎn)期感染的存在將引發(fā)一系列有害的級(jí)聯(lián)生化反應(yīng),導(dǎo)致炎癥介質(zhì)及興奮性神經(jīng)遞質(zhì)的釋放、脂質(zhì)過氧反應(yīng)、自由基損傷等,pre-OLs對(duì)這些有害因素高度敏感,從而導(dǎo)致其成熟障礙或異化增殖;腦內(nèi)還存在大量的小膠質(zhì)細(xì)胞(microglia),它們是大腦固有的免疫細(xì)胞,研究表明,小膠質(zhì)細(xì)胞和pre-OLs具有相同的發(fā)育時(shí)間窗,在妊娠28~40周,小膠質(zhì)細(xì)胞達(dá)到高峰,這種發(fā)育時(shí)間上的平行性是為了保護(hù)pre-OLs免受有害因素攻擊,但在病理狀態(tài)下,小膠質(zhì)細(xì)胞迅速被白細(xì)胞介素-8(IL-8)激活呈阿米巴樣,成為炎癥介導(dǎo)的神經(jīng)退行性變的主要細(xì)胞,加重了pre-OLs受損程度[6];與此同時(shí),皮層板下區(qū)神經(jīng)細(xì)胞及GABA能神經(jīng)細(xì)胞對(duì)上述炎癥介質(zhì)、細(xì)胞外谷氨酸鹽及自由基損傷也異常敏感,在上述膠質(zhì)細(xì)胞成熟障礙的同時(shí),大腦皮層神經(jīng)元的發(fā)育、神經(jīng)纖維投射、深部灰質(zhì)核團(tuán)的生長(zhǎng)也同樣受到巨大威脅[7]。
1.3 內(nèi)源性因素影響
早產(chǎn)兒在出生后12~24小時(shí)內(nèi),心輸出量、各系統(tǒng)血流量、全腦及局部腦血流量都較足月兒低[13-14],同時(shí),腦血流自主調(diào)節(jié)功能受損,腦血流處于壓力被動(dòng)性調(diào)節(jié)[15],腦組織持續(xù)處于血流低灌注狀態(tài),極易引起急性缺血性腦損傷,而隨后出現(xiàn)的腦血流量的不穩(wěn)定及再灌注損傷又會(huì)導(dǎo)致出血性腦損傷[16-18]。新生兒腦白質(zhì)的血液供應(yīng)主要來源于兩種不同類型動(dòng)脈,一種是皮層穿支動(dòng)脈,由腦表面向腦室走行;另一種是室管膜下動(dòng)脈腦室遠(yuǎn)端血管,從腦室旁向腦表面走行,兩路供血?jiǎng)用}交接區(qū)很少有吻合支,其所處中部白質(zhì)區(qū)即為分水嶺區(qū),該區(qū)域隨胚胎發(fā)育成熟度不同而發(fā)生位置變化,早產(chǎn)兒未成熟的室管膜下動(dòng)脈發(fā)育較差,因而其分水嶺區(qū)域位于側(cè)腦室旁,而成熟足月新生兒的分水嶺區(qū)位置外移至旁矢狀區(qū)。因而,對(duì)于早產(chǎn)兒,輕至中度缺血缺氧腦損傷最先累及的是腦室旁白質(zhì)區(qū),重度缺血缺氧則深部灰質(zhì)核團(tuán)、腦干及小腦更易受累[19-21],而腦出血?jiǎng)t以室管膜下及腦室內(nèi)出血為主[15-16]。同時(shí),早產(chǎn)兒出生早期腦血流動(dòng)力學(xué)改變與胎齡、出生體重密切相關(guān)[22]。因此,早產(chǎn)兒出生后腦血流動(dòng)力學(xué)的監(jiān)測(cè),對(duì)于早產(chǎn)兒腦損傷的早期診斷及治療至關(guān)重要。
2.1 擴(kuò)散加權(quán)成像(diffusion weighted imaging,DWI)
DWI是研究水分子微觀運(yùn)動(dòng)的成像方法,通常用表觀彌散系數(shù)(apparent diffusion coefficient,ADC)來描述組織中水分子擴(kuò)散運(yùn)動(dòng)的快慢。ADC值在腦白質(zhì)發(fā)育過程中呈指數(shù)級(jí)降低,主要和軸突髓鞘化過程中大分子物質(zhì)如髓磷脂濃度升高、細(xì)胞外空間減少及水分子減少等有關(guān)[2,23],在成年期基本保持平穩(wěn),ADC值到老年期開始上升,主要原因是脫髓鞘改變、軸突完整性喪失、細(xì)胞外空間相對(duì)增加,因而ADC值的變化在一定程度上反映了腦白質(zhì)的成熟度及微結(jié)構(gòu)的完整性[24-25]。早產(chǎn)兒或足月新生兒腦組織急性缺血缺氧早期,以細(xì)胞毒性水腫為主,缺血區(qū)DWI表現(xiàn)為高信號(hào),ADC圖顯示為低信號(hào)區(qū),這種信號(hào)改變能較常規(guī)磁共振檢查更早發(fā)現(xiàn)缺血區(qū)的存在及范圍[26-27],但隨著缺血缺氧的進(jìn)展,血管源性水腫及細(xì)胞壞死等導(dǎo)致細(xì)胞外水分子增多,DWI顯示病灶信號(hào)逐漸下降呈等信號(hào),ADC值逐漸上升恢復(fù)正常值水平,即出現(xiàn)ADC值假正常化,Winter等[28]研究發(fā)現(xiàn)缺血缺氧腦病患兒腦缺血區(qū)ADC值在出生后8~10天左右出現(xiàn)假正常化。因此,如果檢查時(shí)間位于上述ADC值假正?;瘏^(qū)間,DWI可能不會(huì)發(fā)現(xiàn)異常。
ADC值對(duì)腦損傷患兒預(yù)后評(píng)估的可信度不是特別明確,要看腦白質(zhì)損傷區(qū)如何界定以及檢查時(shí)間的選擇,基底節(jié)及丘腦(basal ganglia and thalamic,BGT)、內(nèi)囊后肢(posterior limb of the internal capsule,PLIC)的ADC值測(cè)量對(duì)后期運(yùn)動(dòng)功能的評(píng)估有一定價(jià)值[29],Alderliesten等[30]對(duì)81名圍產(chǎn)期發(fā)生急性缺血缺氧的足月新生兒回顧性研究發(fā)現(xiàn),在7天內(nèi)進(jìn)行DWI檢查的患兒,其基底節(jié)及丘腦區(qū)域ADC的下降程度和神經(jīng)發(fā)育不良預(yù)后有明顯的相關(guān)性。
2.2 擴(kuò)散張量成像(diffusion tensor imaging,DTI)
DTI是在DWI的基礎(chǔ)上在6~55個(gè)非線性方向上施加彌散敏感梯度而獲取的圖像,目前臨床上主要對(duì)各向異性分?jǐn)?shù)(fractional anisotropy,F(xiàn)A)研究較多。對(duì)于腦白質(zhì)成熟度及髓鞘微觀結(jié)構(gòu)完整性的評(píng)價(jià),F(xiàn)A值較ADC值更具優(yōu)勢(shì)[31],劉嶺嶺等[32]對(duì)38名新生兒按不同胎齡進(jìn)行分組后測(cè)量不同部位腦白質(zhì)的FA值發(fā)現(xiàn),新生兒腦組織FA值隨胎齡增大逐漸增高,不同部位腦白質(zhì)FA值的不同也體現(xiàn)了腦白質(zhì)的不同發(fā)育次序。同時(shí)有研究表明,各向異性的增加,不僅表現(xiàn)在神經(jīng)纖維髓鞘化以后,在髓鞘化前期過程中,包括pre-OLs和所需蛋白質(zhì)合成時(shí),也會(huì)導(dǎo)致各向異性增加而使FA值升高[33],當(dāng)髓鞘形成遲緩或神經(jīng)纖維束受損時(shí),各向異性程度減低,相應(yīng)部位FA值下降,有時(shí)僅表現(xiàn)為FA上升速率的下降[2],因此FA值對(duì)腦白質(zhì)損傷程度可以進(jìn)行量化評(píng)價(jià),其下降程度與腦損傷程度密切相關(guān)[34],Ward等[35]對(duì)20例急性缺血缺氧腦病患兒觀察發(fā)現(xiàn)ADC值假正?;陂gFA值仍然處于下降趨勢(shì),從而彌補(bǔ)了檢查時(shí)間窗導(dǎo)致的DWI假陰性問題;在對(duì)早產(chǎn)兒的大量研究中發(fā)現(xiàn),早產(chǎn)兒矯正足月胎齡后,半卵圓中心、前部白質(zhì)、紋狀體、內(nèi)囊后肢、外囊、胼胝體壓部的FA值仍明顯較足月新生兒相同部位低[2];高潔等[36]通過DTI數(shù)據(jù)的TBSS分析方法發(fā)現(xiàn),足月兒局灶性腦白質(zhì)損傷(punctuate white matter lesions,PWML)范圍較早產(chǎn)兒更為廣泛,可累及皮質(zhì)脊髓束的走行區(qū),該區(qū)域的損傷與患兒痙攣性腦癱密切相關(guān)。
DTI的主要缺點(diǎn)是圖像空間分辨率較低,無論單次或多次激發(fā)的EPI,新生兒檢查時(shí)頭部不自主運(yùn)動(dòng)產(chǎn)生的偽影都會(huì)影響圖像質(zhì)量及檢查結(jié)果。
2.3 擴(kuò)散峰度成像(diffusion kurtosis imaging,DKI)
DWI和DTI成像理論是基于組織內(nèi)水分子在兩個(gè)位點(diǎn)間擴(kuò)散的概率分布呈正態(tài)分布(即高斯分布),但人體組織特別是腦組織,其結(jié)構(gòu)的復(fù)雜性導(dǎo)致水分子擴(kuò)散的這種位移概率呈非正態(tài)分布,組織結(jié)構(gòu)越復(fù)雜,水分子擴(kuò)散受限越明顯,這種擴(kuò)散的非高斯性越顯著,為了定量擴(kuò)散偏離高斯分布的程度,2005年,Jensen等[37]提出了DKI模型,DKI采用類似DTI的張量模型,但引入了更高維度的四階張量,所以彌散方向至少需要15個(gè),一般采用30個(gè)彌散方向,同時(shí)模型擬合需要3個(gè)b值,一般為0、1000、2000。DKI有3個(gè)主要參數(shù):平均峰度(mean kurtosis,MK),為多b值且方向相同的梯度上的平均值,MK值越大說明水分子擴(kuò)散偏離正態(tài)分布越顯著,組織結(jié)構(gòu)越復(fù)雜;徑向峰度(radial kurtosis,RK),擴(kuò)散受限主要在徑向,因而該方向非正態(tài)分布水分子受限越明顯,RK值相應(yīng)越大;峰度各向異性(kurtosis anisotropy,KA),KA值越小則水分子更傾向各向同性擴(kuò)散[38]。
Paydar等[39]對(duì)剛出生到4歲7個(gè)月的不同年齡段嬰幼兒腦灰白質(zhì)多個(gè)區(qū)域測(cè)定MK值及FA值發(fā)現(xiàn),在腦灰白質(zhì)發(fā)育最快速的出生后2年這段時(shí)間里,MK值如FA值一樣隨年齡增大而增高,表明MK值在神經(jīng)纖維髓鞘化過程中對(duì)各向異性的描述同樣敏感,在新生兒出生后第5個(gè)月,90%的FA值已達(dá)到最大值并進(jìn)入平臺(tái)期,而MK值普遍到第18個(gè)月才進(jìn)入平臺(tái)期,因而對(duì)于嬰幼兒腦發(fā)育中腦白質(zhì)和灰質(zhì)成熟度及微觀結(jié)構(gòu)的描述,MK值較FA值提供了更多的有價(jià)值的信息。同樣,MK值是否能在早產(chǎn)兒腦損傷中提供更多有價(jià)值的信息有待進(jìn)一步研究。
2.4 磁共振波譜(magnetic resonance spectroscopy,MRS)
MRS是目前影像學(xué)上進(jìn)行活體組織化學(xué)物質(zhì)檢測(cè)的惟一方法,可提供組織的代謝信息,以1H-MRS應(yīng)用較廣泛。在急性缺血缺氧狀態(tài)下,無氧糖酵解增加、神經(jīng)元細(xì)胞受損、髓鞘化異常等都會(huì)使腦內(nèi)代謝產(chǎn)物乳酸(Lac)、N-乙酰基天門冬氨酸(NAA)、膽堿(Cho)以及谷氨酰胺和谷氨酸鹽復(fù)合物(Glx)等的濃度發(fā)生變化,可以通過MRS對(duì)腦組織不同代謝產(chǎn)物進(jìn)行定性、定量分析早期提示早產(chǎn)兒腦損傷的存在,然而代謝產(chǎn)物濃度測(cè)定經(jīng)常受掃描條件、感興趣區(qū)(region of interest,ROI)大小等因素影響,肌酸(Cr)作為一種內(nèi)源性參照物,其在腦內(nèi)不同代謝條件下總量均較恒定,因此通常將上述代謝產(chǎn)物絕對(duì)值與Cr作對(duì)照得出其相對(duì)含量來進(jìn)行研究[40]。(1)NAA是神經(jīng)元的主要標(biāo)記物,存在于神經(jīng)元及其軸突中,也是神經(jīng)發(fā)育的指標(biāo),NAA/Cr明顯降低,提示非特異性的神經(jīng)元脫失或功能異常,研究表明[41],對(duì)于缺血缺氧患兒,在病程>1~2 w進(jìn)行MRS檢查,NAA的降低與神經(jīng)發(fā)育預(yù)后不良有明顯的相關(guān)性,而在急性期,病程<1 w進(jìn)行檢查其相關(guān)性不明顯。(2)Lac是無氧糖酵解的終產(chǎn)物,正常足月兒中乳酸波一般見不到,Lac/Cr明顯升高,提示缺氧造成無氧酵解增加、線粒體損傷[26,40,42];多項(xiàng)研究表明[30,43]深部灰質(zhì)核團(tuán)的代謝產(chǎn)物中,Lac/NAA對(duì)新生兒缺血缺氧腦病的預(yù)后判斷價(jià)值最高,但同時(shí)也有研究指出,新生兒分水嶺區(qū)出現(xiàn)少量Lac,尤其是在早產(chǎn)兒中,并不一定表明腦損傷,Lac的量較是否出現(xiàn)意義更大。(3)Cho主要存在于細(xì)胞膜,主要包括磷酸甘油膽堿、磷酸膽堿和磷脂酰膽堿,代表腦內(nèi)總的膽堿量,其含量反映了細(xì)胞膜代謝的變化,Cho/Cr降低,表明細(xì)胞膜形成障礙,提示神經(jīng)細(xì)胞損傷。(4)Glx作為一種主要的興奮性神經(jīng)遞質(zhì),在缺血缺氧狀態(tài)下從破壞的軸突中釋放出來,進(jìn)入細(xì)胞外間隙,同時(shí),由于氧自由基的作用,它的重吸收也受到明顯影響,因而,Glx的升高提示著神經(jīng)軸突的損傷[44]。Roelants-van Rijn等[41]對(duì)缺血缺氧患兒平均8 d后進(jìn)行MRS測(cè)量,發(fā)現(xiàn)Glx的水平?jīng)]有明顯增高,提示患兒缺血缺氧進(jìn)入亞急性階段,Glx水平基本恢復(fù)正常。
2.5 磁敏感加權(quán)成像(susceptibility weighted imaging,SWI)
SWI是一種三維采集、完全流動(dòng)補(bǔ)償,薄層重建的梯度回波序列,利用不同組織間的磁敏感性差異分別采集強(qiáng)度數(shù)據(jù)和相位數(shù)據(jù),并經(jīng)后處理兩者疊加形成SWI圖,血液中的大多數(shù)產(chǎn)物(包括脫氧血紅蛋白、正鐵血紅蛋白和含鐵血黃素)都為順磁性,在SWI上表現(xiàn)為信號(hào)強(qiáng)度的丟失,即呈低信號(hào),因而其對(duì)微出血特別是新生兒顱內(nèi)早期和微量出血的檢測(cè)非常敏感,同時(shí)也能清楚顯示靜脈或動(dòng)脈內(nèi)的微小血栓。在早產(chǎn)兒中,PWML較多見,T1WI呈高信號(hào),T2WI呈低信號(hào),與新生兒顱內(nèi)點(diǎn)狀出血在常規(guī)MRI上很難區(qū)分,也有研究表明,部分PWML病灶內(nèi)常同時(shí)伴有點(diǎn)狀出血,可以通過SWI檢測(cè)是否含有出血成分對(duì)兩者進(jìn)行鑒別[45-46],彌補(bǔ)了常規(guī)MRI的不足。然而,SWI對(duì)磁場(chǎng)不均勻性特別敏感,在空氣-組織交界處易產(chǎn)生磁敏感偽影,在檢測(cè)腦邊緣區(qū)域病灶時(shí)會(huì)受到一定的影響,此時(shí)可以用FLAIR作為其補(bǔ)充。
2.6 動(dòng)脈自旋標(biāo)記磁共振灌注成像(arterial spin labeling,ASL)
動(dòng)態(tài)磁敏感對(duì)比增強(qiáng)(dynamic susceptibility contrast,DSC)是磁共振灌注成像的主要方法,但由于需要使用釓對(duì)比劑,存在累積效應(yīng)而無法重復(fù)測(cè)量,在新生兒腦灌注研究中受到限制。
ASL是一種安全、無創(chuàng)的灌注成像技術(shù),主要通過對(duì)感興趣區(qū)層面動(dòng)脈血中水分子進(jìn)行示蹤磁標(biāo)記,待標(biāo)記血對(duì)組織灌注后得到標(biāo)記像與灌注前同一層面的控制像相減產(chǎn)生包含灌注信息的血流灌注像,因?yàn)樾盘?hào)差值小,需要多次采集進(jìn)行信號(hào)平均。ASL根據(jù)標(biāo)記方法不同分為連續(xù)ASL (continuous ASL,CASL)和脈沖ASL (pulsed ASL,PASL),與其他灌注成像相比,ASL的主要優(yōu)點(diǎn)是在提高安全性的前提下定量測(cè)量CBF;對(duì)灌注異常區(qū)域定位準(zhǔn)確;不存在累積效應(yīng),可以短期重復(fù)測(cè)量,從而對(duì)治療反應(yīng)進(jìn)行短期觀察[47-48];這些優(yōu)勢(shì)運(yùn)用在新生兒及早產(chǎn)兒腦血流動(dòng)力學(xué)檢測(cè)上是非常有幫助的。國內(nèi)外已有大量學(xué)者把ASL灌注技術(shù)運(yùn)用到新生兒及早產(chǎn)兒的腦血流測(cè)定上,Wolf等[49]研究表明,ASL灌注成像所得的CBF結(jié)果,與PET和DSC灌注成像所得一致;Wang等[50]研究發(fā)現(xiàn),ASL灌注成像的信噪比隨年齡增長(zhǎng)呈線性降低,因而應(yīng)用ASL技術(shù)所得新生兒腦部灌注成像信號(hào)較成人更好,可以提高皮層和皮層下結(jié)構(gòu)的分辨率;Maria等[51]研究發(fā)現(xiàn)矯正胎齡的早產(chǎn)兒在基底節(jié)、腦灰質(zhì)及腦白質(zhì)3個(gè)區(qū)域的CBF均較足月新生兒有顯著增高。這些研究都為ASL技術(shù)在新生兒及早產(chǎn)兒病理狀態(tài)下的血液動(dòng)力學(xué)檢測(cè)奠定了基礎(chǔ)。
同樣,ASL技術(shù)也存在許多不足,最為突出的是信噪比低,首先主要由運(yùn)動(dòng)偽影造成減影誤差引起,尤其在新生兒腦血流測(cè)量中,檢查過程中患兒頭部不自主運(yùn)動(dòng)會(huì)對(duì)圖像質(zhì)量及測(cè)量結(jié)果產(chǎn)生影響,可以適當(dāng)給予鎮(zhèn)靜劑,例如檢查前30分鐘給予10%水合氯醛灌腸(0.2~0.4 ml/kg),同時(shí)通過多重翻轉(zhuǎn)脈沖進(jìn)行背景信號(hào)抑制來降低噪聲[52-53];其次,在CASL中,磁化轉(zhuǎn)移效應(yīng)(magnetization transfer effect,MTE)也會(huì)引起組織信號(hào)降低約60%,解決方法主要是:(1)由于磁化轉(zhuǎn)移效應(yīng)在頻率上的對(duì)稱性,可以在基線狀態(tài)時(shí)在成像層面上方等距離施加另一個(gè)射頻脈沖。(2)應(yīng)用小的表面線圈作為單獨(dú)的標(biāo)記線圈,這樣既消除了磁化轉(zhuǎn)移造成的信號(hào)降低,還能降低射頻能量蓄積[54];而PASL與CASL比較,缺點(diǎn)是覆蓋范圍小,標(biāo)記效率低。另外,血管內(nèi)殘余標(biāo)記信號(hào)可以使感興趣區(qū)CBF假性增高,應(yīng)用小的擴(kuò)散梯度可以減少血管內(nèi)的殘余標(biāo)記信號(hào)[55]。
筆者相信,隨著ASL灌注成像技術(shù)的逐步完善,其臨床應(yīng)用價(jià)值會(huì)越來越受到各方面的重視,同時(shí)由于新生兒自身的生理特點(diǎn),使ASL灌注成像在新生兒腦血流動(dòng)力學(xué)上的臨床應(yīng)用更具廣闊前景,對(duì)新生兒在病理狀態(tài)下腦血流動(dòng)力學(xué)變化的進(jìn)一步認(rèn)知,必將為早產(chǎn)兒腦損傷及新生兒缺氧缺血性腦病的發(fā)生機(jī)制及其預(yù)后評(píng)估提供更為重要、更有價(jià)值的信息。
[References]
[1] Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet, 2008, 371(9608): 261-269.
[2] Pandit AS, Ball G, Edwards AD, et al. Diffusion magnetic resonance imaging in preterm brain injury. Neuroradiology, 2013, 55(suppl 2): 65-95.
[3] Johnson S, Fawke J, Hennessy E, et al. Neurodevelopmental disability through 11 years of age in children born before 26 weeks of gestation. Pediatrics, 2009, 124(2):e249-e257.
[4] Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med, 2008, 359(3): 262-273.
[5] Phillips JP, Montague EQ, Aragon M, et al. Prematurity affects cortical maturation in early childhood. Pediatr Neurol, 2011, 45(4): 213-219.
[6] Back SA, Rosenberg, PA. Pathophysiology of glia in perinatal white matter injury. Glia, 2014, 62(11): 1790-1815.
[7] Duerden EG, Taylor MJ, Miller SP. Brain development in infants born preterm: looking beyond injury. Semin Pediatr Neurol, 2013, 20(2): 65-74.
[8] Wong CH, Crack PJ. Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med chem, 2008, 15(1):1-14.
[9] Salmaso N, Jablonska B, Scafidi J, et al. Neurobiology of premature brain injury. Nat Neurosci, 2014, 17(3): 341-346.
[10] Back SA. Cerebral white and gray matter injury in newborns_ new insights into pathophysiology and management. Clin Perinatol, 2014, 41(1): 1-24.
[11] Ray SK. Currently evaluated calpain and caspase inhibitors for neuroprotection in experimental brain ischemia. Curr Med Chem, 2006, 13(28): 3425-3440.
[12] Chao CP, Zaleski CG, Patton AC. Neonatal hypoxic-ischemic encephalopathy: multimodality imaging findings. Radiographics, 2006, 26 (Suppl 1):S159-S172.
[13] Hunt RW, Evans N, Rieger I, et al. Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants. J Pediatr, 2004, 145(5): 588-592.
[14] Kluckow M, Evans N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed, 2000, 82(3): 188-194.
[15] Brew N, Walker D, Wong FY. Cerebral vascular regulation and brain injury in preterm infants. Am J Physiol Regul Integr Comp Physiol, 2014, 306(11): 773-786.
[16] Kissack CM, Garr R, Wardle SP, et al. Postnatal changes in cerebral oxygen extraction in the preterm infant are associated with intraventricular hemorrhage and hemorrhagic parenchymal infarction but not periventricular leukomalacia. Pediatr Res, 2004, 56(1): 111-116.
[17] O' Leary H, Gregas MC, Limperopoulos C, et al. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics, 2009, 124(1): 302-309.
[18] Tsuji M, Saul JP, du Plessis A, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics, 2000, 106(4): 625-632.
[19] Riddle A, Luo NL, Manese M, et al. Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J Neurosci, 2006, 26 (11): 3045-3055.
[20] Alderliesten T, de Vries LS, Benders MJ, et al. MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusionweighted MR imaging and1H MR spectroscopy. Radiology, 2011, 261(1): 235-242.
[21] Tang Y, Liu Y. The MRI features of the preterm and full-term neonatal hypoxic ischemic brain damage. Chin J Magn Reson Imaging, 2013, 4(3): 185-191.湯易, 劉影. 早產(chǎn)兒、足月兒缺血缺氧性腦損傷的MRI表現(xiàn). 磁共振成像, 2013, 4(3): 185-191.
[22] Soul JS, Hammer PE, Tsuji M, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res, 2007, 61(4): 467-473.
[23] Mukherjee P, Miller JH, Shimony JS, et al. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol, 2002, 23(9): 1445-1456.
[24] Oksuzler YF, Cakmakci H, Kurul S, et al. Diagnostic value of diffusion-weighted magnetic resonance imaging in pediatric cerebral diseases. Pediatr Neurol, 2005, 32(5):325-333.
[25] Hart AR, Whitby EH, Clark SJ, et al. Diffusion-weighted imaging of cerebral white matter and the cerebellum following preterm birth. Dev Med Child Neurol, 2010, 52(7): 652-659.
[26] Cowan FM, Pennock JM, Hanrahan JD, et al. Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging. Neuropediatrics, 1994, 25(4): 172-175.
[27] Hart AR, Whitby EH, Clark SJ, et al. Diffusion-weighted imaging of cerebral white matter and the cerebellum following preterm birth. Dev Med Child Neurol, 2010, 52(7): 652-659.
[28] Winter JD, Lee DS, Hung RM, et al. Apparent diffusion coefficient pseudonormalization time in neonatal hypoxic-ischemic encephalopathy. Pediatr Neurol, 2007, 37(4): 255-262.
[29] Rutherford M, Biarge MM, Allsop J, et al. MRI of perinatal brain injury. Pediatr Radiol, 2010, 40(6): 819-833.
[30] Alderliesten T, deVries LS, Benders MJ, et al. MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusionweighted MR imaging and 1H MR spectroscopy. Radiology, 2011, 261(1): 235-242.
[31] Provenzale JM, Liang L, DeLong D, et al. Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. AJR Am J Roentgenol, 2007, 189(2): 476-486.
[32] Liu LL, Bo RT, Yang WJ, et al. Diffusion tensor imaging study of normal neonatal brain maturation. Chin J Magn Reson Imaging, 2015, 6(4): 253-257.劉嶺嶺, 孛茹婷, 楊文君, 等. 磁共振彌散張量成像技術(shù)在新生兒腦白質(zhì)發(fā)育中的研究. 磁共振成像, 2015, 6(4): 253-257.
[33] Wimberger DM, Roberts TP, Barkovich AJ, et al. Identification of "premyelination" by diffusion-weighted MRI. J Comput Assist Tomogr, 1995, 19(1): 28-33.
[34] Ancora G, Testa C, Grand S, et al. Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxicischemic encephalopathy treated by brain cooling. Neuroradiology, 2013, 55(8): 1017-1025.
[35] Ward P, Counsell S, Allsop J, et al. Reduced fractional anisotropy on diffusion tensor magnetic resonance imaging after hypoxic-ischemic encephalopathy. Pediatrics, 2006, 117(4): 619-630.
[36] Gao J, Zhang YM, Sun QL, et al. White matter variations in preterm and full term neonates with punctate white matter lesions: a diffusion tensor study based on tract-based spatial statistics. Chin J Magn Reson Imaging, 2014, 5(1): 24-29.高潔, 張育苗, 孫親利, 等. 基于纖維束空間統(tǒng)計(jì)分析法研究早產(chǎn)及足月新生兒局灶性腦白質(zhì)損傷的擴(kuò)散張量成像特點(diǎn). 磁共振成像, 2014, 5(1): 24-29.
[37] Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6): 1432-1440.
[38] Zeng DS, Xiao XL. Application of diffusion kurtosis imaging in central nervous system. Journal of Clinical Radiology, 2011, 30(9): 1400-1402.曾丁巳, 肖新蘭. 擴(kuò)散峰度成像(DKI)在中樞神經(jīng)系統(tǒng)的應(yīng)用. 臨床放射學(xué)雜志, 2011, 30(9): 1400-1402.
[39] Paydar A, Fieremans E, Nwankwo JI, et al. Diffusional kurtosis imaging of the developing brain. AJNR Am J Neuroradiol, 2014, 35(4): 808-814.
[40] Cheong JL, Cady EB, Penrice J, et al. Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. AJNR Am J Neuroradiol, 2006, 27(7): 1546-1554.
[41] Roelants-van Rijn AM, van der Grond J, de Vries LS, et al. Value of1H-MRS using different echo times in neonates with cerebral hypoxiaischemia. Pediatr Res, 2001, 49(3): 356-362.
[42] Gano D, Chau V, Poskitt KJ, et al. Evolution of pattern of injury and quantitative MRI on days 1 and 3 in term newborns with hypoxicischemic encephalopathy. Pediatr Res, 2013, 74(1): 82-87.
[43] Thayyil S, Chandrasekaran M, Taylor A, et al. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics, 2010, 125(2): 382-395.
[44] Hüppi PS, Amato M. Advanced magnetic resonance imaging techniques in perinatal brain injury. Biol Neonate, 2001, 80(1): 7-14.
[45] Ramenghi LA, Fumagalli M, Righini A, et al. Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctuate white matter lesions. Neuroradiology, 2007, 49(2): 161-167.
[46] Niwa T, de Vries LS, Benders MJ, et al. Punctate white matter lesions in infants: new insights using susceptibility-weighted Imaging. Neuroradiology, 2011, 53(9): 669-679.
[47] Miranda MJ, Olofsson K, Sidaros K. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling. Pediatr Res, 2006, 60(3): 359-363.
[48] Liu AA, Voss HU, Dyke JP, et al. Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology, 2011, 77(16): 1518-1523.
[49] Wolf RL, Alsop DC, McGarvey ML, et al. Susceptibility contrast and arterial spin labeled perfusion MRI in cerebrovascular disease. J Neuroimaging, 2003, 13(1): 17-27.
[50] Wang J, Licht DJ, Jahng GH, et al. Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging, 2003, 18(4): 404-413.
[51] Miranda MJ, Olofsson K, Sidaros K. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling. Pediatr Res, 2006, 60(3): 359-363.
[52] Ye FQ, Frank JA, Weinberger DR, et al. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med, 2000, 44(1): 92-100.
[53] Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med, 1995, 34 (3): 293-301.
[54] Mildner T, Trampel R, M?ller HE, et al. Functional perfusion imaging using continuous arterial spin labeling with separate labeling and imaging coils at 3 T. Magn Reson Med, 2003, 49(5): 791-795.
[55] Ye FQ, Mattay VS, Jezzard P, et al. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med, 1997, 37(2): 226-235.
Application of multimodality fMRI in preterm brain injury
WANG Hong, XU Jian-ming*
Department of Radiology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou 215002, China
With the rapid development of NICU, the survival rate of premature and very low birth weight infants has increased significantly. However, these preterm survivors are at risk of neurodevelopmental impairments such as cognitive and behavioral abnormalities, poor attention and social skills, learning disorder, even cerebral palsy (CP). Due to advances in functional magnetic resonance imaging (e.g. DWI, DTI, DKI, MRS, SWI, ASL) in recent years, it is feasible to investigate preterm brain injury through observation of brain microstructure, metabolism and hemodynamic. So we review the application and progress of multimodality fMRI in preterm brain injury.
Premature infants; Brain injury; Diffusion weighted imaging; Diffusion tensor imaging; Diffusion kurtosis imaging; Magnetic resonance spectroscopy; Susceptibility weighted imaging; Arterial spin labeling; Magnetic resonance imaging
Xu JM, E-mail: jmxu86@163.com
Received 29 Jun 2016, Accepted 8 Sep 2016
南京醫(yī)科大學(xué)附屬蘇州醫(yī)院(蘇州市立醫(yī)院本部)影像科,蘇州 215002
許建銘,E-mail:jmxu86@163.com
2016-06-29
接受日期:2016-09-08
R445.2;R748
A
10.12015/issn.1674-8034.2016.12.012
王宏,許建銘. 多模態(tài)磁共振功能成像在早產(chǎn)兒腦損傷中的應(yīng)用. 磁共振成像, 2016, 7(12): 951-956.*