国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

piRNA/PIWI在肝癌發(fā)生發(fā)展中的機(jī)制研究進(jìn)展

2016-03-10 09:15:07周代兵張凌云許國(guó)雄
肝臟 2016年8期
關(guān)鍵詞:轉(zhuǎn)座子干細(xì)胞編碼

周代兵 張凌云 許國(guó)雄

?

piRNA/PIWI在肝癌發(fā)生發(fā)展中的機(jī)制研究進(jìn)展

周代兵張凌云許國(guó)雄

人類全基因組中僅約1%~2%的核苷酸能夠被轉(zhuǎn)錄并翻譯成蛋白質(zhì),余下98%以上均為非編碼RNA (non-coding RNA,ncRNA),可在基因水平上發(fā)揮其生物學(xué)功能[1]。在ncRNA中,核苷酸序列長(zhǎng)度小于200bp的稱為短鏈非編碼RNA (short non-coding RNA,sncRNA),占全部ncRNA的10%~20%[2, 3],包括PIWI蛋白結(jié)合RNA (PIWI-interacting RNAs, piRNAs)、微小RNA (microRNA,miRNA)、重復(fù)相關(guān)小RNA(repeat associated small interfering RNAs,rasiRNA)以及小干擾RNA (small interference RNA,siRNA)[4]。肝臟惡性腫瘤是常見的消化系統(tǒng)腫瘤,發(fā)生率和死亡率居我國(guó)惡性腫瘤的前五位[5]。盡管2016年美國(guó)癌癥總死亡率下降23%,但肝癌的發(fā)病率和死亡率卻呈上升趨勢(shì)[6]。肝癌的早期篩查與診斷對(duì)肝癌的治療和預(yù)后的改善至關(guān)重要。piRNA可以在分子水平調(diào)控肝癌的發(fā)生發(fā)展,可以為肝癌的早期篩查和靶向治療提供新的思路。

一、piRNA概述

(一)piRNA/PIWI的發(fā)現(xiàn)、結(jié)構(gòu)特征以及生物學(xué)功能2006年,Aravin等[7]利用離心淘析和免疫共沉淀技術(shù)在雄性小鼠睪丸組織分離出一段小RNA。研究發(fā)現(xiàn),此小RNA主要與Argonaute家族PIWI蛋白成員(Argonaute3、Piwi、Aubergine)[8]相互作用而將其命名為piRNA。PIWI蛋白作為piRNA/PIWI復(fù)合物中的核心組分,結(jié)合其他重要功能分子,在piRNA發(fā)揮生物功能過(guò)程中起著關(guān)鍵作用[9]。piRNA主要是作為PIWI的“信使”調(diào)控靶基因的穩(wěn)定性表達(dá)、轉(zhuǎn)錄以及轉(zhuǎn)錄后水平的修飾[10]。

piRNA是一類長(zhǎng)約30 nt的單鏈小RNA,5′端含有一個(gè)單磷酸其團(tuán),并具有強(qiáng)烈的尿嘧啶傾向性,3′端2-OH呈現(xiàn)甲基化[9]。piRNA主要存在于基因間隔區(qū),具有成簇分布特點(diǎn),基因區(qū)或重復(fù)序列區(qū)較少見[11, 12]。piRNA以高度特異鏈的方式對(duì)應(yīng)于單鏈基因組位點(diǎn),正義鏈或反義鏈專一性較好,在生物體內(nèi)表達(dá)具有組織特異性。在果蠅實(shí)驗(yàn)中發(fā)現(xiàn),生殖細(xì)胞中piRNA基因在Zucchini核酸酶的參與下,由lncRNA前體加工而來(lái);轉(zhuǎn)錄成的初級(jí)piRNA穿過(guò)核膜到胞漿后,經(jīng)定位在核周體NUAGE上的Aub和AGO3的核酸內(nèi)切酶Slicer激活PIWI蛋白內(nèi)切酶活性,剪切形成次級(jí)piRNA,并且通過(guò)“乒乓循環(huán)”機(jī)制使細(xì)胞中的piRNA大量擴(kuò)增,最后PIWIL4蛋白結(jié)合piRNA進(jìn)入核內(nèi)發(fā)揮生物學(xué)效應(yīng)[13-15]。

研究發(fā)現(xiàn),piRNA主要存在于老鼠[7]、果蠅[16]、斑馬魚、人等哺乳動(dòng)物體內(nèi)的生殖細(xì)胞和干細(xì)胞中。其中,人類已發(fā)現(xiàn)的PIWI蛋白主要有PIWIL1(HIWI、piwi homology), PIWIL2 (PIWIL1L、CT80、Miwi like、鼠科Mili),PIWIL3(HIWI3)和PIWIL4 (HIWI2、 MIWI2)四種亞型[17, 18]。piRNA通過(guò)與PIWI蛋白結(jié)合形成piRNA復(fù)合物,識(shí)別并結(jié)合轉(zhuǎn)座子,裂解轉(zhuǎn)座子基因轉(zhuǎn)錄產(chǎn)生的mRNA或沉默胞核內(nèi)的轉(zhuǎn)座子基因,從而調(diào)控著生殖細(xì)胞自我更新和干細(xì)胞的增殖分化[19]。除此之外,piRNA在表觀遺傳控制、腫瘤發(fā)生發(fā)展以及維系基因的穩(wěn)定性等方面也起著重要作用[12]。

(二)piRNA/PIWI與腫瘤關(guān)系近年來(lái),短鏈非編碼RNA與實(shí)體腫瘤細(xì)胞增殖分化和浸潤(rùn)轉(zhuǎn)移的研究取得很大進(jìn)展,在乳腺癌、肝癌、肺癌、前列腺癌等癌癥中均有大量短鏈非編碼RNA的相關(guān)報(bào)道。自2006年發(fā)現(xiàn)piRNA后,piRNA/PIWI蛋白與癌癥的關(guān)系引起了研究者們的關(guān)注[20],piRNA作為短鏈非編碼RNA成員之一,主要是通過(guò)PIWI蛋白形成piRNA/PIWI復(fù)合體參與到機(jī)體的生命活動(dòng)中。短鏈非編碼RNA可在轉(zhuǎn)錄和轉(zhuǎn)錄后水平上通過(guò)RNA誘導(dǎo)沉默復(fù)合物(RNA-induced silencing complex,RISC)調(diào)控基因表達(dá),還可作為“免疫警察”監(jiān)控外源核酸類似物,免遭外來(lái)威脅。Argonaute家族蛋白作為RISC重要成員之一,有三個(gè)重要RNA結(jié)合結(jié)構(gòu)域,即PAZ (Piwi/Argonaut/Zwille)、MID(Middle)和Piwi (P-element-induced wimpy testis)結(jié)構(gòu)域,piRNA/PIWI復(fù)合體與RISC PAZ結(jié)構(gòu)域相互作用,結(jié)合到靶mRNA上進(jìn)行剪切或抑制翻譯[21]。

PIWI蛋白缺失后,RNA聚合酶II在染色體區(qū)域富集,導(dǎo)致RNA合成能力增強(qiáng),促使表觀遺傳發(fā)生改變[9],包括DNA高度甲基化、組蛋白去乙?;⒁种妻D(zhuǎn)座子激活、染色質(zhì)異構(gòu)化等,這些表觀遺傳學(xué)的改變?cè)谀[瘤的發(fā)生發(fā)展中起著重要作用。例如DNA甲基化可引起癌基因的激活和抑癌基因的沉默,促使腫瘤失控性增生;組蛋白去乙?;蓪?dǎo)致細(xì)胞周期調(diào)控紊亂,DNA損傷修復(fù)受阻;休眠轉(zhuǎn)座子的激活則導(dǎo)致基因失活等。

大量研究發(fā)現(xiàn),piRNA/PIWI除在正常人體內(nèi)的睪丸和造血干細(xì)胞大量表達(dá)外,在很多腫瘤組織和腫瘤細(xì)胞株均有異常表達(dá)[22]。例如在胰腺癌[23]、乳腺癌[24]和卵巢癌[25, 26]等腫瘤中,PIWI在腫瘤表達(dá)量越高,惡性程度越大,預(yù)后越差。敲低PIWI基因后,腫瘤細(xì)胞生長(zhǎng)被抑制、惡性程度降低,暗示了piRNA/PIWI可能在腫瘤的發(fā)生發(fā)展中起重要的作用[27]。近年來(lái),也有研究者將PIWI蛋白作為腫瘤惡性程度和預(yù)后判斷的一個(gè)監(jiān)測(cè)指標(biāo)[28]。

二、piRNA/PIWI與肝癌關(guān)系

肝癌病情進(jìn)展快、療效差、早期易轉(zhuǎn)移,臨床診斷時(shí)多數(shù)患者已處于中晚期,失去了最佳治療時(shí)機(jī)。目前對(duì)肝癌的治療主要是以手術(shù)治療為主,輔以介入、免疫、化療等綜合治療,但總體效果仍不理想。研究發(fā)現(xiàn),piRNA/PIWI可能與肝癌的增殖[27]、抗凋亡[29]以及侵襲轉(zhuǎn)移[30]等發(fā)生發(fā)展密切相關(guān)。

前期研究發(fā)現(xiàn),肝癌組織中存在一種多潛能分化的干細(xì)胞,使得肝癌細(xì)胞具有無(wú)限增殖及細(xì)胞周期調(diào)節(jié)失控特性。干細(xì)胞是腫瘤細(xì)胞的起始細(xì)胞,它具有自我更新分化的能力。PIWIL2作為人PIWI蛋白家族成員之一,在干細(xì)胞分化和腫瘤發(fā)生發(fā)展中起著重要作用,肝癌干細(xì)胞這種無(wú)限分化能力很有可能與PIWIL2有關(guān)[31]。PIWIL2過(guò)表達(dá)引起信號(hào)傳導(dǎo)與轉(zhuǎn)錄激活因子3 (Stat3)表達(dá)量增加,通過(guò)Stat3/Bcl-xL和Stat3/CyclinD1兩種途徑,激活Stat3下游靶基因CyclinD1和抗凋亡基因Bcl-xL,導(dǎo)致細(xì)胞周期調(diào)控紊亂,G1期不斷向S期轉(zhuǎn)換,抑制凋亡;Law等[32]發(fā)現(xiàn),相比鄰近正常肝臟組織,piRNA piR-Hep1在原發(fā)性肝癌細(xì)胞中上調(diào)46.6%;Pearson相關(guān)分析發(fā)現(xiàn)PIWIL2與piR-Hep1呈現(xiàn)正相關(guān)(r=0.424,P=0.025);PIWIL2可激活PI3K/AKT信號(hào)通路,使得下游基因AKT過(guò)度磷酸化,促進(jìn)細(xì)胞增殖;敲低piR-Hep1后,細(xì)胞增殖能力下降,侵襲力減弱。Zhao等[30]也發(fā)現(xiàn),相比正常肝細(xì)胞L02,在高侵襲性的肝癌細(xì)胞HCCLM3,MHCC97H和MHCC97L中HIWI mRNA及HIWI蛋白表達(dá)增高,組織水平也顯示瘤內(nèi)HIWI表達(dá)量明顯高于臨近正常肝組織,統(tǒng)計(jì)分析顯示HIPI表達(dá)與增殖細(xì)胞核抗原、腫瘤大小以及轉(zhuǎn)移方式正相關(guān)(P<0.05);敲低HIWI后,細(xì)胞增殖和侵襲能力均明顯下降。同時(shí)還發(fā)現(xiàn),HIWI高表達(dá)(尤其低甲胎蛋白和病理Edmondson-Steiner分級(jí)為低級(jí)患者)是肝癌患者總生存期和無(wú)復(fù)發(fā)生存期縮短的一個(gè)獨(dú)立危險(xiǎn)因素,與患者的預(yù)后密切相關(guān)。

調(diào)控肝癌生物學(xué)行為的機(jī)制異常復(fù)雜,信號(hào)轉(zhuǎn)導(dǎo)通路間相互作用可影響肝癌的發(fā)生進(jìn)展和預(yù)后,這些信號(hào)轉(zhuǎn)導(dǎo)通路包括血管內(nèi)皮生長(zhǎng)因子(Vascular endothelial growth factor,VEGF)信號(hào)通路、轉(zhuǎn)化生長(zhǎng)因子-β(Transforming growth factor-β,TGF-β)信號(hào)通路、核化因子NF-κB信號(hào)通路等。在Baek等[33]構(gòu)建的MT1/TGFα轉(zhuǎn)基因小鼠模型中,轉(zhuǎn)化生長(zhǎng)因子-α(transforming growth factor -alpha,TGF-α)的過(guò)表達(dá)可使TGF-β失活,并使正常肝細(xì)胞獲得具有惡性肝腫瘤無(wú)限增殖的特性,從而誘變?yōu)楦伟┘?xì)胞。與此同時(shí),PIWI蛋白可通過(guò)與分子伴侶蛋白如熱休克蛋白90(HSP90)競(jìng)爭(zhēng)性結(jié)合TGF-β信號(hào)轉(zhuǎn)導(dǎo)通路中TGF-βI型受體,抑制下游的Smad2和Smad3磷酸化,導(dǎo)致細(xì)胞周期素依賴激酶抑制物p21和纖溶酶原激活物抑制劑1(plasminogen activator inhibitor-1,PAI-1)的表達(dá)下調(diào),引起細(xì)胞周期調(diào)控紊亂,抑制細(xì)胞凋亡,促進(jìn)腫瘤細(xì)胞的無(wú)限增殖與分化[34]。也有學(xué)者研究認(rèn)為PAI-1可能是通過(guò)Fas/Fas-L介導(dǎo)的凋亡途徑產(chǎn)生抑制效應(yīng)[35]。但是以上兩項(xiàng)研究并沒(méi)有闡明PIWI蛋白在促進(jìn)肝癌細(xì)胞增殖分化中是否受到TGF-β信號(hào)通路的調(diào)控,因此還需進(jìn)一步研究。另外,Ye等發(fā)現(xiàn)PIWI樣蛋白PIWIL2可與NF-κB相互作用,通過(guò)NF-κB信號(hào)通路參與腫瘤細(xì)胞增殖分化[36]。最近也有研究發(fā)現(xiàn),具有NF-κB1基因多態(tài)性的HCV(Hepatitis C virus)肝病患者罹患肝癌風(fēng)險(xiǎn)明顯高于正常組[37]。同樣PIWI蛋白是否參與NF-κB1基因突變誘導(dǎo)肝癌發(fā)生還需深入研究。

侵襲和轉(zhuǎn)移是肝癌預(yù)后差、復(fù)發(fā)率高的最重要原因。側(cè)重于肝癌的一、二級(jí)預(yù)防可為肝癌的早期診斷和預(yù)防打下基礎(chǔ),發(fā)現(xiàn)早期肝癌生物標(biāo)志物對(duì)于提高肝癌切除率和生存期有重要意義。目前盡管還未見在肝癌患者中檢測(cè)外周血piRNA的相關(guān)報(bào)道,但在胃癌研究中已發(fā)現(xiàn)外周血piR-651和piR-823通過(guò)qRT-PCR方法檢測(cè)出來(lái),且具有較高的靈敏度和特異性,可作為循環(huán)胃癌細(xì)胞檢測(cè)與診斷的一個(gè)分子標(biāo)志物[38, 39]用于篩查胃癌患者。從這些研究中看出對(duì)于研究肝癌相關(guān)的piRNA作為肝癌發(fā)生發(fā)展的標(biāo)志物具有重要的借鑒意義。

三、總結(jié)與展望

piRNA/PIWI與肝癌發(fā)生發(fā)展密切相關(guān),如:piRNA-651[39]、piR-Hep1[32]等,但它們與PIWI在肝癌發(fā)生發(fā)展中的具體調(diào)控機(jī)制尚不明了[40]。目前,piRNA通過(guò)Argonaute蛋白家族影響著癌癥的發(fā)生發(fā)展已廣泛地受到研究者的關(guān)注[41]。有研究者根據(jù)Argonaute蛋白家族在癌癥中的作用,對(duì)piRNA/PIWI在肝癌發(fā)生發(fā)展中的機(jī)制進(jìn)行了推測(cè):(1) piRNA/PIWI激活上皮間質(zhì)轉(zhuǎn)化(Epithelial-mesenchymal transition,EMT)相關(guān)的轉(zhuǎn)錄因子如:Twist1/2和Zeb1/2[42],使得E-鈣黏著蛋白、波形蛋白等過(guò)表達(dá),促進(jìn)了肝癌的侵襲轉(zhuǎn)移;(2) piRNA/PIWI通過(guò)DNA甲基化、組蛋白乙?;缺碛^途徑在轉(zhuǎn)錄水平上抑制轉(zhuǎn)座子表達(dá),導(dǎo)致基因不穩(wěn)定性增加,雙鏈DNA斷裂后損傷修復(fù)異常,促使肝癌的發(fā)生;(3) piRNA與miRNA均屬于非編碼小RNA成員。miRNA與Argonaute蛋白相互作用以形成RNA誘導(dǎo)的沉默復(fù)合物(RISC),并結(jié)合到mRNA的互補(bǔ)序列導(dǎo)致mRNA降解,在轉(zhuǎn)錄后水平發(fā)揮調(diào)控作用,故而有理由認(rèn)為piRNA與miRNA具有相似的調(diào)控效應(yīng)[43-45]。另外,piRNA還可沉默miRNA 3'-UTR區(qū)的反轉(zhuǎn)錄轉(zhuǎn)座子,削弱miRNA的抑瘤效應(yīng)[46];(4) piRNA在轉(zhuǎn)錄后水平上通過(guò)Slicer酶切調(diào)控lncRNA的表達(dá)量,導(dǎo)致原癌基因激活或者是抑癌基因滅活,進(jìn)而誘導(dǎo)肝癌的發(fā)生[46]。

PIWI依賴性piRNA基因生物合成機(jī)制及其在癌癥中作用尚未完全明了。有研究者發(fā)現(xiàn),機(jī)體內(nèi)還存在一種非PIWI依賴性的piRNA通路參與機(jī)體生物調(diào)控[47],但其是否參與腫瘤細(xì)胞的生物學(xué)行為還需進(jìn)一步研究。piRNA/PIWI在肝癌發(fā)生發(fā)展中的具體機(jī)理尚處在初步階段,借助新型高通量測(cè)序技術(shù)及后續(xù)實(shí)驗(yàn)的驗(yàn)證,將會(huì)發(fā)現(xiàn)更多與肝癌發(fā)生發(fā)展相關(guān)的piRNA,給肝癌治療提供新的方向,并將有可能作為新型分子標(biāo)志物用于肝癌的早期診斷、治療以及預(yù)后判斷。

[1]Consortium EP, Birney E, Stamatoyannopoulos JA, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447: 799-816.

[2]Zhang K,Shi ZM,Chang YN, et al. The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene, 2014, 547: 1-9.

[3]Chen J,Xue Y. Emerging roles of non-coding RNAs in epigenetic regulation. Sci China Life Sci, 2016.

[4]Sandhu GK,Milevskiy MJ,Wilson W, et al. Non-coding RNAs in mammary gland development and disease. Adv Exp Med Biol, 2016, 886: 121-153.

[5]Chen W,Zheng R,Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66:115-132.

[6]Siegel RL, Miller KD.Jemal A Cancer statistics, 2016. CA Cancer J Clin, 2016, 66: 7-30.

[7]Aravin A,Gaidatzis D,Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006, 442: 203-207.

[8]Hock J, Meister G. The Argonaute protein family. Genome Biol, 2008, 9: 210.

[9]Yin H,Lin H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature, 2007, 450: 304-308.

[10]Hirakata S,Siomi MC. piRNA biogenesis in the germline: from transcription of piRNA genomic sources to piRNA maturation. Biochim Biophys Acta, 2016, 1859: 82-92.

[11]Iwasaki YW, Siomi MC,Siomi H. PIWI-Interacting RNA: its biogenesis and functions. Annu Rev Biochem, 2015, 84: 405-433.

[12]Khurana JS.Theurkauf WE. piRNA function in germline development//StemBook. Cambridge (MA). Harvard Stem Cell Institute, 2008.

[13]Nagao A,Mituyama T,Huang H, et al. Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA, 2010, 16: 2503-2515.

[14]Ipsaro JJ,Haase AD,Knott SR, et al. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature, 2012, 491: 279-283.

[15]Mohn F, Handler D.Brennecke J. Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science, 2015, 348: 812-817.

[16]Kawamura Y,Saito K,Kin T, et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature, 2008, 453: 793-797.

[17]Sasaki T,Shiohama A,Minoshima S, et al. Identification of eight members of the Argonaute family in the human genome. Genomics, 2003, 82: 323-330.

[18]O'Donnell KA, Boeke JD. Mighty Piwis defend the germline against genome intruders. Cell, 2007, 129: 37-44.

[19]Aravin AA,Hannon GJ. Small RNA silencing pathways in germ and stem cells. Cold Spring Harb Symp Quant Biol, 2008, 73: 283-290.

[20]Ng KW,Anderson C,Marshall EA, et al. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer, 2016, 15: 5.

[21]Parker JS, Roe SM. Barford D structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature, 2005, 434: 663-666.

[22]Tan Y,Liu L,Liao M, et al. Emerging roles for PIWI proteins in cancer. Acta Biochim Biophys Sin(Shanghai), 2015, 47: 315-324.

[23]Grochola LF,Greither T,Taubert H, et al. The stem cell-associated Hiwi gene in human adenocarcinoma of the pancreas: expression and risk of tumour-related death. Br J Cancer, 2008, 99: 1083-1088.

[24]Fu A,Jacobs DI,Hoffman AE, et al. PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis, 2015, 36: 1094-1102.

[25]Lim SL,Ricciardelli C,Oehler MK, et al. Overexpression of piRNA pathway genes in epithelial ovarian cancer. PLoS One, 2014, 9: e99687.

[26]Chen C, Liu J, Xu G. Overexpression of PIWI proteins in human stage III epithelial ovarian cancer with lymph node metastasis. Cancer Biomark, 2013, 13: 315-321.

[27]Xie Y,Yang Y,Ji D, et al. Hiwi downregulation, mediated by shRNA, reduces the proliferation and migration of human hepatocellular carcinoma cells. Mol Med Rep, 2015, 11: 1455-1461.

[28]Cao J,Xu G,Lan J, et al. High expression of piwi-like RNA-mediated gene silencing 1 is associated with poor prognosis via regulating transforming growth factor-beta receptors and cyclin-dependent kinases in breast cancer. Mol Med Rep, 2016, 13: 2829-2835.

[29]Yan H,Wu QL,Sun CY, et al. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia, 2015, 29: 196-206.

[30]Zhao YM,Zhou JM,Wang LR, et al. HIWI is associated with prognosis in patients with hepatocellular carcinoma after curative resection. Cancer, 2012, 118: 2708-2717.

[31]Cox DN,Chao A,Baker J, et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev, 1998, 12: 3715-3727.

[32]Law PT,Qin H,Ching AK, et al. Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol, 2013, 58: 1165-1173.

[33]Baek JY,Morris SM,Campbell J, et al. TGF-beta inactivation and TGF-alpha overexpression cooperate in an in vivo mouse model to induce hepatocellular carcinoma that recapitulates molecular features of human liver cancer. Int J Cancer, 2010, 127: 1060-1071.

[34]Zhang K,Lu Y,Yang P, et al. HILI inhibits TGF-beta signaling by interacting with Hsp90 and promoting TbetaR degradation. PLoS One, 2012, 7: e41973.

[35]Fang H, Placencio VR, DeClerck YA. Protumorigenic activity of plasminogen activator inhibitor-1 through an antiapoptotic function. J Natl Cancer Inst, 2012, 104: 1470-1484.

[36]Ye Y,Yin DT,Chen L, et al. Identification of Piwil2-like (PL2L) proteins that promote tumorigenesis. PLoS One, 2010, 5: e13406.

[37]Fakhir FZ,Lkhider M,Badre W, et al. The -94Ins/DelATTG polymorphism in NFkappaB1 promoter modulates chronic hepatitis C and liver disease progression. Infect Genet Evol, 2016, 39: 141-146.

[38]Cui L,Lou Y,Zhang X, et al. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem, 2011, 44: 1050-1057.

[39]Cheng J,Guo JM,Xiao BX, et al. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta, 2011, 412: 1621-1625.

[40]Jiang J,Zhang H,Tang Q, et al. Expression of HIWI in human hepatocellular carcinoma. Cell Biochem Biophys, 2011, 61: 53-58.

[41]Siddiqi S. Matushansky I Piwis and piwi-interacting RNAs in the epigenetics of cancer. J Cell Biochem, 2012, 113: 373-380.

[42]Wang M,Ren D,Guo W, et al. Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol, 2014, 45: 362-372.

[43]Paulmurugan R. MicroRNAs - a new generation molecular targets for treating cellular diseases. Theranostics, 2013, 18: 927-929.

[44]Burroughs AM, Ando Y,de Hoon MJ, et al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol, 2011, 8: 158-177.

[45]Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet, 2013, 14: 447-459.

[46]Watanabe T,Cheng EC,Zhong M, et al. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res, 2015, 25: 368-380.

[47]Dufourt J,Brasset E,Desset S, et al. Polycomb group-dependent, heterochromatin protein 1-independent, chromatin structures silence retrotransposons in somatic tissues outside ovaries. DNA Res, 2011, 18: 451-461.

(本文編輯:張苗)

201508上海復(fù)旦大學(xué)附屬金山醫(yī)院中心實(shí)驗(yàn)室

許國(guó)雄,Email:gboxu@163.com

2016-04-08)

猜你喜歡
轉(zhuǎn)座子干細(xì)胞編碼
干細(xì)胞:“小細(xì)胞”造就“大健康”
毛竹Mariner-like element自主轉(zhuǎn)座子的鑒定與生物信息學(xué)分析*
基于SAR-SIFT和快速稀疏編碼的合成孔徑雷達(dá)圖像配準(zhǔn)
地熊蜂基因組中具有潛在活性的轉(zhuǎn)座子鑒定
造血干細(xì)胞移植與捐獻(xiàn)
《全元詩(shī)》未編碼疑難字考辨十五則
子帶編碼在圖像壓縮編碼中的應(yīng)用
電子制作(2019年22期)2020-01-14 03:16:24
Genome and healthcare
干細(xì)胞產(chǎn)業(yè)的春天來(lái)了?
花葉矢竹轉(zhuǎn)錄組中的轉(zhuǎn)座子表達(dá)分析
新邵县| 大厂| 南通市| 天台县| 柳林县| 勐海县| 滕州市| 芜湖市| 西林县| 图们市| 那曲县| 林西县| 开封市| 靖安县| 遂平县| 梅州市| 武隆县| 日喀则市| 盐池县| 仲巴县| 大竹县| 新郑市| 阳高县| 玉门市| 琼结县| 来凤县| 鸡西市| 红桥区| 高陵县| 石城县| 凤山市| 穆棱市| 乐业县| 洛隆县| 清河县| 武平县| 汉中市| 西盟| 石渠县| 利川市| 静安区|