趙淑雨,鐵學(xué)煕,,曹軍驥
(1.中國(guó)科學(xué)院地球環(huán)境研究所 中國(guó)科學(xué)院氣溶膠化學(xué)與物理重點(diǎn)實(shí)驗(yàn)室,西安 710061;2.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710061;3. National Center for Atmospheric Research, Boulder, CO, USA;4.西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院,西安 710049)
2008—2010年冬季關(guān)中地區(qū)黑碳?xì)馊苣z時(shí)間變化的成因分析
趙淑雨1,2,鐵學(xué)煕1,2,3,曹軍驥1,4
(1.中國(guó)科學(xué)院地球環(huán)境研究所 中國(guó)科學(xué)院氣溶膠化學(xué)與物理重點(diǎn)實(shí)驗(yàn)室,西安 710061;2.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710061;3. National Center for Atmospheric Research, Boulder, CO, USA;4.西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院,西安 710049)
本文應(yīng)用2008—2010年冬季黑碳濃度、已有排放數(shù)據(jù)和同時(shí)期氣象資料(風(fēng)速風(fēng)向、邊界層高度)分析了關(guān)中地區(qū)冬季平均黑碳濃度年際變化受局地排放、風(fēng)速風(fēng)向和邊界層高度的影響。結(jié)果表明,2010年黑碳濃度明顯高于2008年和2009年,其中局地排放的增加使得黑碳濃度明顯增加,貢獻(xiàn)率約為50%;2010年邊界層高度的明顯降低,抑制了近地面污染物的擴(kuò)散,加劇了地面黑碳的累積。此外,關(guān)中地區(qū)冬季風(fēng)速較小、風(fēng)場(chǎng)以旋轉(zhuǎn)風(fēng)和輻合風(fēng)為主,不利于污染物的擴(kuò)散,會(huì)進(jìn)一步加劇污染物的累積和聚集。因此,對(duì)于冬季空氣質(zhì)量的改善,需根據(jù)局地風(fēng)場(chǎng)和邊界層狀況,合理調(diào)整主要排放源的排放量,如在不利天氣條件下加強(qiáng)對(duì)排放的管控。
黑碳;排放;風(fēng)速風(fēng)向;邊界層高度;空氣污染
近年來(lái),顆粒物(PM2.5)污染已成為我國(guó)大氣環(huán)境中的重要問(wèn)題,這對(duì)國(guó)家外交形象,民眾生活質(zhì)量以及健康狀況,區(qū)域天氣、氣候變化等均產(chǎn)生深刻影響。觀測(cè)資料表明,我國(guó)東部顆粒物污染水平處于全球之最,平均濃度高出發(fā)達(dá)國(guó)家1—2個(gè)數(shù)量級(jí)(曹軍驥,2012)。針對(duì)如此嚴(yán)峻的空氣環(huán)境,治理與防控已成為國(guó)家發(fā)展規(guī)劃中的重要議題,2013年國(guó)務(wù)院已制定《大氣污染防治行動(dòng)計(jì)劃》,重點(diǎn)改善“三區(qū)十群”這些關(guān)鍵區(qū)域的空氣污染狀況。關(guān)中地區(qū)屬于“三區(qū)十群”重點(diǎn)地區(qū)之一,該地區(qū)城市群集中,人口較為密集,冬季空氣污染狀況十分嚴(yán)重,所以對(duì)這一地區(qū)的污染成因分析也極為重要。
黑碳是PM2.5的重要組成成分,占PM2.5質(zhì)量濃度的比例在3%—6%(Cao et al,2007)。黑碳不參與化學(xué)反應(yīng),其濃度主要受排放源和氣象條件兩個(gè)因素的影響,排放源主要指源強(qiáng)和排放量(Gong et al,2010);氣象條件包括從源區(qū)到受體區(qū)的大氣環(huán)流變化,大氣輸送路徑上的清除過(guò)程以及受體區(qū)自身的地面風(fēng)特征、邊界層與自由大氣層之間垂直交換強(qiáng)度(Gong et al,2010;Voulgarakis et al,2010;Zhao et al,2012;Tie et al,2013,2015)。我國(guó)城市地區(qū)空氣污染期間的觀測(cè)表明,污染物在穩(wěn)定天氣形勢(shì)下,2—3天內(nèi)快速累積,導(dǎo)致重污染發(fā)生(Tao et al,2012)。當(dāng)重污染發(fā)生時(shí),局地風(fēng)速風(fēng)向和邊界層高度是影響局地?cái)U(kuò)散條件的兩個(gè)關(guān)鍵的氣象參數(shù)。局地小風(fēng)和淺邊界層會(huì)抑制地面顆粒物的傳輸和擴(kuò)散,使得污染物聚集在源區(qū)附近,導(dǎo)致污染發(fā)生(Quan et al,2013;Zhao et al,2013)。Wehner et al(2008)發(fā)現(xiàn)局地的風(fēng)速風(fēng)向?qū)Ρ本┦械念w粒物濃度有重要作用,當(dāng)北京市盛行弱南風(fēng)時(shí),地面顆粒物往往較高,究其原因是弱南風(fēng)將北京南部地區(qū)的污染物輸送至此,較低風(fēng)速會(huì)導(dǎo)致污染物在地面進(jìn)一步累積。
黑碳與輻射存在相互作用和反饋,高濃度顆粒物會(huì)減弱地面對(duì)入射太陽(yáng)輻射的吸收,使得地表冷卻,抑制邊界層的發(fā)展(Quan et al,2013;Tie et al,2015)。已有研究表明,近地層氣溶膠通過(guò)冷卻邊界層大氣,加熱自由大氣使得大氣層結(jié)更加穩(wěn)定,從而使得邊界層內(nèi)的湍流擴(kuò)散減少52%,邊界層高度降低33%(Wang et al,2015)。重污染期間,邊界層高度和湍流擴(kuò)散與PM2.5質(zhì)量濃度的顯著反相關(guān)性說(shuō)明邊界層高度對(duì)顆粒物擴(kuò)散的抑制對(duì)灰霾形成有重要貢獻(xiàn),因?yàn)榘殡S著低層大氣層結(jié)的穩(wěn)定,地面污染物會(huì)進(jìn)一步累積,污染物和邊界層高度的反饋?zhàn)饔弥苯訉?dǎo)致污染持續(xù)時(shí)間延長(zhǎng),污染物保持在非常高的濃度水平(Wang et al,2015;Zhang et al,2015)。
目前國(guó)內(nèi)多數(shù)研究集中在華北平原、長(zhǎng)三角和珠三角等發(fā)達(dá)地區(qū),對(duì)于關(guān)中地區(qū)黑碳濃度受當(dāng)?shù)嘏欧?、氣象條件等影響的研究較少。本文旨在定性分析關(guān)中地區(qū)的黑碳排放和氣象要素對(duì)該地區(qū)冬季黑碳濃度的影響,這為其他組分的成因分析提供了新方法,也為該地區(qū)顆粒物污染問(wèn)題的防治提供科學(xué)支撐。
黑碳采樣在中國(guó)科學(xué)院地球環(huán)境研究所進(jìn)行,儀器是大氣總懸浮顆粒物采樣器(MiniVol,AirmetricsTM,USA),安裝在樓頂,距離地面約10 m高。氣泵流速調(diào)至5 L · min-1,頻率為每日一次,流程如下:將直徑為47 mm的石英濾膜(Whatman?QMA)固定在采樣器上,其中石英濾膜在600℃烘干箱中預(yù)加熱24 h,以消除可能存在的含碳物質(zhì),然后將其封裝在玻璃片中;采樣后,首先在濾膜上顆粒物沉積部位打孔,取下面積為0.526 cm2的樣本,然后利用DRI?2001熱-光碳分析儀進(jìn)行分析,詳細(xì)步驟見Chow et al(2004)。
黑碳采樣同期的涇河、咸陽(yáng)、鳳翔和華山氣象站資料(氣溫、風(fēng)速風(fēng)向)源自美國(guó)大氣海洋局(National Oceanic and Atmospheric Admminstration,NOAA) 3小時(shí)常規(guī)觀測(cè)資料,網(wǎng)頁(yè)如下:http://gis.ncdc.noaa.gov/map/viewer/。關(guān)中地區(qū)南倚秦嶺,北臨黃土高原,西起寶雞,東至潼關(guān),城市海拔在325—800 m,東西長(zhǎng)約300 km,西窄東寬,總面積約3.9×104km2。因地質(zhì)構(gòu)造,關(guān)中屬于斷層陷落區(qū),后經(jīng)渭河及其支流涇河、洛河等沖擊形成平原地形(圖1)。涇河氣象站是距離黑碳采樣點(diǎn)最近的氣象站,位于西安市正北方向的涇河經(jīng)濟(jì)開發(fā)區(qū),南鄰渭河,周圍地勢(shì)平坦開闊,無(wú)高大建筑群,所以該站點(diǎn)的氣象記錄代表西安市的基本氣象條件,咸陽(yáng)和鳳翔分別代表咸陽(yáng)市和寶雞市的基本狀況,華山站屬于高山站,記錄的是關(guān)中地區(qū)的本底狀況,這四個(gè)站點(diǎn)整體代表了關(guān)中地區(qū)的氣象條件。同時(shí)選取了同期歐洲中長(zhǎng)期天氣預(yù)報(bào)中心(European Centre for Medium-range Weather Forecasts,ECMWF)再分析資料,如10 m風(fēng)速和邊界層高度,該資料空間分辨率為0.125°×0.125°,數(shù)據(jù)下載鏈接:http://www.ecmwf.int/products/data/。
圖2給出了2008—2010年冬季關(guān)中地區(qū)黑碳濃度的年際變化。冬季黑碳濃度表現(xiàn)出逐年增加,平均濃度在11 μg · m-3左右,相應(yīng)的PM2.5濃度約在180 μg · m-3,明顯高于國(guó)家空氣二級(jí)質(zhì)量標(biāo)準(zhǔn)(日平均值小于75 μg · m-3,年平均值小于35 μg · m-3)。因?yàn)楹谔紳舛戎饕芘欧藕蜌庀髼l件的影響,所以本文主要從這兩方面來(lái)解釋2008—2010年冬季黑碳濃度增加的原因。
圖3給出了2008—2010年冬季黑碳排放的月變化和年際變化。首先,12月份是每年冬季黑碳排放量最高的月份,自然也是全年排放最高的月份。其次,關(guān)中地區(qū)的黑碳排放總量自2008年至2010年有明顯的增加。黑碳是一次排放污染物,明顯受到排放的影響,所以該時(shí)期內(nèi)黑碳排放的增加是該地區(qū)黑碳濃度增加的主要原因之一。圖4給出了月平均黑碳排放量與黑碳濃度的相關(guān)關(guān)系,二者有顯著的正相關(guān)性,但散點(diǎn)圖分布較為分散,說(shuō)明二者不是嚴(yán)格的線性相關(guān)關(guān)系。表1計(jì)算了2008—2010冬季黑碳排放和黑碳濃度變化的百分比。2009年冬季黑碳排放量比2008年增加了8.8%,相應(yīng)的黑碳濃度增加了3.1%,說(shuō)明2009年冬季的氣象條件有利于污染物的擴(kuò)散傳輸,改善了該地區(qū)的空氣質(zhì)量;2010年冬季黑碳排放量比2009年增加了10.3%,相應(yīng)的黑碳濃度增加了20.8%,說(shuō)明2010年黑碳濃度的明顯增加,除了受到排放明顯增加的影響外,也明顯受到不利的氣象條件的影響,這二者對(duì)黑碳濃度的貢獻(xiàn)百分比相當(dāng)。
圖1 關(guān)中地形及觀測(cè)站點(diǎn)分布,黑色方框代表關(guān)中地區(qū),三角為中國(guó)科學(xué)院地球環(huán)境研究所觀測(cè)點(diǎn)(IEECAS),圓圈為氣象站點(diǎn)(涇河、咸陽(yáng)、鳳翔和華山站)Fig.1 Topography of Guanzhong region andin-situblack carbon (BC) measurement site (the triangle, IEECAS) and weather stations (the circles, Jinghe, Xianyang, Fengxiang and Huashan)
圖2 2008—2010冬季關(guān)中地區(qū)黑碳濃度的年際變化Fig.2 Annual variation of winter BC concentration from 2008 to 2010
圖3 2008—2010冬季關(guān)中地區(qū)的黑碳排放Fig.3 Annual variation of BC emission from 2008 to 2010 in winter in the Guanzhong region
表2統(tǒng)計(jì)了2008—2010年關(guān)中地區(qū)涇河、咸陽(yáng)、寶雞和華山4個(gè)氣象站在冬季的主導(dǎo)風(fēng)向、次風(fēng)向、平均風(fēng)速和平均氣溫。首先,氣溫表現(xiàn)出逐年增加,且氣溫在2009年有明顯的升高,這表明2009和2010年冬季冷空氣較2008年偏弱,冷空氣活動(dòng)弱說(shuō)明大氣環(huán)流場(chǎng)較為穩(wěn)定,不利于污染物的擴(kuò)散輸送;其次,關(guān)中城市地區(qū)(除華山站外)的風(fēng)速在2.5 m · s-1左右,風(fēng)力為二級(jí),不利于污染物的水平輸送;再次,關(guān)中地區(qū)的主導(dǎo)風(fēng)向以旋轉(zhuǎn)風(fēng)為主,容易導(dǎo)致污染物的累積;最后,城市地區(qū)的主導(dǎo)風(fēng)向和次風(fēng)向通常是反向的,這說(shuō)明城市地區(qū)容易出現(xiàn)輻合風(fēng),易造成污染物的聚集。綜上所述,2009年和2010年關(guān)中地區(qū)冬季的風(fēng)場(chǎng)不利于污染物的擴(kuò)散傳輸。圖5給出了根據(jù)ECMWF再分析資料計(jì)算的整個(gè)關(guān)中地區(qū)的平均風(fēng)速和黑碳濃度的相關(guān)性分析,二者沒(méi)有顯著相關(guān)性。但日平均黑碳濃度高值區(qū)有明顯的風(fēng)速分割閾值,當(dāng)風(fēng)速大于3.3 m · s-1時(shí)(三級(jí)風(fēng)),日平均黑碳濃度明顯降低,這表明關(guān)中地區(qū)風(fēng)力達(dá)到三級(jí),一般不會(huì)出現(xiàn)重污染天氣。2008—2010年冬季的平均風(fēng)速?zèng)]有明顯變化,在1.8—2.2 m · s-1(圖6),不足以對(duì)黑碳濃度產(chǎn)生明顯影響。
圖4 黑碳排放和濃度的散點(diǎn)分布及相關(guān)性Fig.4 Scatter distribution of BC concentration and emission, the solid line for the linear regression
表1 2008—2010 冬季黑碳平均濃度和總排放量以及年際變化百分比Tab.1 BC concentration and emission, and the percentage of annual increment in winter from 2008 to 2010
表2 關(guān)中地區(qū)氣象站記錄的2008—2010冬季盛行風(fēng)向、次風(fēng)向、平均風(fēng)速和氣溫Tab.2 Annual variations of observed prevailing and secondary wind direction, wind speed and temperature at weather stations in the Guanzhong region in winter from 2008 to 2010
年份Year氣溫Temperature / ℃2008WNWW4.79-6.04 2009WNWSSW5.15-3.14 2010WWNW5.78-2.21華山 Huashan主風(fēng)向Prevailing wind direction次風(fēng)向Secondary wind direction風(fēng)速Wind speed /(m · s-1)
圖7給出了日平均黑碳濃度和邊界層高度的相關(guān)性分析。結(jié)果表明,二者表現(xiàn)出顯著的負(fù)指數(shù)相關(guān)性,隨著邊界高度的增加,黑碳濃度迅速降低,當(dāng)邊界層高度升高至1000 m,黑碳濃度約為4 μg · m-3;對(duì)應(yīng)的PM2.5濃度通常不超過(guò)70 μg · m-3。邊界層高度的發(fā)展主要受到日間太陽(yáng)輻射的影響,日間發(fā)展的邊界層在夜間因?yàn)檩椛淅鋮s等因素,邊界層高度會(huì)降低,易造成污染物在近地層聚集,本文重點(diǎn)考察了日間邊界層高度的發(fā)展對(duì)污染物垂直擴(kuò)散的影響。
圖5 日平均風(fēng)速和黑碳濃度的散點(diǎn)分布Fig.5 Scatter distributions of daily mean wind speed and BC concentration in the Guanzhong region
圖6 關(guān)中地區(qū)2008—2010冬季平均風(fēng)速的年際變化Fig.6 Annual variation of mean wind speed from 2008 to 2010 in the Guanzhong region
圖7 日平均邊界層高度和黑碳濃度的散點(diǎn)分布以及二者的非線性相關(guān)性Fig.7 Scatter distributions of daily mean planetary boundary layer height and BC concentration, and the non-linear fi tting between them in the Guanzhong region
圖8 月平均的日間邊界層高度和日平均黑碳濃度的散點(diǎn)分布以及二者的非線性相關(guān)性Fig.8 Scatter distributions of monthly mean diurnal planetary boundary layer height and daily mean BC concentration, and the non-linear fi tting between them in the Guanzhong region
圖8計(jì)算了月平均的日間邊界層高度與黑碳濃度的相關(guān)性,二者的相關(guān)性與圖7類似,說(shuō)明了日間邊界層高度對(duì)近地層黑碳擴(kuò)散的影響。結(jié)合年平均黑碳濃度的逐年變化,分析了日間邊界層高度的逐年變化(圖9),發(fā)現(xiàn)二者的變化規(guī)律完全相反。2010年冬季日間邊界層高度相較于2008年和2009年降低了40多米,這表明污染物的擴(kuò)散在垂直方向被明顯壓縮了,而水平風(fēng)速卻沒(méi)有明顯變化,所以2010年日間邊界層高度的明顯降低對(duì)該年冬季黑碳濃度的增加有明顯貢獻(xiàn)。
圖9 關(guān)中地區(qū)日間邊界層高度的年際變化Fig.9 Annual variation of mean daytime planetary boundary layer height from 2008 to 2010 in the Guanzhong region
本文對(duì)2008—2010年關(guān)中地區(qū)冬季黑碳濃度的變化規(guī)律及其成因做了半定量分析,主要從局地排放和關(guān)鍵氣象要素(風(fēng)速風(fēng)向、邊界層高度)兩方面來(lái)解釋:
(1)2008—2010年,冬季平均黑碳濃度表現(xiàn)出明顯增加,這與冬季黑碳排放的逐年增加密切相關(guān),排放的逐年增加對(duì)黑碳濃度逐年增加的貢獻(xiàn)約在50%;排放量的變化對(duì)黑碳濃度的影響不遵循嚴(yán)格的線性關(guān)系,還受到氣象要素的顯著影響;
(2)關(guān)中地區(qū)冬季的旋轉(zhuǎn)風(fēng)和輻合風(fēng)場(chǎng),且風(fēng)速較小,不利于污染物的水平輸送;邊界層高度與黑碳濃度表現(xiàn)出顯著的非線性負(fù)相關(guān)性,低邊界層高度會(huì)明顯限制污染物的垂直擴(kuò)散,2010年明顯降低的日間邊界層高度是該地區(qū)冬季黑碳濃度明顯較高的重要原因。
曹軍驥. 2012. 我國(guó)PM2.5污染現(xiàn)狀與控制對(duì)策[J].地球環(huán)境學(xué)報(bào), 3(5): 1031 – 1036. [Cao J J. 2012. Pollution status and control strategies of PM2.5in China [J].Journal of Earth Environment, 3(5): 1031 – 1036.]
Cao J J, Lee S C, Chow J C, et al. 2007. Spatial and seasonal distributions of carbonaceous aerosols over China [J].Journal of Geophysical Research, 112(D22S11), doi:10.1029/2006JD008205.
Chow J C, Watson J G, Chen L W A, et al. 2004. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols [J].Environmental Science & Technology, 38(16): 4414 – 4422.
Gong S L, Zhao T L, Sharma S, et al. 2010. Identification of trends and interannual variability of sulfate and black carbon in the Canadian High Arctic [J].Journal of Geophysical Research, 115(D07305), doi:10.1029/2009JD012943.
Quan J N, Gao Y, Zhang Q, et al. 2013. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations [J].Particuology, 11: 34 – 40.
Tao M H, Chen L F, Su L, et al. 2012. Satellite observation of regional haze pollution over the North China Plain [J].Journal of Geophysical Research, 117(D12203), doi:10.1029/2012JD017915.
Tie X X, Geng F, Guenther A B, et al. 2013. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign [J].Atmospheric Chemistry and Physics, 13: 5655 – 5669.
Tie X X, Zhang Q, He H, et al. 2015. A budget analysis of the formation of haze in Beijing [J].Atmospheric Environment, 100: 25 – 36.
Voulgarakis A, Savage N H, Wild O, et al. 2010. Interannual variability of tropospheric composition: the influence of changes in emissions, meteorology and clouds [J].Atmospheric Chemistry and Physics, 10: 2491 – 2506.
Wang Y H, Liu Z R, Zhang J K. 2015. Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing [J].Atmospheric Chemistry and Physics, 15: 3205 – 3215.
Wehner B, Birmili W, Ditas F, et al. 2008. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004—2006 [J].Atmospheric Chemistry and Physics, 8: 6155 – 6168.
Zhang Q, Quan J N, Tie X X, et al. 2015. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China [J].Science of the Total Environment, 502: 578 – 584.
Zhao T L, Gong S L, Huang P, et al. 2012. Hemispheric transport and infl uence of meteorology on global aerosol climatology [J].Atmospheric Chemistry and Physics, 12: 7609 – 7624.
Zhao X J, Zhao P S, Xu J, et al. 2013. Analysis of a winter regional haze event and its formation mechanism in the North China Plain [J].Atmospheric Chemistry and Physics, 13: 5685 – 5696.
Causes for temporal variation of 2008—2010 black carbon concentrations during winter in the Guanzhong region
ZHAO Shuyu1,2, TIE Xuexi1,2,3, CAO Junji1,4
(1. Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 3. National Center for Atmospheric Research, Boulder, CO, USA; 4. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China)
Background, aim, and scopeGuanzhong region in mid-western China is experiencing severe air pollution during wintertime in recent years, so the region is listed on the national key region where air pollution is urgently needed to improve. However, compared to the more developed eastern China, limited studies are available in this region. Thus, how air pollutions form and which factors affect air pollutions should be paid more attention. This study usedin-situblack carbon (BC) concentration, BC emission inventories, and meteorological parameters in the Guanzhong region, aiming to analyze characteristics of annual variation of BCconcentration during wintertime and investigate how the emission and meteorological parameters (winds and planetary boundary layer, PBL) affect BC concentration.Materials and methodsBlack carbon was measured by an aethalometer (Model AE-16, Magee Scientifi c Company, Berkley, CA, USA). The instrument used quartzfi ber fi lter tape transmission at 880 nm wavelength, with a 5-min resolution, 5 L · min-1of airfl ow rate and ±2% accuracy. Black carbon concentration is derived from the linear relationship between BC concentration and light attenuation absorption coefficient. The 3-hour temperature, wind speed and direction are observed at weather stations in the Guanzhong region, and data are available from http://gis.ncdc.noaa.gov/map/viewer/. Out of PBL height observation during BC measurement, we use reanalysis PBL heights with a spatial resolution of 0.125° × 0.125° from European Centre for Medium-range Weather Forecasts (ECMWF). The data is available at http:// www.ecmwf.int/products/data/. In this study, we mainly use the statistics and the correlation analysis to calculate the effects of BC emission, winds and PBL heights on BC concentration.ResultsBlack carbon concentration and BC emission in winter both have an obvious increase from 2008 to 2010, but with quite different increase percentages. Prevailing wind direction has no obvious annual variation but the wind speed has the minimum in 2009 and the maximum in 2010. Planetary boundary layer height at daytime has a decline from 2008 to 2010, and the drop reaches to as high as 40 m.DiscussionIncrease annual BC concentration from 2008 to 2010 is closely associated with gradually increased BC emission, but the correlation between BC concentration and emission is non-linear. For example, compared to BC concentration at 2009, BC concentration at 2010 increases by 20.8%, but the emission increases by 10.3%. This is because BC concentration is not only affected by the emission, but also affected by the meteorological conditions. The obvious drop of daytime PBL height from 2008 to 2010 can explain the rest difference. The correlation between BC concentration and PBL heights illustrates that BC concentration exponentially decreases as the PBL heights increase.ConclusionsIncreased BC emission at 2010 contributes almost 50% to increased BC concentration. On the other hand, PBL heights in winter at 2010 decreased by 40—50 m than that at 2008 and 2009, and decreased PBL heights constrains pollutants (e.g., BC) into the surface layer, enhancing BC accumulation. In addition, rotated winds or convergent winds with low speeds in winter over the whole Guanzhong region further enhance BC aggregation and accumulation. Hence, better and healthy air quality in winter in the Guanzhong region needs to comprehend local wind and planetary boundary layer development, and then reasonably control emission sources.Recommendations and perspectivesThis study provides a new method to analyze the formation and infl uence factors for other trace components of air pollution, which is helpful for the government to make scientifi c policy to prevent and control the air pollution.
black carbon; emission; wind; planetary boundary layer height; air pollution
ZHAO Shuyu, E-mail: zhaosy@ieecas.cn
10.7515/JEE201606007
2016-07-11;錄用日期:2016-10-20
Received Date:2016-07-11;Accepted Date:2016-10-20
中國(guó)科學(xué)院地球環(huán)境研究所黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室開放基金(SKLLQG1429);國(guó)家自然科學(xué)基金項(xiàng)目(41275186,41430424)
Foundation Item:Open Foundation of State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (SKLLQG1429); National Natural Science Foundation of China (41275186, 41430424)
趙淑雨,E-mail: zhaosy@ieecas.cn