国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高黏度熱聚合乳清分離蛋白-三聚磷酸鈉的研制及其性質(zhì)

2016-03-21 12:38:24解思雨侯俊財(cái)馮憲民肖洪亮王占東王青云程建軍東北農(nóng)業(yè)大學(xué)食品學(xué)院哈爾濱50030黑龍江省完達(dá)山乳業(yè)股份有限公司哈爾濱50060
關(guān)鍵詞:三聚磷酸鈉凝膠黏度

解思雨,侯俊財(cái),馮憲民,肖洪亮,王 利,王占東,王青云,程建軍※(. 東北農(nóng)業(yè)大學(xué)食品學(xué)院,哈爾濱50030; . 黑龍江省完達(dá)山乳業(yè)股份有限公司,哈爾濱 50060)

?

高黏度熱聚合乳清分離蛋白-三聚磷酸鈉的研制及其性質(zhì)

解思雨1,侯俊財(cái)1,馮憲民1,肖洪亮2,王利2,王占東2,王青云2,程建軍1※
(1. 東北農(nóng)業(yè)大學(xué)食品學(xué)院,哈爾濱150030;2. 黑龍江省完達(dá)山乳業(yè)股份有限公司,哈爾濱 150060)

摘要:為了探究三聚磷酸鈉(sodium tripolyphosphate, STPP)及熱改性條件對(duì)乳清分離蛋白(whey protein isolate, WPI)聚合物性質(zhì)的影響,該研究通過(guò)單因素和Box-Behnken優(yōu)化試驗(yàn)進(jìn)行工藝優(yōu)化;利用熒光分光光度計(jì)、旋轉(zhuǎn)流變儀、激光粒度分析儀和電子掃描顯微鏡對(duì)乳清分離蛋白聚合物性質(zhì)進(jìn)行研究。結(jié)果表明:在質(zhì)量分?jǐn)?shù)為10% WPI、0.09% STPP、90℃和pH值8.40條件下,熱聚合反應(yīng)42 min,WPI-STPP熱聚合物黏度高達(dá)5 083 mPa·s。對(duì)WPI-STPP熱聚合物性質(zhì)分析發(fā)現(xiàn):與空白、WPI熱聚合體相比,WPI-STPP熱聚合物的持水性顯著提高(P<0.05);表面疏水性有顯著增加(P<0.05)。WPI-STPP熱聚合物粒徑((292.09±2.17) μm)顯著增大(P<0.05),且表現(xiàn)出較高的彈性模量。WPI-STPP熱聚合物具有較大片狀微觀(guān)結(jié)構(gòu)且呈不規(guī)則性,這有利于黏度的增大。研究結(jié)果為改性乳清蛋白及其在酸奶方面的應(yīng)用提供理論依據(jù)與技術(shù)參考。

關(guān)鍵詞:黏度;凝膠;優(yōu)化;乳清分離蛋白;三聚磷酸鈉;熱聚合

解思雨,侯俊財(cái),馮憲民,肖洪亮,王利,王占東,王青云,程建軍. 高黏度熱聚合乳清分離蛋白-三聚磷酸鈉的研制及其性質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):287-293.doi:10.11975/j.issn.1002-6819.2016.02.041http://www.tcsae.org Xie Siyu, Hou Juncai, Feng Xianmin, Xiao Hongliang, Wang Li, Wang Zhangdong, Wang Qingyun, Cheng Jianjun. Preparation and characters of whey protein isolate-sodium tripolyphosphate aggregates by heating [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 287-293. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.041http://www.tcsae.org

0 引 言

乳清蛋白作為干酪生產(chǎn)的副產(chǎn)物,因其具有較高的營(yíng)養(yǎng)價(jià)值和良好的功能特性,逐漸引起人們重視[1]。但由于其具有較小的、近乎球狀的蛋白顆粒,不能以傳統(tǒng)的增稠劑利用[2]。通過(guò)熱聚合改性使乳清蛋白分子顆粒增大,可使其蛋白溶液的有效動(dòng)力學(xué)體積分?jǐn)?shù)增大,從而提高其黏度,以進(jìn)一步應(yīng)用于食品加工中來(lái)改善產(chǎn)品的黏稠程度[3]。

熱聚合改性技術(shù)的改性效果主要受乳清蛋白濃度、pH值、離子強(qiáng)度以及熱處理方式的影響[4-8]。李鐵紅等[9]對(duì)乳清蛋白熱改性進(jìn)行研究,提出了熱聚合技術(shù)生產(chǎn)乳清蛋白膠黏性產(chǎn)品可理論上替代果膠。郭明若等發(fā)明了一種利用乳清分離蛋白(whey protein isolate, WPI)在堿性條件下熱聚合制備酸奶結(jié)構(gòu)改良劑及酸奶的制備方法[10]。Britten等[11]將乳清蛋白聚合物加入到中性的牛奶中,與脫脂乳粉樣品相比,在發(fā)酵過(guò)程中聚合物交聯(lián)使酸奶的黏度從393 mPa·s提高到了813 mPa·s,持水性也由7.2 mL/g增至19.8 mL/g,進(jìn)而提高發(fā)酵酸奶的質(zhì)地。

Enomoto等[12]對(duì)糖基化β-乳球蛋白進(jìn)行磷酸化,結(jié)果表明,β-乳球蛋白的熱穩(wěn)定性和乳化性都有所改善。還有研究指出雞蛋蛋白和大豆乳清蛋白干法磷酸化反應(yīng)1~5 d,其功能特性得到提高[13-14];磷酸根離子會(huì)提高熱凝膠的硬度,彈性等凝膠性質(zhì)[15-16]。由于引進(jìn)了磷酸根基團(tuán),磷酸化蛋白質(zhì)體系的電負(fù)性增強(qiáng),提高了蛋白質(zhì)分子之間的靜電斥力,使之在食品體系中更易分散,相互排斥,因而提高了溶解度和聚結(jié)穩(wěn)定性[17]。但上述研究中,干法磷酸化后蛋白體現(xiàn)出熱凝膠狀態(tài)(heat-set gel),在酸奶生產(chǎn)中無(wú)法應(yīng)用;且反應(yīng)時(shí)間較長(zhǎng),與濕法磷酸化相比,生產(chǎn)效率較低。

本研究以乳清分離蛋白和三聚磷酸鈉為原料,采用濕法制備WPI-STPP熱聚合物,縮短反應(yīng)時(shí)間,提高生產(chǎn)效率。并通過(guò)黏度、表面疏水性、流變特性和微觀(guān)結(jié)構(gòu)等指標(biāo)分析濕法改性WPI-STPP熱聚合物性質(zhì)。探討乳清蛋白可溶性聚合物(soluble aggregates)形成規(guī)律,揭示磷酸化與熱改性對(duì)其結(jié)構(gòu)與性質(zhì)的影響,進(jìn)而改善酸奶的質(zhì)地結(jié)構(gòu),為磷酸化熱改性乳清蛋白替代果膠在酸奶中的應(yīng)用提供參考。

1 試驗(yàn)材料

1.1原料和主要試劑

乳清分離蛋白(蛋白質(zhì)質(zhì)量分?jǐn)?shù)為82.03%±1.27%,水分6.88%±0.16%,脂肪6.00%±0.02%,灰分2.58%±0.01%)購(gòu)于恒天然乳品集團(tuán);三聚磷酸鈉(sodium tripolyphosphate, STPP)及其他試劑均為分析純。

1.2主要儀器設(shè)備

S-3400N電子掃描顯微鏡(日本HITACHI公司),MASTERSIZER-2000型激光粒度分析儀(英國(guó)Malvern公司),F(xiàn)-4500熒光分光光度計(jì)(日本日立公司),旋轉(zhuǎn)流變儀(英國(guó)Malvern公司),F(xiàn)D5-4型冷凍干燥機(jī)(美國(guó)SIM公司),NDJ-5S數(shù)字式黏度計(jì)(上海精密科學(xué)儀器有限公司)等。

2 試驗(yàn)方法

2.1熱聚合物的制備

WPI-STPP熱聚合物:把一定量的STPP加入到WPI溶液中,室溫(25±1)℃下磁力攪拌3 h,調(diào)溶液pH值,一定溫度下熱聚合不同時(shí)間,取出于冰水浴中迅速冷卻到室溫(25±1)℃,制得的樣品于室溫下待測(cè)。部分樣品-50℃冷凍干燥,過(guò)80目篩,待測(cè)。

WPI熱聚合體:質(zhì)量分?jǐn)?shù)為10% WPI溶液,室溫下磁力攪拌3 h,調(diào)溶液pH值為8.4,90℃熱聚合42 min,迅速于冰水浴中冷卻至室溫(25±1)℃。部分樣品冷凍干燥,過(guò)80目篩,待測(cè)。

空白:10%WPI溶液,室溫下磁力攪拌3 h。部分樣品冷凍干燥,過(guò)80目篩,待測(cè)。

2.2聚合條件對(duì)WPI-STPP熱聚合物黏度的影響

WPI質(zhì)量分?jǐn)?shù)分別選擇8.0%、8.5%、9.0%、9.5%、10.0%和10.5%,加熱溫度分別選擇70、75、80、85、90 和95℃,pH值分別選擇7.0、7.5、8.0、8.5和9.0,STPP質(zhì)量分?jǐn)?shù)分別選擇0.03%、0.05%、0.07%、0.09%和0.11%,加熱時(shí)間分別選擇20、30、40、50和60 min。以黏度為指標(biāo)優(yōu)化出較佳聚合條件。黏度測(cè)定:參考Wang等[18]的方法,用NDJ-5S數(shù)字式旋轉(zhuǎn)黏度計(jì)測(cè)量所得樣品黏度值。

2.3WPI-STPP熱聚合物工藝條件的Box-Behnken 優(yōu)化

根據(jù)單因素試驗(yàn)結(jié)果,采用Box-Behnken模型設(shè)計(jì)試驗(yàn),因素水平編碼見(jiàn)表1。

表1 Box-Behnken模型設(shè)計(jì)因素水平編碼Table 1 Factors and levels of Box-Behnken experiment design

2.4WPI-STPP熱聚合物性質(zhì)及結(jié)構(gòu)組成分析

溶解度的測(cè)定:參照Lawal等[19]方法。稱(chēng)取0.50 g各干燥樣品,用蒸餾水定容至50 mL,磁力攪拌2 h。然后25℃條件下離心12 000 g×30 min,采用凱氏定氮法測(cè)定上清液中的蛋白質(zhì)量。

持水性的測(cè)定:參考美國(guó)谷物化學(xué)家協(xié)會(huì)方法(america association of cereal chemist, AACC 88-04)。稱(chēng)取2.00 g干燥粉樣(W1,g),放入已知質(zhì)量(W2,g)的50 mL離心管內(nèi),加入20 mL蒸餾水,振蕩混合均勻,靜置10 min,25℃條件下,4 000 g離心20 min,取出,移去上清液,稱(chēng)量(W3,g)。持水性(WHC)表示為每克蛋白的含水量

表面疏水性的測(cè)定:參照Wagner等[20]的方法。利用1-苯胺基-8-萘磺酸(1-anilino-8-naphthalene-sulfonate,ANS)作為熒光探針測(cè)定樣品的表面疏水性。用蒸餾水稀釋成不同濃度的樣品溶液,使溶液中蛋白濃度控制在0.005~0.1 mg/mL。取20 μL ANS(8.0 mmol/L)溶液加到7.0 mL樣品溶液中,混合均勻,并于室溫下避光10 min。在激發(fā)波長(zhǎng)390 nm、發(fā)射波長(zhǎng)470 nm以及狹縫5 nm的條件下進(jìn)行測(cè)定。以熒光強(qiáng)度值對(duì)蛋白溶液濃度作圖,記斜率為蛋白質(zhì)的表面疏水性指數(shù),表示表面疏水性。

流變學(xué)性質(zhì)的測(cè)定:參照Purwanti等[21]方法。剪切應(yīng)力(τ)和表觀(guān)黏度(η)測(cè)試:選用夾具為直徑60 mm的平行板,平行板間距為500 μm,剪切速率(γ)為1~300 s-1,測(cè)試溫度設(shè)為25℃。黏彈性測(cè)試:測(cè)試樣經(jīng)4℃冷置過(guò)夜(12 h),測(cè)試前置于室溫(25℃)環(huán)境中平衡1 h。選用夾具為直徑60 mm的平行板,平行板間距為500 μm。選擇一定應(yīng)力(預(yù)試驗(yàn)所得),在頻率范圍0.1~10 Hz下進(jìn)行動(dòng)態(tài)頻率掃描測(cè)試,記錄測(cè)試樣的黏性模量(G″)和彈性模量(G′),以黏、彈性模量對(duì)頻率作圖。

粒度分析:參考Sa?lam等[22]方法。凍干樣品顆粒吸收率為0.1,同時(shí)用超純水做分散劑,其折射率為1.33。

電鏡掃描分析:參考Helen等[23]方法。將干燥樣品進(jìn)行粘臺(tái)處理,放入離子濺射鍍射儀中經(jīng)15 min的減壓處理后,對(duì)樣品離子濺射鍍膜約10 min,最后將樣品移至掃描電鏡中觀(guān)察并取相。

2.5統(tǒng)計(jì)分析

試驗(yàn)數(shù)據(jù)分析采用Design expert 7.0、SPSS11.5、Microsoft Excel分析軟件,Origin7.5繪圖軟件。試驗(yàn)重復(fù)3次,數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差的形式表示。

3 結(jié)果與分析

3.1聚合條件對(duì)WPI-STPP熱聚合物黏度影響分析

3.1.1WPI質(zhì)量分?jǐn)?shù)對(duì)WPI-STPP熱聚合物黏度的影響

蛋白濃度越大,形成的熱聚合體越大,從而黏度增大[24-25],而且較大的聚合蛋白顆粒則更有利于后續(xù)冷凝膠的形成。WPI質(zhì)量分?jǐn)?shù)在9.5%~10%時(shí),黏度由71 mPa·s增加到1 643 mPa·s,提高了22倍。如圖1a所示,當(dāng)濃度繼續(xù)增大時(shí),WPI-STPP熱聚合物呈凝膠態(tài),10%為較佳濃度。高濃度蛋白溶液中蛋白分子的分布較密集,蛋白與蛋白之間的相互聚合占主導(dǎo)[3]。同時(shí),加入的三聚磷酸鈉可能與加熱展開(kāi)的蛋白分子間相互作用,使其更易聚合成較大顆粒,使黏度增加,表現(xiàn)出NaCl與WPI熱處理時(shí)的作用一致[26-27]。

3.1.2加熱溫度對(duì)WPI-STPP熱聚合物黏度的影響

溫度對(duì)WPI-STPP熱聚合物黏度的影響見(jiàn)圖1b。90℃時(shí),乳清蛋白聚合物黏度達(dá)到4 577 mPa·s(高黏度液體),當(dāng)溫度升高到95℃時(shí),聚合物黏度達(dá)到6 030 mPa·s(凝膠狀),表現(xiàn)出呈倍數(shù)增長(zhǎng)的趨勢(shì),因此熱聚合溫度選擇在90℃為宜。隨著溫度的增加,乳清蛋白分子間熱聚合程度更為劇烈,蛋白分子展開(kāi)加速,而展開(kāi)的蛋白結(jié)構(gòu)更有利于進(jìn)一步聚合,從而黏度不斷增大[28]。Kiokias 等[29]研究發(fā)現(xiàn)75~90℃是β-乳球蛋白和α-乳白蛋白變性的穩(wěn)定平衡階段,磷酸鹽(STPP)使得WPI的變性溫度提高,提高溫度使蛋白間的聚合作用顯著增加,這類(lèi)似于WPI熱處理時(shí)NaCl的加入[30]。

3.1.3pH值對(duì)WPI-STPP熱聚合物黏度的影響

隨著pH值的增加,WPI-STPP熱聚合物的黏度增大(圖1c),當(dāng)pH值達(dá)到9.0時(shí),乳清蛋白聚合物黏度達(dá)到8 530 mPa·s(凝膠狀)。黏度在pH值7.5時(shí)降至最低,這可能是由于STPP在偏堿性環(huán)境中與乳清蛋白發(fā)生了化學(xué)磷酸化作用有關(guān)[17]。蛋白磷酸化是磷酸基團(tuán)與蛋白質(zhì)氨基間的化學(xué)反應(yīng),隨著自由氨基的減少,引入的磷酸根會(huì)使乳清蛋白表面的陰離子增多,靜電斥力增加有利于蛋白分子的分散和穩(wěn)定[17]。在遠(yuǎn)離WPI等電點(diǎn)的環(huán)境中,聚合物黏度增加的更快,因?yàn)樵诟遬H值環(huán)境的蛋白聚合中二硫鍵的作用變得更重要[31],當(dāng)pH值進(jìn)一步增大時(shí)易形成三維網(wǎng)狀結(jié)構(gòu)的凝膠[32]。

3.1.4STPP質(zhì)量分?jǐn)?shù)對(duì)WPI-STPP熱聚合物黏度的影響

根據(jù)GB2760-2011《食品添加劑使用標(biāo)準(zhǔn)》中規(guī)定磷酸根在食品中的添加量最多為0.5%,本試驗(yàn)選取的STPP添加量符合國(guó)標(biāo)的添加標(biāo)準(zhǔn)。隨著STPP質(zhì)量分?jǐn)?shù)的增加,WPI-STPP熱聚合物蛋白黏度呈現(xiàn)增加的趨勢(shì),較高的聚合能力有利于凝膠三維網(wǎng)絡(luò)結(jié)構(gòu)的形成。如圖1d所示,當(dāng)STPP質(zhì)量分?jǐn)?shù)達(dá)到0.09%時(shí),聚合物黏度較大;當(dāng)STPP質(zhì)量分?jǐn)?shù)達(dá)到0.11%時(shí),流動(dòng)性較差。作為一種金屬離子螯合劑和pH值調(diào)節(jié)劑,STPP的添加促進(jìn)了乳清蛋白分子間的聚合[33]。

3.1.5加熱時(shí)間對(duì)WPI-STPP熱聚合物黏度的影響

如圖1e所示,隨加熱時(shí)間的延長(zhǎng),WPI-STPP熱聚合物黏度不斷增大,長(zhǎng)時(shí)間的熱處理會(huì)使聚合更加完全,聚合物顆粒增大,數(shù)量增多。20 min熱處理和30 min的處理無(wú)顯著差異(P<0.05),其后,隨加熱時(shí)間延長(zhǎng),黏度則顯著增加,加熱處理50 min,黏度值達(dá)4 930 m Pa·s;當(dāng)加熱60 min時(shí),樣品出現(xiàn)凝膠狀態(tài)。預(yù)試驗(yàn)結(jié)果發(fā)現(xiàn)熱處理時(shí)間較短,WPI不能完全變性展開(kāi)以相互聚合,因此蛋白分子的變性和展開(kāi)與加熱時(shí)間有關(guān),當(dāng)時(shí)間達(dá)到臨界值時(shí),才會(huì)有較好的聚合而不形成凝膠的效果。隨時(shí)間的增加,WPI-STPP熱聚合物黏度增加,這與Kulmyrzaev等[34]研究結(jié)果一致。

圖1 聚合條件對(duì)WPI-STPP熱聚合物黏度的影響Fig.1 Effects of aggregation factors on viscosity of WPI-STPP thermal aggregates

3.2不同黏度WPI-STPP熱聚合物的工藝條件優(yōu)化

3.2.1模型建立與顯著性檢驗(yàn)

以溫度、pH值、STPP質(zhì)量分?jǐn)?shù)和時(shí)間為因子,乳清蛋白質(zhì)量分?jǐn)?shù)為10%,以黏度為響應(yīng)值,采用Box-Behnken模型設(shè)計(jì)試驗(yàn)方案(表2)。

Box-Behnken響應(yīng)面優(yōu)化設(shè)計(jì)的方差分析見(jiàn)表3。試驗(yàn)中所得模型的決定系數(shù)R2=0.9855。由表3分析可知,本研究所得回歸模型極顯著(P<0.0001),此模型可行。剔除差異不顯著的因子后,得到的回歸方程為:

失擬項(xiàng)P值=0.0909>0.05,差異不顯著。模型R2為0.9855,擬合度>90%,說(shuō)明模型能夠反應(yīng)響應(yīng)值(黏度)的變化?;貧w方程的回歸系數(shù)影響其黏度,其絕對(duì)值的大小直接體現(xiàn)黏度受各因素影響的大小。

3.2.2最適條件和回歸模型的驗(yàn)證

由響應(yīng)面和實(shí)際生產(chǎn)條件求得的高黏度最佳工藝參數(shù)是加熱溫度90℃,pH值為8.40,STPP質(zhì)量分?jǐn)?shù)為0.09%以及時(shí)間為42 min時(shí),預(yù)測(cè)值為4 954 mPa·s,實(shí)測(cè)值為(5 083±190) mPa·s,相對(duì)誤差為2.60%。說(shuō)明本試驗(yàn)得到的回歸模型能較好的應(yīng)用于高黏度WPI-STPP熱聚合物制備參數(shù)和黏度的預(yù)測(cè)。

表2 Box-Behnken設(shè)計(jì)和響應(yīng)值Table 2 Experimental design and results of Box-Behnken

表3 Box-Behnken設(shè)計(jì)方差分析表Table 3 Analysis of variance of regression parameters for Box-Behnken design model

3.3WPI-STPP熱聚合物性質(zhì)測(cè)定及結(jié)構(gòu)組成分析

3.3.1WPI-STPP熱聚合物溶解度測(cè)定

由表4可知,與WPI原樣相比,WPI-STPP熱聚合物和WPI熱聚合體的溶解度都有顯著下降,溶解度由空白的88.50%分別降到了34.5%和23.0%。WPI-STPP熱聚

合物溶解度比WPI熱聚合體的高(P<0.05),說(shuō)明三聚磷酸鈉的添加有利于蛋白溶解度的增加。研究表明,離子環(huán)境可以影響蛋白聚合物之間的相互作用,添加STPP形成的高離子強(qiáng)度環(huán)境通過(guò)增加蛋白的水合作用從而增加WPI的溶解性[35],因此,WPI-STPP熱聚合物的溶解度較純熱處理的蛋白樣高。同時(shí),一部分的磷酸化作用也會(huì)引入磷酸基團(tuán),增加乳清蛋白分子間的靜電斥力,提高了蛋白的溶解性,但效果不明顯。

3.3.2WPI-STPP熱聚合物持水性測(cè)定

如表4所示,空白的持水性未測(cè)出,蛋白天然構(gòu)象不會(huì)束縛大量的水。而WPI-STPP熱聚合物的持水性顯著高于WPI熱聚合體(P<0.05)。熱聚合引起持水性增加可能是蛋白多肽鏈展開(kāi)的同時(shí),活性氨基酸側(cè)鏈基團(tuán)暴露[36]。STPP的加入使持水性增加較多,一是蛋白聚合顆粒較大,呈不規(guī)則片狀的蛋白結(jié)構(gòu)吸水更多;二是引入的磷酸根會(huì)造成蛋白質(zhì)分子的表面形狀和表面電荷的變化,這些變化對(duì)蛋白質(zhì)的水化層及蛋白分子間的作用力都將產(chǎn)生較大的影響[24]。

3.3.3WPI-STPP熱聚合物表面疏水性測(cè)定

加熱促進(jìn)蛋白粒子展開(kāi),大量疏水基團(tuán)暴露,如表4所示,WPI-STPP熱聚合物的表面疏水性最大,說(shuō)明三聚磷酸鈉的加入可能使蛋白形態(tài)和疏水性氨基酸發(fā)生更大的變化,導(dǎo)致了乳清分離蛋白的組成也發(fā)生了變化。疏水性的增加能使蛋白綁定脂肪能力增加[37],這也驗(yàn)證了3.3.2節(jié)中的結(jié)果。

表4 不同處理樣品的性質(zhì)比較Table 4 Solubility, water holding capacity and surface hydrophobicity of different samples

3.4WPI-STPP熱聚合物流變性質(zhì)測(cè)定

3.4.1剪切應(yīng)力與表觀(guān)黏度

WPI-STPP熱聚合物剪切應(yīng)力變化如2a所示,根據(jù)冪律模型[38-39],空白組、WPI-STPP熱聚合物和WPI熱聚合體均表現(xiàn)出非牛頓流體的性質(zhì)。

如圖2b隨著剪切速率的增加,3種樣品的表觀(guān)黏度都有下降的趨勢(shì)。與空白相比,WPI-STPP熱聚合物和WPI熱聚合體剪切稀釋作用明顯。WPI-STPP熱聚合物剪切應(yīng)力以及表觀(guān)黏度的增加與蛋白變性及聚合物的形成有關(guān),流體半徑增加,表觀(guān)出較好的流變性。

3.4.2黏彈性

如圖2c隨著掃描頻率的增加,樣品的彈性模量(G′)和黏性模量(G″)都有增加的趨勢(shì)。WPI-STPP熱聚合物的彈性模量始終大于其黏性模量,表現(xiàn)出較好的微凝膠結(jié)構(gòu)特性。而WPI熱聚合體綜合表現(xiàn)出流體的特性。在STPP存在時(shí),展開(kāi)的乳清分離蛋白間排斥力進(jìn)一步減少,促進(jìn)了蛋白間的更大的聚合反應(yīng),因此冷置時(shí)易形成微凝膠狀態(tài),G′大于G″,表現(xiàn)出似固體的彈性性質(zhì)[40]。

圖2 不同樣品的剪切應(yīng)力、表觀(guān)黏度和黏彈性模量比較Fig.2 Shear stress, apparent viscosity and viscoelastic graph of different samples

3.5WPI-STPP熱聚合物粒度分析

圖3顯示,WPI-STPP熱聚合物的平均粒徑為((292.09±2.17)μm),與WPI熱聚合體((269.89±10.16)μm)和空白組((31.39±1.81 μm)相比,差異顯著(P<0.05)。有研究表明,粒徑大小與黏度呈正相關(guān)關(guān)系[41]。STPP的加入有效地屏蔽了電荷或降低了電荷密度,增大了WPI顆粒。

圖3 不同樣品的粒度分布比較Fig.3 Particle size distribution of different samples

3.6WPI-STPP熱聚合物掃描電鏡分析

從圖4a中可以看出空白顆粒形狀呈球形,是典型的的乳清蛋白;WPI經(jīng)熱改性4c后,顆粒形狀由球形變成不規(guī)則的碎片狀,顆粒大小不一,碎片松散;WPI-STPP熱聚合4b后,片狀顆粒直徑大于圖4c中WPI熱聚合體的顆粒。長(zhǎng)線(xiàn)型和不規(guī)則的碎片狀聚合體有利于溶液黏度的增加以及制備冷凝膠[42],因此,在所測(cè)樣品中,WPI-STPP熱聚合物黏度最大。

圖4 不同樣品的掃描電鏡圖譜比較(×500)Fig.4 Scanning electron microscopic images of different samples

4 結(jié) 論

1)通過(guò)單因素試驗(yàn)確定了各因素對(duì)乳清蛋白-三聚磷酸鈉(whey protein isolate-sodium tripolyphosphate,WPI-STPP)熱聚合物黏度的影響規(guī)律,用Box-Behnken分析法對(duì)各因素的最佳水平范圍及其交互作用進(jìn)行研究和建立了預(yù)測(cè)WPI-STPP熱聚合物黏度的二次多項(xiàng)式數(shù)學(xué)模型,并得到最佳制備工藝條件:WPI質(zhì)量分?jǐn)?shù)為10%,加熱溫度為90℃,pH值為8.40,STPP質(zhì)量分?jǐn)?shù)為0.09%以及加熱時(shí)間為42 min,黏度值達(dá)5 083 mPa·s,回歸模型擬合情況較好(R2=0.9855)。

2)通過(guò)流變儀、粒徑分析儀以及掃描電鏡對(duì)WPI-STPP熱聚合物性質(zhì)分析,WPI-STPP溶解度(34.5%)、持水性(5.20 g/g)、表面疏水性(3 928.19)、平均粒徑(292.09±2.17)μm(P<0.05),流變學(xué)特性都較空白組和熱聚合WPI有所改善。

[參考文獻(xiàn)]

[1] Madureira A R, Tavares T, Gomes A M P, et al. Invited review: Physiological properties of bioactive peptides obtained from whey proteins[J]. J Dairy Sci, 2010, 93(2): 437-455.

[2] Vardhanabhuti B, Foegeding E A. Rheological properties and characterization of polymerized whey protein isolates[J]. J Agr Food Chem, 1999, 47(9): 3649-3655.

[3] Bryant C M, McClements D J. Optimizing preparation conditions for heat-denatured whey protein solutions to be used as cold-gelling ingredients[J]. J Food Sci, 2000, 65(2): 259-263.

[4] Nicolai T, Britten M, Schmitt C. β-Lactoglobulin and WPI aggregates: Formation, structure and applications[J]. Food Hydrocolloid, 2011, 25(8): 1945-1962.

[5] Jung J M, Savin G, Pouzot M, et al. Structure of heat-induced β-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate[J]. Biomacromolecules, 2008, 9(9): 2477-2486.

[6] Gulzar M, Bouhallab S, Jeantet R, et al. Influence of pH on the dry heat-induced denaturation/aggregation of whey proteins[J]. Food Chem, 2011, 129(1): 110-116.

[7] Ryan KN, Vardhanabhuti B, Jaramillo DP. Stability and mechanism of whey protein soluble aggregates thermally treated with salts[J]. Food Hydrocolloid, 2012, 2(27): 411-420.

[8] Vardhanabhuti B, Allen Foegeding E. Effects of dextran sulfate, NaCl, and initial protein concentration on thermal stability of β-lactoglobulin and α-lactalbumin at neutral pH[J]. Food Hydrocolloid, 2008, 22(5): 752-762.

[9] 李鐵紅,戴顯祺,史亞麗. 功能型乳清蛋白熱改性技術(shù)的研究與應(yīng)用[J].中國(guó)乳業(yè),2009(1):50-52. Li Tiehong, Dai Xianqi, Shi Yali. Research and application of thermal modification of whey protein[J]. China Dairy,2009(1): 50-52. (in Chinese with English abstract)

[10] 郭明若,張鐵華,高峰,等. 一種酸奶結(jié)構(gòu)改良劑及酸奶的制備方法:中國(guó)專(zhuān)利,102696758A. [P]. 2012-10-03.

[11] Britten M, Giroux H J. Acid-induced gelation of whey protein polymers: Effects of pH and calcium concentration during polymerization[J]. Food Hydrocolloid, 2001, 15(4): 609-617.

[12] Enomoto H, Li C P, Morizane K. Glycation and phosphorylation of β-lactoglobulin by dry-heating: Effect on protein structure and some properties[J]. J Agr Food Chem,2007, 55(6): 2392-2398.

[13] Li C P, Chen D, Peng J, et al. Improvement of functional properties of whey soy protein phosphorylated by dry-heating in the presence of pyrophosphate[J]. LWT-Food Sci Technol,2010, 43(6): 919-925.

[14] Hayashi Y, Nagano S, Enomoto H, et al.. Improvement of foaming property of egg white protein by phosphorylation through dry-heating in the presence of pyrophosphate[J]. J of Food Sci, 2009, 74(1): 68-72.

[15] Li C P, Enomoto H, Ohki S, et al. Improvement of functional properties of whey protein isolate through glycation and phosphorylation by dry-heating. J Dairy Sci, 2005, 88(12): 4137-4145.

[16] Li C P, Ibrahim H R, Sugimoto Y, et al. Improvement of functional properties of egg white protein through phosphorylation by dry heating in the presence of pyrophosphate. J Agr Food Chem, 2004, 52(18): 5752-5758.

[17] 李陽(yáng)陽(yáng). 大豆分離蛋白磷酸化及功能性質(zhì)研究[D]. 天津:天津商學(xué)院,2006. Li Yangyang. Phosphorlation of Soy Protein Isolate and Research on Functional Properties[D]. Tianjin: Tianjing university of commerce, 2006. (in Chinese with English abstract)

[18] Wang G, Zhang T, Ahmad S, et al. Physicochemical and adhesive properties, microstructure and storage stability of whey protein-based paper glue[J]. Int J Adhes Adhes, 2013,41(1): 198-205.

[19] Lawal O S, Adebowale K O, Adebowale Y A. Functional properties of native and chemically modified protein concentrates from bambarra groundnut[J]. Food Res Int, 2007,40(8): 1003-1011.

[20] Wagner J R, Sorgentini D A, Anon M C. Relation between solubility and surface hydroponicity as an indicator of modifications during preparation processes of commercial and laboratory-prepares soy protein isolates[J]. J Agr Food Chem, 2000, 48(8): 3159-3165.

[21] Purwanti N, Smiddy M, Jan van der Goot A, et al. Modulation of rheological properties by heat-induced aggregation of whey protein solution[J]. Food Hydrocolloid,2011, 25(6): 1482-1489.

[22] Sa?lam D, Venema P, de Vries R, et al. Exceptional heat stability of high protein content dispersions containing whey protein particles[J]. Food Hydrocolloid, 2014, 34(1): 68-77.

[23] Helen W, Jane R, Gregory H, et al. Physico-chemical properties, probiotic survivability, microstructure, and acceptability of a yogurt-like symbiotic oats-based product using pre-polymerized whey protein as a gelation Agent[J]. J Food Sci, 2010, 75(5): 327-337.

[24] Mudgal P, Daubert C R, Foegeding E A. Cold-set thickening mechanism of β-lactoglobulin at low pH: concentration effects[J]. Food hydrocolloid, 2009, 23(7): 1762-1770.

[25] Purwanti N, Smiddy M, Jan van der Goot A, et al. Modulation of rheological properties by heat-induced aggregation of whey protein solution[J]. Food Hydrocolloid,2011, 25(6): 1482-1489.

[26] Hussain R, Gaiani C, Jeandel C, et al. Combined effect of heat treatment and ionic strength on the functionality of whey proteins[J]. J Dairy Sci, 2012, 95(11): 6260-6273.

[27] Ryan K N, Vardhanabhuti B, Jaramillo D P, et al. Stability and mechanism of whey protein soluble aggregates thermally treated with salts[J]. Food Hydrocolloid, 2012, 27(2): 411-420.

[28] Kazmierski M, Corredig M. Characterization of soluble aggregates from whey protein isolate[J]. Food Hydrocolloid,2003, 17(5): 685-692.

[29] Kiokias S, Dimakou C, Oreopoulou V. Effect of heat treatment and droplet size on the oxidative stability of whey protein emulsions[J]. Food Chem, 2007, 105(1): 94-100.

[30] Hussain R, Gaiani C, Jeandel C, et al. Combined effect of heat treatment and ionic strength on the functionality of whey proteins[J]. J Dairy Sci, 2012, 95(11): 6260-6273.

[31] Hoffmann M A M, van Mil P J J M. Heat-induced aggregation of β-lactoglobulin: role of the free thiol group and disulfide bonds[J]. J Agr Food Chem, 1997, 45(8): 2942-2948.

[32] Ramos ó L, Pereira J O, Silva S I, et al. Effect of composition of commercial whey protein preparations upon gelation at various pH values[J]. Food Res Int, 2012, 48(2): 681-689.

[33] Unterhaslberger G, Schmitt C, Sanchez C, et al. Heat denaturation and aggregation of β-lactoglobulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0[J]. Food Hydrocolloid, 2006, 20(7): 1006-1019.

[34] Kulmyrzaev A, Bryant C, McClements D J. Influence of sucrose on the thermal denaturation, gelation, and emulsion stabilization of whey proteins[J]. J Agr Food Chem, 2000,48(5): 1593-1597.

[35] Vardhanabhuti B, Foegeding E A, McGuffey M K, et al. Gelation properties of dispersions containing polymerized and native whey protein isolate[J]. Food Hydrocolloid, 2001,15(2): 165-175.

[36] Manoi K, Rizvi S S H. Rheological characterizations of texturized whey protein concentrate-based powders produced by reactive supercritical fluid extrusion[J]. Food Res Int, 2008,41(8): 786-796.

[37] Voutsinas L P, Nakai S. A simple turbidimetric method for determining the fat binding capacity of proteins[J]. J Agri Food Chem, 1983, 31(1): 58-63.

[38] Rioux L E, Turgeon S L. The Ratio of Casein to Whey protein impacts yogurt digestion in vitro[J]. Food Digestion,2012, 3(1/2/3): 25-35.

[39] 董貝森,朱海濤,于躍芹. 花生蛋白粉溶液流變學(xué)特性及功能性的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1999(1):251-252. Dong beisen, Zhu haitao, Yu yueqin. The research of peanut powder solution rheology and characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering, 1999(1): 251-252. (in Chinese with English abstract)

[40] Lorenzen P C, Schrader K. A comparative study of the gelation properties of whey protein concentrate and whey protein isolate[J]. Dairy Sci Technol, 2006, 86(4): 259-271.

[41] Cheng Q, Mcclements D J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size[J]. Food Hydrocolloid. Food Hydrocolloids, 2011, 25(5): 1000-1008.

[42] Nicolai T, Durand D. Led food protein aggregation for new functionality[J]. Curr Opin Colloid In, 2013, 18(4): 249-256.

Preparation and characters of whey protein isolate-sodium tripolyphosphate aggregates by heating

Xie Siyu1, Hou Juncai1, Feng Xianmin1, Xiao Hongliang2,
Wang Li2, Wang Zhangdong2, Wang Qingyun2, Cheng Jianjun1※
(1. College of Food Science, Northeɑst Agriculturɑl University, Hɑrbin 150030, Chinɑ; 2. Heilongjiɑng Wondersun Dɑiry Co.,Ltd, Hɑrbin 150060, Chinɑ)

Abstract:This study was aimed to prepare the whey protein isolate (WPI) - sodium tripolyphosphate (STPP) aggregates using heating at higher pH value and evaluate their characteristics. The results of single-factor experiment showed that the increase of viscosity of polymers was different from the increasing of WPI concentration, temperature, pH value, STPP content and aggregation time. The models were obtained by using a Box-Behnken optimization experiment design with the 4 factors (temperature, pH value, STPP content and aggregation time) based on the results of single-factor experiments. The results of Box-Behnken optimization experiment showed that the order of the effect of the 4 factors on viscosity was as follows: temperature > STPP content > pH value > aggregation time. The optimized condition determined was that 10% (w/w) WPI,0.09% (w/w) STPP at 90°C for 42 min with pH value of 8.40, and the actual viscosity was 5083 mPa·s. The prepared WPI-STPP thermal aggregates were the thick sample with a semi flow state, and the regression model was fitted well. Determination of properties and structural analysis of WPI, WPI-STPP thermal aggregates and WPI aggregates showed the water holding capacity, surface hydrophobicity and rheological characteristics of WPI-STPP thermal aggregates were improved compared with WPI and WPI aggregates. For WPI aggregates, water holding capacity increased from 4.83 to 5.20 g per gram protein (P<0.05). However, the solubility of WPI-STPP thermal aggregates decreased from 88.5% to 34.50%, which was lower than that of WPI. Heat treatment and STPP significantly affected the surface hydrophobicity of the soluble aggregates. WPI-STPP thermal aggregates could form good cold-induced gels, which could widen its application in foods of gel type. When STPP was added, the average particle size of whey protein thermally polymerized increased from 31.39±1.81 μm for WPI to 292.09±2.17 μm for WPI-STPP thermal aggregates. The difference between strong and weak soluble gels could be assessed by the oscillatory dynamic experiments using parallel-plate geometries. Rotational rheometer showed that the rheological characteristics of WPI-STPP thermal aggregates were improved. The rheological characteristics were determined from storage and loss moduli as the functions of time and frequency. WPI-STPP thermal aggregates had higher storage modulus values. The results showed that the increasing of particles played a significant role in the water holding capacity and rheological properties of these dispersions. The microscopic structure analysis of WPI-STPP thermal aggregates showed that they denatured fully, and the larger irregular fractal aggregates of WPI-STPP thermal aggregates could be most useful to increase the viscosity. Transmission electron microscopy showed that heat-induced WPI-NaCl soluble gels had a dense structure and a higher number of cross-links. The utilization of WPI-STPP thermal aggregates is very attractive due to the low-complexity processing conditions needed, lower production cost and higher nutritive value. The production cost of yogurt is less than yogurt with pectin according to the optimal technological condition of the experiment. The application of this technology proposed in this paper will bring great economic benefits for the yogurt processing industry.

Keywords:viscosity; gels; optimization; whey protein isolate; sodium tripolyphosphate; thermal aggregation

通信作者:※程建軍,男,黑龍江人,教授,研究方向?yàn)檗r(nóng)產(chǎn)品加工。哈爾濱東北農(nóng)業(yè)大學(xué)食品學(xué)院。Email:cheng577@163.com

作者簡(jiǎn)介:解思雨,女,河北省獻(xiàn)縣人,研究方向?yàn)檗r(nóng)產(chǎn)品加工。哈爾濱東北農(nóng)業(yè)大學(xué)食品學(xué)院,150030。Email:xiesiyu2406@163.com

基金項(xiàng)目:“十二五”農(nóng)村領(lǐng)域國(guó)家科技計(jì)劃課題(2013BAD18B07)

收稿日期:2015-09-21

修訂日期:2015-10-12

中圖分類(lèi)號(hào):TS201

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1002-6819(2016)-02-0287-07

doi:10.11975/j.issn.1002-6819.2016.02.041

猜你喜歡
三聚磷酸鈉凝膠黏度
纖維素氣凝膠的制備與應(yīng)用研究進(jìn)展
超輕航天材料——?dú)饽z
軍事文摘(2020年20期)2020-11-16 00:31:56
保暖神器——?dú)饽z外套
超高黏度改性瀝青的研發(fā)與性能評(píng)價(jià)
上海公路(2019年3期)2019-11-25 07:39:30
“凍結(jié)的煙”——?dú)饽z
超低Ⅰ型三聚磷酸鈉制備工藝研究
三聚磷酸鈉對(duì)混凝土性能影響的研究
河南建材(2017年2期)2017-04-26 01:32:54
水的黏度的分子動(dòng)力學(xué)模擬
SAE J300新規(guī)格增加了SAE 8和SAE 12兩種黏度級(jí)別
高黏度齒輪泵徑向力的消除
宿迁市| 荔波县| 平凉市| 赤城县| 遂昌县| 航空| 三穗县| 蕉岭县| 永定县| 贡觉县| 高州市| 朝阳市| 赤壁市| 祥云县| 保亭| 富锦市| 通城县| 潮州市| 马尔康县| 香格里拉县| 交城县| 和顺县| 长子县| 天津市| 马关县| 大邑县| 丰城市| 游戏| 永州市| 盐城市| 育儿| 勃利县| 麻栗坡县| 龙门县| 昌平区| 开封县| 永仁县| 马公市| 宣武区| 阿克苏市| 赤城县|