朱 林,車 軒,劉 晃,劉興國(guó),時(shí) 旭,楊家朋,王小冬,顧兆俊,程果鋒,朱 浩(中國(guó)水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所,農(nóng)業(yè)部漁業(yè)裝備與工程技術(shù)重點(diǎn)試驗(yàn)室,上海 200092)
?
團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段溫室氣體排放通量分析
朱林,車軒※,劉晃,劉興國(guó),時(shí)旭,楊家朋,王小冬,顧兆俊,程果鋒,朱浩
(中國(guó)水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所,農(nóng)業(yè)部漁業(yè)裝備與工程技術(shù)重點(diǎn)試驗(yàn)室,上海 200092)
摘要:為探討團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段溫室氣體的排放規(guī)律及綜合增溫潛勢(shì),采用靜態(tài)暗箱——?dú)庀嗌V法對(duì)團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段溫室氣體(CO2,CH4,N2O)的排放進(jìn)行原位測(cè)定。結(jié)果顯示,團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段均表現(xiàn)為CO2,CH4和N2O的排放源,其中CO2排放通量達(dá)(86.72±12.46) g/m2,CH4排放量達(dá)(2.01±0.34) g/m2,N2O排放量達(dá)(7.44±0.98) mg/m2;在100 a的時(shí)間尺度上,團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)在曬塘階段綜合增溫潛勢(shì)為(157.28±24.31) g/m2,團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)溫室氣體減排空間較大。
關(guān)鍵詞:溫室氣體;排放控制;池塘;水產(chǎn);溫室效應(yīng);團(tuán)頭魴;曬塘
朱林,車軒,劉晃,劉興國(guó),時(shí)旭,楊家朋,王小冬,顧兆俊,程果鋒,朱浩. 團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段溫室氣體排放通量分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):210-215.doi:10.11975/j.issn.1002-6819.2016.03.030 http://www.tcsae.org
Zhu Lin, Che Xuan, Liu Huang, Liu Xingguo, Shi Xu, Yang Jiapeng, Wang Xiaodong , Gu Zhaojun, Cheng Guofeng, Zhu Hao. Greenhouse gas emissions of Megalobrama amblycephala culture pond ecosystems during sun drying of pond[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 210-215. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.030http://www.tcsae.org
目前,臭氧層破壞和全球變暖等環(huán)境問題是由溫室氣體過量排放引起的。其中,CO2、CH4和N2O是最主要的溫室氣體,它們對(duì)溫室效應(yīng)的貢獻(xiàn)分別為55%,22% 和5%[1-2]。大氣中CO2,CH4和N2O的體積分?jǐn)?shù)正分別以每年0.14%,0.16%和0.125%的速度增長(zhǎng)。
一般來說,魚或蝦養(yǎng)殖的飼料吸收利用率不足30%[3-4]。在飼料系數(shù)1~2的情況下,約80%的被攝食飼料以液態(tài)、固態(tài)或氣態(tài)形式排入環(huán)境[5-6]。中國(guó)的水產(chǎn)養(yǎng)殖產(chǎn)量長(zhǎng)期以來穩(wěn)居世界第一,占世界水產(chǎn)養(yǎng)殖產(chǎn)量的70%,是全球水產(chǎn)養(yǎng)殖的主體[7]。淡水池塘養(yǎng)殖是中國(guó)現(xiàn)階段的主要生產(chǎn)模式,其產(chǎn)量占中國(guó)水產(chǎn)養(yǎng)殖總量的41.5%[7-8]。2012年中國(guó)團(tuán)頭魴(Megalobrama amblycephala)產(chǎn)量70.58萬(wàn)t,占全國(guó)淡水養(yǎng)殖總產(chǎn)量的2.7%[9],如果按飼料系數(shù)2,飼料有機(jī)碳質(zhì)量分?jǐn)?shù)34%,氮質(zhì)量分?jǐn)?shù)6%,飼料C損失率80%,N損失率76%計(jì)算,中國(guó)團(tuán)頭魴養(yǎng)殖池塘每年有機(jī)碳累積量達(dá)41.16萬(wàn)t,氮累積量達(dá)6.9萬(wàn)t[10]。
全球生態(tài)系統(tǒng)溫室氣體研究始于20世紀(jì)70年代,目前有大量科學(xué)家圍繞該問題開展研究,這些研究主要集中在濕地、農(nóng)業(yè)和水庫(kù)等方面[11-14]。水產(chǎn)養(yǎng)殖生產(chǎn)是典型的農(nóng)業(yè)生產(chǎn)活動(dòng),減少農(nóng)業(yè)源溫室氣體排放對(duì)控制全球氣候變化有重要作用[15]。本試驗(yàn)選擇大宗淡水魚池塘生態(tài)系統(tǒng),在團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段對(duì)3種溫室氣體排放通量進(jìn)行監(jiān)測(cè)和分析,以期為估算淡水養(yǎng)殖生態(tài)系統(tǒng)溫室效應(yīng),尋求相應(yīng)減排措施提供數(shù)據(jù)支撐。
1.1試驗(yàn)設(shè)計(jì)
2014年12月-2015年2月,試驗(yàn)于中國(guó)水產(chǎn)科學(xué)研究院池塘生態(tài)工程研究中心大宗淡水魚養(yǎng)殖試驗(yàn)池塘進(jìn)行,該池塘面積50 m×100 m,水深1.5 m,塘齡8 a,底泥厚度60 cm,采取普遍使用的“主養(yǎng)團(tuán)頭魴、套養(yǎng)鰱、鳙”的養(yǎng)殖模式,放養(yǎng)規(guī)格團(tuán)頭魴魚種1593尾/667m2;套養(yǎng)鰱、鳙魚種分別為80尾/667m2和20尾/667m2。養(yǎng)殖全程投喂淡水魚人工配合飼料,根據(jù)氣溫及魚吃食情況按魚質(zhì)量的3%~5%投喂,待12月底團(tuán)頭魴全部收獲之后開始曬塘。本試驗(yàn)從2014年12月28日至2015年1月13日,每隔15 d采一次樣,計(jì)45 d。
1.2溫室氣體樣本采集及測(cè)試方法
采用常用的靜態(tài)箱法采集氣樣,箱體由玻璃鋼材料制成,規(guī)格50 cm×50 cm×50 cm,頂部運(yùn)行小風(fēng)扇混合箱內(nèi)氣體。一個(gè)采樣點(diǎn)重復(fù)采樣3次,于采樣箱關(guān)閉的0、10、20、30 min開始采樣,每次采樣100 mL。氣體儲(chǔ)存于0.2 L鋁箔氣袋中,24 h內(nèi)用美國(guó)安捷倫公司生產(chǎn)的Agilent 6890氣相色譜儀同時(shí)分析 CO2、CH4、N2O的排放通量。
1.3指標(biāo)測(cè)定
底泥采樣點(diǎn)與氣樣采集點(diǎn)為同一位置,其采樣位置如圖1所示,圖中長(zhǎng)方形為試驗(yàn)池塘,我們?cè)趫A點(diǎn)所示位置采集樣品,其相對(duì)位置如圖中標(biāo)尺所示,對(duì)每個(gè)采樣點(diǎn)用帶刻度的空心PVC管(外徑5 cm、內(nèi)徑4.8 cm)進(jìn)行取樣,在土層深度10 cm處取樣,經(jīng)計(jì)算共計(jì)72個(gè)土樣;氣溫用水銀溫度計(jì)測(cè)定;泥溫、氫離子濃度指數(shù)及氧化還原電位ORP(oxidation-reduction potential)用手持YSI進(jìn)行在線測(cè)定;底泥含水率采用經(jīng)典烘干法(105~110℃,10 h)測(cè)定;總有機(jī)碳TOC(total organic carbon)采用德國(guó)耶拿分析儀器公司的multi.N/C2100型總有機(jī)碳分析儀測(cè)定。
圖1 試驗(yàn)池塘采樣點(diǎn)分布示意圖Fig.1 Schematic diagram of sampling point in experimental pond
1.4總溫室氣體排放量的計(jì)算
全球增溫潛勢(shì)(global warming potential,GWP)作為一種簡(jiǎn)單的基于輻射特性的相對(duì)指標(biāo),其常被用來估計(jì)不同溫室氣體對(duì)氣候系統(tǒng)的潛在效應(yīng)。在綜合增溫潛勢(shì)估算中,CO2看作參考?xì)怏w,CH4和N2O排放量的增減通過GWP系數(shù)轉(zhuǎn)換成CO2等效量。以100 a影響尺度為計(jì),CH4的GWP系數(shù)是34,N2O的GWP系數(shù)是298[16]。本文池塘養(yǎng)殖生態(tài)系統(tǒng)總溫室氣體排放量為T(g/m2,以CO2計(jì)),計(jì)算如下
式中fCO2為試驗(yàn)期間CO2的排放量,g/m2;fCH4為試驗(yàn)期間CH4的排放量,g/m2;fN2 O為試驗(yàn)期間N2O排放量,mg/m2。
1.5數(shù)據(jù)分析
采用Microsoft Excel2013軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行處理和制圖,SPSS19.0軟件進(jìn)行統(tǒng)計(jì)分析,以測(cè)試數(shù)據(jù)的平均值±標(biāo)準(zhǔn)差(mean±SD)表示。
2.1團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段底泥理化性狀
試驗(yàn)期間團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段底泥理化數(shù)據(jù)如圖2所示,1月13號(hào)的氫離子濃度指數(shù)最高,達(dá)到(8.26±0.35),12月28號(hào)、1月28號(hào)及2月13號(hào)的氫離子濃度指數(shù)分別為(7.73±0.26)、(7.75±0.37)及(7.68±0.48);TOC(底泥總有機(jī)碳)總體表現(xiàn)出隨曬塘的進(jìn)行而逐漸減少的趨勢(shì),其中12月28號(hào)最高,達(dá)(3.61±0.43) mg/L,其他3 d TOC分別為(3.32±0.17)、(3.16±0.31)、(3.23±0.27) mg/L;1月13號(hào)ORP(氧化還原電位)最高,達(dá)(216.8±27.6) mV,余下3次監(jiān)測(cè)數(shù)據(jù)為(206.7±34.9)、(56.8±9.3) 及(124.8±16.5) mV;由于曬塘階段時(shí)有雨天,池塘底泥含水率并沒有一直降低,試驗(yàn)4 d底泥含水率分別為(55.25%±2.54%)、(54.53%±5.61%)、(46.62%±4.38%)、(48.35%±3.14%);曬塘階段的氣溫較低,分別為(8.9±0.2)、(7.2±0.1)、(5.8 ±0.1)及(6.0±0.1)℃;底泥溫度稍高,4 d的數(shù)據(jù)分別為(11.6±0.4)、(10.5±0.3)、(9.8±0.2)及(9.9±0.4) ℃。
圖2 團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段底泥理化性狀Fig.2 Physical and chemical properties of bottom sediment of Megalobrama amblycephala culture pond ecosystems during sun drying of pond
2.2團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段3種溫室氣體排放通量
團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段3種溫室氣體排放通量如圖3所示,從圖3a中可以看出,CO2排放通量呈現(xiàn)隨曬塘日期增加而逐步遞減的趨勢(shì),峰值在曬塘第1 天2014年12月28號(hào),達(dá)到(2652.46±325.36) mg/(m2·d),排放通量最低為曬塘結(jié)束日2015年2月13號(hào),(1373.27±167.39) mg/(m2·d)。CH4是甲烷菌通過有機(jī)碳源轉(zhuǎn)化而來,影響底泥CH4排放的主要因素有土壤溫度和氧化還原電位(ORP)。從圖3b中可以看出,CH4排放通量表現(xiàn)出于CO2排放通量相類似的變化趨勢(shì),CH4排放通量的峰值依然出現(xiàn)在曬塘首日,達(dá)到(82.42±6.32)mg/(m2·d),2月13號(hào)排放通量最低,為(7.06±2.93) mg/(m2·d)。團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)N2O產(chǎn)生和排放主要來源于微生物的硝化和反硝化過程,從圖3c中可以看出,曬塘階段N2O排放規(guī)律沒有CO2及CH4明顯,1月13號(hào),團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)N2O排放通量最高,達(dá)到(204.57±16.84) μg/(m2·d),排放通量最低為2月13號(hào),(90.39±10.67) μg/(m2·d)。
圖3 團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段3種溫室氣體排放通量Fig.3 Greenhouse gas emissions of Megalobrama amblycephala culture pond ecosystems during sun drying of pond
2.3團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段溫室氣體總排放量
團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段溫室氣體總排放量如表1所示,其中CO2排放量達(dá)(86.72±12.46) g/m2,CH4排放量達(dá)(2.01±0.34) g/m2,N2O排放量達(dá)(7.44±0.98) mg/m2,在100 a的時(shí)間尺度上,團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)在曬塘階段表現(xiàn)出增加溫室氣體綜合作用為(157.28±24.31) g/m2。本研究中團(tuán)頭魴池塘生態(tài)系統(tǒng)曬塘階段溫室氣體排放通量可觀,減排空間較大。
表1 團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段溫室氣體總排放量Table 1 Emissions of greenhouse gas combined action of Megalobrama amblycephala culture pond ecosystems during sun drying of pond
好氧細(xì)菌在有氧環(huán)境下分解有機(jī)物產(chǎn)生二氧化碳[17]。水分、肥料效應(yīng)、土壤有機(jī)碳水平和土壤溫度是影響CO2排放的主要因素。土壤有機(jī)質(zhì)與土壤呼吸速率之間存在極顯著的相關(guān)關(guān)系,兩者的相關(guān)系數(shù)為0.927[17]。土壤有機(jī)碳總量、活性有機(jī)碳與土壤呼吸都呈極顯著正相關(guān)[18]。單施氮肥對(duì)土壤呼吸影響不大,而氮磷配施,尤其是高氮高磷配施能顯著增加土壤呼吸量[16]。土壤呼吸與氣溫、土壤溫度之間存在顯著的相關(guān)關(guān)系,而土壤呼吸與土壤含水量之間相關(guān)性較差或無相關(guān)關(guān)系[18]。本試驗(yàn)中,整個(gè)曬塘階段池塘生態(tài)系統(tǒng)表現(xiàn)為CO2排放源,曬塘第1 天2014年12月28號(hào),氣溫、底泥溫度、底泥含水率及底泥總有機(jī)碳水平在4次監(jiān)測(cè)數(shù)據(jù)中均為最高,為好氧細(xì)菌及浮游生物提供了相對(duì)其他3組更加良好的呼吸環(huán)境,CO2排放通量達(dá)到曬塘試驗(yàn)階段峰值(2652.46±325.36) mg/(m2·d);而隨著曬塘的進(jìn)行,氣溫及底泥溫度降低,池塘水分逐漸減少,底泥含水率降低,底泥總有機(jī)碳水平也隨之降低,CO2排放通量呈現(xiàn)出降低的趨勢(shì),至?xí)裉两Y(jié)束日2015年2月13號(hào)CO2排放通量最低為(1373.27±167.39) mg/(m2·d),整個(gè)曬塘階段日均排放通量為(1948.99±632.99) mg/(m2·d)。目前,中國(guó)國(guó)內(nèi)冬季農(nóng)田CO2排放通量的研究主要集中在華北平原[19-23],分布范圍在1 800~5 760 mg/(m2·d),略高于團(tuán)頭魴養(yǎng)殖生態(tài)系統(tǒng)曬塘階段CO2排放通量;中國(guó)濕地CO2排放通量的研究結(jié)果很多,汪青等[24]等對(duì)同屬于上海的崇明東灘濕地溫室氣體的研究得出冬季CO2平均排放通量為3 465.84 mg/(m2·d),王蒙等[25]對(duì)冬季杭州灣濱海濕地的CO2排放通量監(jiān)測(cè)結(jié)果為5 880 mg/(m2·d),對(duì)比可知,團(tuán)頭魴養(yǎng)殖生態(tài)系統(tǒng)曬塘階段CO2排放通量顯著低于冬季上海附近濕地。
對(duì)水庫(kù)的研究表明,缺氧環(huán)境下,甲烷菌的活動(dòng)占優(yōu)勢(shì),分解庫(kù)底大量沉積的有機(jī)物,主要產(chǎn)生甲烷,及少量二氧化碳。此外,還會(huì)形成生物惰性殘余,腐殖酸和黃酸[26-27]。產(chǎn)甲烷細(xì)菌通過2種方式制造甲烷:一種是將CO2轉(zhuǎn)化成甲烷;另一種是以甲基分子(主要是乙酸)為底物進(jìn)行反應(yīng)[28-29]。Mirzoyan等[30]對(duì)水產(chǎn)養(yǎng)殖的底泥性質(zhì)進(jìn)行了研究,結(jié)果發(fā)現(xiàn)溶氧<1 mg/L,存在與水庫(kù)沉積物相似的厭氧條件,是產(chǎn)生CH4的有利環(huán)境。影響CH4排放的主要因素有土壤溫度和氧化還原電位和水深。從定性的角度說,一天之內(nèi)土壤溫度和ORP變化對(duì)稻田CH4排放通量日變化具有極顯著的影響[31]。本試驗(yàn)中,整個(gè)曬塘階段池塘生態(tài)系統(tǒng)表現(xiàn)為CH4排放源,曬塘開始時(shí),氣溫、底泥溫度雖低于產(chǎn)甲烷微生物的最適溫度,但氣溫及底泥溫度呈下降趨勢(shì)成為了影響試驗(yàn)階段CH4排放變化規(guī)律的關(guān)鍵因素;此時(shí)產(chǎn)甲烷微生物在4組當(dāng)中活性最強(qiáng),因此CH4排放通量達(dá)到曬塘試驗(yàn)階段峰值(82.42±6.32) mg/(m2·d);而曬塘階段CH4排放通量后兩組呈現(xiàn)出降幅較大的現(xiàn)象可能是氣溫、底泥溫度變化及ORP不穩(wěn)定變化共同作用的結(jié)果,整個(gè)曬塘階段日均排放通量為(44.54±22.96) mg/(m2·d)。中國(guó)國(guó)內(nèi)冬季農(nóng)田CH4排放通量分布范圍在3.84~128.8 mg/(m2·d)[22,31],與團(tuán)頭魴養(yǎng)殖生態(tài)系統(tǒng)曬塘階段CH4排放通量相當(dāng);上海附近濕地冬季CH4平均排放通量為10.33 mg/(m2·d)[24],顯著低于團(tuán)頭魴養(yǎng)殖生態(tài)系統(tǒng)曬塘階段CH4排放通量。
生態(tài)系統(tǒng)中N2O產(chǎn)生的主要過程是硝化和反硝化過程。硝化菌反硝化作用、硝酸鹽同化還原成銨及硝酸鹽異化還原成銨過程中也產(chǎn)生N2O[32],但產(chǎn)生量較小。影響N2O排放的主要因素有土壤含水量、土壤溫度及C/N(碳氮比)。研究表明,在土壤濕度為90%~100%的田間持水量時(shí),N2O排放量最大[33]。在適宜的土壤水分條件下和一定溫度范圍內(nèi),N2O排放隨土壤溫度的上升而增加[34]。在?2~5℃范圍內(nèi)反硝化量的平方根與溫度呈直線關(guān)系[35]。N2O排放隨C/N的上升而增加,C/N=20條件下的N2O排放量是C/N=5或10條件下N2O排放量的10倍[36]。根據(jù)科研人員對(duì)水產(chǎn)養(yǎng)殖的底泥性質(zhì)的研究結(jié)果,養(yǎng)殖底泥的C/N=29.3~42.4,底泥的這種特性將極大的促進(jìn)N2O排放[21],整個(gè)曬塘階段N2O日均排放通量為(156.89±48.17) μg/(m2·d)。中國(guó)長(zhǎng)江中下游冬季農(nóng)田N2O排放通量分布范圍在2.1~7.08 mg/(m2·d)[21,37-38],顯著高于團(tuán)頭魴養(yǎng)殖生態(tài)系統(tǒng)曬塘階段N2O排放通量;中國(guó)科研人員對(duì)上海附近濕地冬季N2O排放通量的監(jiān)測(cè)結(jié)果為0.24 mg/(m2·d)[24],顯著高于團(tuán)頭魴養(yǎng)殖生態(tài)系統(tǒng)曬塘階段N2O排放通量。本試驗(yàn)中,淡水池塘N2O排放規(guī)律沒有CO2及CH4明顯,其作用機(jī)理及影響因素有待進(jìn)一步研究。
團(tuán)頭魴池塘養(yǎng)殖生態(tài)系統(tǒng)曬塘階段均表現(xiàn)為CO2,CH4和N2O排放源,其中CO2排放通量達(dá)(86.72±12.46) g/m2,CH4排放量達(dá)(2.01±0.34) g/m2,N2O排放量達(dá)(7.44±0.98) mg/m2;在100 a時(shí)間尺度上,團(tuán)頭魴養(yǎng)殖池塘系統(tǒng)在曬塘階段綜合增溫潛勢(shì)為(157.28±24.31) g/m2,池塘養(yǎng)殖團(tuán)頭魴生態(tài)系統(tǒng)溫室氣體減排空間較大。
[參考文獻(xiàn)]
[1] Bouwman A F. Exchange of Greenhouse Gases between Terrestrial Ecosystems and the Atmosphere[M]. WiIey and Sons, New York, 1990.
[2] Lelieveld J, Crutzenand P, Dentener F J. Changing concentration, lifetime and climate forcing of atmospheric methane[J]. Tellus, Ser B 1998, 5: 128-150.
[3] Troell M, Ronnback P, Halling C, et al. Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture[J]. Journal of Applied Phycology 1999, 11(3): 89-97.
[4] Robertson A I. Mangroves as filters of shrimp pond effluents: Predictions and biogeochemical research needs[J]. Hydrobiologia,1995, 295(5): 311-321.
[5] Hopkins T A, Manciw E. Feed convension, waster and sustainable aquaculture, the fate of the feed[J]. Aquacultural Magazine, 1989, 15(2): 32-36.
[6] 徐皓,劉晃,倪琦. 我國(guó)水產(chǎn)養(yǎng)殖設(shè)施模式發(fā)展研究[J]. 漁業(yè)現(xiàn)代化,2007,34(6):1-6. Xu Hao, Liu Huang, Ni Qi. Study on the development of aquaculture facilities model in China[J]. Fishery Modernization, 2007, 34(6): 1-6. (in Chinese with English abstract)
[7] 徐皓. 我國(guó)漁業(yè)節(jié)能減排基本情況研究報(bào)告[J]. 漁業(yè)現(xiàn)代化,2008,35(4):1-7. Xu Hao. Report on fishery industry energy conservation and emissions reduction research in China[J]. Fishery Modernization, 2008, 35(4): 1-7. (in Chinese with English abstract)
[8] 張建華,丁建樂. 我國(guó)漁業(yè)節(jié)能減排發(fā)展?fàn)顩r綜述[J]. 漁業(yè)現(xiàn)代化,2010,38(4):66-70. Zhang Jianhua, Ding Jianle. An overview of energy-saving and emission-reduction development in fisheries of China[J]. Fishery Modernization, 2010, 38(4): 66-70. (in Chinese with English abstract)
[9] 農(nóng)業(yè)部漁業(yè)局. 中國(guó)漁業(yè)年鑒2013[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2013.
[10] Wu R S S. The environmental impact of marine fish culture: Towards a sustainable future[J]. Marine Pollution Bulletin,1995, 31(2): 159-166.
[11] 張祝利,王賢瑞,丁建樂. 國(guó)內(nèi)外捕撈漁船碳減排技術(shù)發(fā)展?fàn)顩r[J]. 漁業(yè)現(xiàn)代化,2013,40(2):71-75. Zhang Zhuli, Wang Xianrui, Ding Jianle. The development status of fishing vessel carbon emission reduction technology in the domestic and overseas[J]. Fishery Modernization, 2013, 40(2): 71-75. (in Chinese with English abstract)
[12] 丁建樂,鮑旭騰,張建華. 歐洲捕撈漁業(yè)節(jié)能降耗技術(shù)與措施[J]. 漁業(yè)現(xiàn)代化,2010,37(5):60-63. Ding Jianle, Bao Xuteng, Zhang Jianhua. The energy saving technologies and measure in european fishing industry[J]. Fishery Modernization, 2010, 37(5): 60-63. (in Chinese with English abstract)
[13] 張祝利,鄭熠. 木質(zhì)漁船對(duì)低碳漁業(yè)負(fù)面影響的量化估算[J].漁業(yè)現(xiàn)代化,2011,38(3):66-69. Zhang Zhuli, Zheng Yi. Estimation to quantify the negative effect on the Low-Carbon Fisheries brought by the wooden fishing vessels[J]. Fishery Modernization, 2011, 38(3): 66-69. (in Chinese with English abstract)
[14] 丁建樂. 國(guó)外可持續(xù)捕撈漁業(yè)技術(shù)新進(jìn)展[J]. 漁業(yè)現(xiàn)代化,2012,39(5):58-62. Ding Jianle. New technology progress abroad for sustainable capture fishery[J]. Fishery Modernization, 2012, 39(5): 58-62. (in Chinese with English abstract)
[15] IPCC. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2007.
[16] IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013.
[17] Guérin F, Abril G, Serca D, et al. Gas transfer velocities of CO2and CH4in a tropical reservoir and its river downstream[J]. Journal of Marine Systems, 2007, 66(124): 161-172.
[18] 王立剛. 黃淮海平原地區(qū)農(nóng)業(yè)生態(tài)系統(tǒng)土壤碳氮循環(huán)規(guī)律的初步研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2002. Wang Ligang. Research on Regulations of the Soil Carbon-nitrogen Cycle of Agro-ecosystem in Huanghuaihai Plain[D]. Beijing: China Agricultural University, 2002. (in Chinese with English abstract)
[19] 陳述悅,李俊,陸佩玲,等. 華北平原麥田土壤呼吸特征[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(9):1552-1560. Chen Shuyue, Li Jun, Lu Peiling, et al. Soil respiration characteristics in winter wheat field in North China Plain[J]. Chinese Journal of Applied Ecology, 2004, 15(9): 1552-1560. (in Chinese with English abstract)
[20] 王立剛,邱建軍,李維炯. 黃淮海平原地區(qū)夏玉米農(nóng)田土壤呼吸的動(dòng)態(tài)研究[J]. 土壤肥料,2002,38(6):13-17. Wang Ligang, Qiu Jianjun, Li Weijiong. Study on the dynamics of soil respiration in the field of summer-corn in Huanghuaihai Region in China[J]. Soils and Fertilizers, 2002, 38(6): 13-17. (in Chinese with English abstract)
[21] 董玉紅,歐陽(yáng)竹,李運(yùn)生,等. 肥料施用及環(huán)境因子對(duì)農(nóng)田土壤CO2和N2O排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2005,24(5):913-918. Dong Yuhong, Ouyang Zhu, Li Yunsheng, et al. Influence of fertilization and environmental factors on CO2and N2O fluxes from agricultural soil[J]. Journal of Agro-environmental Science, 2005, 24(5): 913-918. (in Chinese with English abstract)
[22] 李虎,邱建軍,王立剛. 農(nóng)田土壤呼吸特征及根呼吸貢獻(xiàn)的模擬分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):14-20. Li Hu, Qiu Jianjun, Wang Ligang. Characterization of farmland soil respiration and modeling analysis of contribution of root respiration[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2008, 24(4): 14-20. (in Chinese with English abstract)
[23] 馬秀梅,朱波,杜澤林,等. 冬水田休閑期溫室氣體排放通量的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)報(bào),2005,24(6):1199-1202. Ma Xiumei, Zhu Bo, Du Zelin, et al. CH4, CO2and N2O emissions from the year-round flooded paddy field at Fallow Season[J]. Journal of Agro-environmental Science, 2005, 24(6): 1199-1202. (in Chinese with English abstract)
[24] 汪青,劉敏,侯立軍,等. 崇明東灘濕地CO2、CH4和N2O排放的時(shí)空差異[J]. 地理研究,2010,29(5):935-946. Wang Qing, Liu Ming Hou Lijun, et al. Characteristics and influencing factors of CO2, CH4and N2O emissions from Chongming eastern tidal flat wetland[J]. Geographical Research, 2010, 29(5): 935-946. (in Chinese with English abstract)
[25] 王蒙. 杭州灣濱海濕地CH4、N2O、CO2排放通量及其影響因素研究[D]. 北京:中國(guó)林業(yè)科學(xué)研究院,2014. Wang Meng.Study on Methane, Nitrous Oxide and Carbon Dioxide Fluxes and Their Influencing Factors in Hangzhou Bay Coastal Wetland[D]. Beijing:Chinese Academy of Forestry, 2014. (in Chinese with English abstract)
[26] Biederbeck V O. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology and Biochemistry, 1994, 26(12):1647-1656.
[27] 陳素英,胡春勝. 太行山前農(nóng)田生態(tài)系統(tǒng)土壤呼吸速率的研究[J]. 生態(tài)農(nóng)業(yè)研究,1997,5(2):42-46. Chen Suying, Hu Chunsheng. Soil repiration rate of farmland ecosystem in Taihang Piedmont[J]. Eco-Agriculture Research, 1997, 5(2): 42-46. (in Chinese with English abstract)
[28] Rosa L P, Santos MAD, Matvienko B, et al. Biogenic gas production from major Amazon reservoirs[J]. Hydrological Processes, 2003, 17(3): 1443-1450.
[29] Joyce R, Jewell P W. Physical Controls on methane ebullition from reservoirs and lakes[J]. Environmental and Engineering Geoscience, 2003, 9(2): 167-178.
[30] Mirzoyan N, Parness S, Singer A, et al. Quality of brackish aquaculture sludge and its suitability for anaerobic digestion and methane production in an upflow anaerobic sludge blanket (UASB) reactor[J]. Aquaculture, 2008, 279(124): 35-41.
[31] 蔡祖聰,沈光裕,顏曉元,等. 土壤質(zhì)地、溫度和Eh對(duì)稻田甲烷排放的影響[J]. 土壤學(xué)報(bào),1998,35(2):146-154. Cai Zucong, Shen Guangyu, Yan Xiaoyuan, et al. effects of soil texture, soil temperature and Eh on methane emissions from rice paddy fields[J]. Acta Pedologica Sinica, 1998, 35(2): 146-154. (in Chinese with English abstract)
[32] 蔡祖聰. 尿素和KNO3對(duì)土壤水稻無機(jī)氮轉(zhuǎn)化過程和產(chǎn)物的影響[J]. 土壤學(xué)報(bào),2003,40(3):414-419. Cai Zucong. Effects of urea and KNO3on processes and products of inorganic nitrogen transformation in paddy soils i.processes of inorganic nitrogen[J]. Acta Pedologica Sinica, 2003, 40(3): 414-419. (in Chinese with English abstract)
[33] 封克,殷士學(xué). 影響氧化亞氮形成與排放的土壤因素[J].土壤學(xué)進(jìn)展,1995,23(6):35-40. Feng Ke, Yin Shixue. Soil factors influencing the formation and emission of nitrous oxide[J]. Progress in Soil Science, 1995, 23(6): 35-40. (in Chinese with English abstract)
[34] 鄒建文,黃耀,宗良綱,等. 稻田CO2、CH4和N2O排放及其影響因素[J]. 環(huán)境科學(xué)學(xué)報(bào),2003,23(6):758-764. Zou Jianwen, Huang Yao, Zong Lianggang, et al. A field study on CO2, CH4and N2O emissions from rice paddy and impact factors[J]. Acta Scientiae Circumstantiae, 2003, 23(6): 758-764. (in Chinese with English abstract)
[35] Dorland S, Beauechamp E. Denitrification and ammonification at low soil temperature[J]. Soil Science, 1991, 71(2): 293-303.
[36] Wu J. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater[J]. Bioresource Technology, 2009, 100(4): 2910-2917.
[37] 董玉紅,歐陽(yáng)竹,李鵬,等. 長(zhǎng)期定位施肥對(duì)農(nóng)田土壤溫室氣體排放的影響[J]. 土壤通報(bào),2007,38(1):97-100. Dong Yuhong, Ouyang Zhu, Li Peng, et al. Influence of long-term fertilization on greenhouse gas fluxes from agricultural soil[J]. Chinese Journal of Soil Science, 2007, 38(1): 97-100. (in Chinese with English abstract)
[38] 王立剛,李虎,邱建軍. 黃淮海平原典型農(nóng)田土壤 N2O 的排放特征[J]. 中國(guó)農(nóng)業(yè)科學(xué),2008,4l(4):1248-1254. Wang Ligang, Li Hu, Qiu Jianjun. Characterization of emissions of nitrous oxide from soils of typical crop fields in Huang-Huai-Hai Plain[J]. Scientia Agricultura Sinica, 2008, 41(4): 1248-1254. (in Chinese with English abstract)
Greenhouse gas emissions of Megalobrama amblycephala culture pond ecosystems during sun drying of pond
Zhu Lin, Che Xuan※, Liu Huang, Liu Xingguo, Shi Xu, Yang Jiapeng, Wang Xiaodong, Gu Zhaojun, Cheng Guofeng, Zhu Hao
(Key Laboratory of Fisher Equipment and Engineering, Ministry of Agriculture, Fisher Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China)
Abstract:Global warming and ozone depletion caused by greenhouse gases are currently two major global environmental issues. While China's freshwater aquaculture production has long been ranked first in the world, greenhouse gas emissions from freshwater ponds becomes an important source of China's greenhouse gas emissions. But the research on greenhouse gas emission in freshwater aquaculture ecosystem is limited. In order to investigate greenhouse gas emissions and comprehensive global warming potential of Megalobrama amblycephala culture pond ecosystems during pond basked, we used the static opaque chamber-GC techniques to conduct an in situ determination of greenhouse gas emissions (CO2, CH4, N2O) of Megalobrama amblycephala culture pond ecosystems. The results showed that the CO2fluxes measured in every 15 days were (2652.46±325.36), (2313.82±245.14), (1456.42±124.67) and (1373.27±167.39) mg/(m2·d) respectively for the air temperature of 8.9, 7.2, 5.8 and 6℃, at the ponds during sampling. The potential of hydrogen at the ponds during the sampling at each temperature was (7.73±0.26), (8.26±0.35), (7.75±0.37) and (7.68±0.48), respectively. The total organic carbon at the ponds for each sampling was (3.61±0.43), (3.32±0.17), (3.16±0.31) and (3.23±0.27), respectively. The redox potential for each sampling was (206.7±34.9), (216.8±27.6), (56.8±9.3) and (124.8±16.5) mV, respectively. The moisture content of sediment for samples taken at 11.2, 10.3, 9.6 and 9.8℃ was (55.25%±2.54%), (54.53%±5.61%), (46.62%±4.38%), and (48.35%±3.14%), respectively. Among December 28, January 13, January 28, February 13, 2014, when the pond temperature was the highest on December 28, the CO2emission flux peaked (2652.46±325.36) mg/(m2·d)). In comparison, on February 13 2015, the smallest CO2emission flux (1373.27±167.39) mg/(m2·d)) corresponded with the lowest pond temperature, CH4is transformed from methane bacteria via an organic carbon source. As culturing activity increased with rising temperatures, phytoplankton dies and the organic artificial diets left over by fish increases, providing a rich carbon source for methane bacteria. In this study, CH4emission flux paralleled that of CO2, and in general, CH4emission flux was positively correlated with temperature. On December 28, 2014, there was a peak of CH4emission flux (82.42 ± 6.32) mg/(m2·d)) in the freshwater ponds. From December 28, 2014 to February 13 2015, the measured CH4emission fluxes were (82.42±6.32), (81.08±7.43), (7.63±1.84) and (7.06±2.93) mg/(m2·d), respectively. On February 13 2015, the lowest water temperature was accompanied by the smallest CH4emission flux (7.06±2.93) mg/(m2·d). From December 28, 2014 to February 13 2015, the N2O emission fluxes were (172.34±10.56), (204.57±16.84), (160.36±12.87), and (90.39±10.67) μg/(m2·d), respectively. Megalobrama amblycephala culture ponds during pond basked were the source of CO2, CH4and N2O, of which CO2emission during pond basked amounted to (86.72.10±12.46) g/m2, CH4emission of (2.01±0.34) g/m2, and N2O emission of (7.44±0.98) mg/m2. For 20-years Megalobrama amblycephala culture pond ecosystems during pond basked, greenhouse gas warming potential had an increase trend. Comprehensive global warming potential was (157.28±24.31) g/m2. Therefore, there was a great potential in greenhouse gas emission reduction in Megalobrama amblycephala culture pond ecosystems.
Keywords:greenhouse gases; emission control; ponding; aquaculture; greenhouse effect; Megalobrama amblycephala; sun drying of pond
通信作者:※車軒,男,碩士,助理研究員,從事養(yǎng)殖水環(huán)境控制研究。上海中國(guó)水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所農(nóng)業(yè)部漁業(yè)裝備與工程技術(shù)重點(diǎn)試驗(yàn)室,200092。Email:chexuan@fmiri.ac.cn
作者簡(jiǎn)介:朱林,男,碩士,助理研究員,從事養(yǎng)殖水環(huán)境控制研究。上海中國(guó)水產(chǎn)科學(xué)研究院漁業(yè)機(jī)械儀器研究所農(nóng)業(yè)部漁業(yè)裝備與工程技術(shù)重點(diǎn)試驗(yàn)室,200092。Email:zhulin@fmiri.ac.cn。
基金項(xiàng)目:農(nóng)業(yè)部漁業(yè)裝備與工程技術(shù)重點(diǎn)實(shí)驗(yàn)室開放課題項(xiàng)目(2013006);農(nóng)業(yè)財(cái)政項(xiàng)目“漁業(yè)節(jié)能減排宣傳與政策研究”;國(guó)家蝦現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-47)。
收稿日期:2015-07-15
修訂日期:2015-12-16
中圖分類號(hào):X171.1;S965.119
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-6819(2016)-03-0210-06
doi:10.11975/j.issn.1002-6819.2016.03.030