劉柱 張自明
?
瘦素對骨關(guān)節(jié)炎軟骨細(xì)胞調(diào)控作用新進展
劉柱張自明
瘦素(LP)及其受體廣泛存在于全身各個器官,發(fā)揮著多種調(diào)節(jié)功能。近年來,研究發(fā)現(xiàn)LP在骨關(guān)節(jié)炎(OA)的病理生理改變中發(fā)揮重要的調(diào)節(jié)作用。OA患者血清及關(guān)節(jié)液LP水平均有明顯改變,LP在肥胖與OA軟骨細(xì)胞之間的樞紐作用正逐步被關(guān)注。研究表明,LP作為一種信號分子,對軟骨細(xì)胞的新陳代謝有多重調(diào)控作用,不僅可以誘導(dǎo)軟骨細(xì)胞凋亡,導(dǎo)致關(guān)節(jié)軟骨丟失和退化,還有一定的抗凋亡和促進軟骨成骨作用。該文就LP對OA軟骨細(xì)胞調(diào)控作用進展作一綜述。
瘦素;軟骨細(xì)胞;骨關(guān)節(jié)炎;肥胖
瘦素(LP)是一種由白色脂肪組織產(chǎn)生、共167個氨基酸組成的蛋白質(zhì),于1994年被Zhang等[1]首次發(fā)現(xiàn)并報道,其主要功能是調(diào)控食物攝取和能量產(chǎn)生。近年來,LP在骨代謝、免疫、神經(jīng)內(nèi)分泌等方面的調(diào)節(jié)作用逐漸被發(fā)現(xiàn)[2-6]。骨關(guān)節(jié)炎(OA)是老年人最常見的慢性退行性關(guān)節(jié)疾病,其主要病理改變?yōu)檐浌羌?xì)胞破壞、軟骨下骨硬化以及滑膜炎,55歲以上人群中有10%為OA患者[7]。研究[8]表明,作為關(guān)節(jié)軟骨內(nèi)唯一的支持細(xì)胞,軟骨細(xì)胞的破壞和丟失是導(dǎo)致OA發(fā)生的關(guān)鍵因素。以往研究[9-11]表明,LP在OA患者血清和受累關(guān)節(jié)液中異常增加,且與其特異性受體結(jié)合后可通過Janus激酶(JAK)/信號轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活子(STAT)信號轉(zhuǎn)導(dǎo)通路對軟骨細(xì)胞的生理功能產(chǎn)生重要的調(diào)節(jié)作用。近年來,LP對OA中軟骨細(xì)胞的調(diào)節(jié)作用不斷有新的發(fā)現(xiàn),其促進軟骨細(xì)胞凋亡和抗軟骨細(xì)胞凋亡的雙重作用機制逐漸被學(xué)者們所認(rèn)識。
LP在全身各個器官均有分布,不僅由白色脂肪組織產(chǎn)生,其他組織如胎盤、腦、心臟、血管、卵巢、關(guān)節(jié)和骨組織等均可產(chǎn)生[12-15]。LP的信號轉(zhuǎn)導(dǎo)主要通過特異性LP受體來完成。研究[16]表明,LP受體由糖尿病基因編碼,屬于Ⅰ類細(xì)胞因子受體超家族?,F(xiàn)已確定LP有6種拼接異構(gòu)體亞型,其中1種亞型為可溶性受體(缺乏跨膜段),其余5種亞型都是跨膜受體,擁有相同的細(xì)胞外結(jié)構(gòu),但根據(jù)細(xì)胞質(zhì)長度可分為長亞型受體(1個)、短亞型受體(4個)。然而,只有長亞型LP受體具有完整的細(xì)胞內(nèi)結(jié)構(gòu),可通過其特異的細(xì)胞因子受體進行信號轉(zhuǎn)導(dǎo),將LP信號傳遞到細(xì)胞核中。LP在血清中可以游離形式與血漿蛋白結(jié)合,也可以與可溶性LP受體亞型結(jié)合的形式存在[17-18]。
LP受體由302個氨基酸組成,可通過JAK/ STAT信號轉(zhuǎn)導(dǎo)通路來進行信號轉(zhuǎn)導(dǎo)[19]。研究[20-21]表明,LP與其受體結(jié)合后可聚集JAK2等激酶進行信號轉(zhuǎn)導(dǎo)。此外,LP受體還可通過其他替代途徑如細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)1/2、p38促分裂素原活化蛋白激酶(MAPK)、c-Jun氨基末端激酶(JNK)、磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)、核因子(NF)-κB、RhoA/Rho相關(guān)卷曲螺旋形成蛋白激酶(ROCK)等信號轉(zhuǎn)導(dǎo)通路進行信號轉(zhuǎn)導(dǎo)[22-25]。
2.1關(guān)節(jié)液和血清LP水平
多研究[26-28]表明,LP在受累關(guān)節(jié)液中的水平與OA密切相關(guān)。Fowler-Brown等[26]研究發(fā)現(xiàn),OA患者關(guān)節(jié)液LP水平與其體重指數(shù)(BMI)呈正相關(guān)。不同關(guān)節(jié)的OA與LP的相關(guān)性不同,以膝關(guān)節(jié)OA最為顯著。Bas等[27]研究發(fā)現(xiàn),OA膝關(guān)節(jié)的關(guān)節(jié)液中LP水平高于OA髖關(guān)節(jié)。Gandhi等[28]研究發(fā)現(xiàn),LP與膝關(guān)節(jié)OA相關(guān)性高于肩關(guān)節(jié)OA。
LP不僅在關(guān)節(jié)液中分布,在血清中也有分布,LP血清水平與OA有關(guān)。de Boer 等[29]研究認(rèn)為,血清中包括LP在內(nèi)的脂肪因子含量增加與OA發(fā)生密切相關(guān),且認(rèn)為血清中脂肪因子與局部滑膜組織炎癥發(fā)生有關(guān)。Kim等[30]研究報道,血清LP水平與膝關(guān)節(jié)OA患者的超聲檢查結(jié)果及膝關(guān)節(jié)功能狀況密切相關(guān)。Massengale等[31]研究發(fā)現(xiàn),血清LP水平與慢性手OA的疼痛程度有關(guān)。以上研究表明,血清LP水平不僅與OA發(fā)生有關(guān),還能對OA受累關(guān)節(jié)的功能狀態(tài)進行評價。
此外,OA患者血清和關(guān)節(jié)液中LP水平不同。有研究[32-33]認(rèn)為,OA關(guān)節(jié)液LP水平等于甚至超過血清LP水平。此外,OA不同階段關(guān)節(jié)液和血清LP水平不同,在膝關(guān)節(jié)OA發(fā)生期關(guān)節(jié)液LP、血清脂聯(lián)素、可溶性LP受體和游離LP水平并無明顯改變,但在OA進展期關(guān)節(jié)液LP與血清LP的比值明顯低于早期階段[32]。
2.2LP或為肥胖導(dǎo)致OA的前提
長久以來,肥胖所產(chǎn)生的生物機械作用被認(rèn)為是OA發(fā)生的重要危險因素之一,肥胖通過增加關(guān)節(jié)面壓力而促進OA發(fā)生[34-35]。但也有學(xué)者[36-37]研究發(fā)現(xiàn),肥胖患者非負(fù)重關(guān)節(jié)如手關(guān)節(jié)也會發(fā)生OA。有研究[27,38]表明,白色脂肪組織的代謝產(chǎn)物與肥胖患者中較高的OA發(fā)生率密切相關(guān)。也有研究[39]認(rèn)為,在分析LP對OA的作用時,需要考慮患者身體特征(如年齡、性別、BMI等)的作用。LP作為脂肪因子的一員,與肥胖的關(guān)系非常密切。研究[37]表明,LP或為肥胖導(dǎo)致OA的前提。Griffin等[40]研究發(fā)現(xiàn),肥胖并不一定是關(guān)節(jié)退變的原因,雖然缺乏LP的極度肥胖可誘導(dǎo)軟骨下骨形態(tài)改變,但并不增加膝關(guān)節(jié)OA發(fā)生率,肥胖在無LP信號作用時不足以誘發(fā)全身性炎癥和膝關(guān)節(jié)OA。LP對OA患者的體重也有一定影響。Nicholson等[41]分析20例膝關(guān)節(jié)OA肥胖患者的性別、BMI及LP、內(nèi)源性大麻素花生四稀乙醇胺(AEA)、2-花生四烯酸甘油酯(AG)水平,發(fā)現(xiàn)LP可通過調(diào)節(jié)下丘腦內(nèi)的內(nèi)源性大麻水平控制攝食行為,進而影響患者的肥胖程度。Pallu等[42]研究認(rèn)為,不同BMI的OA患者軟骨細(xì)胞對LP的反應(yīng)不同。綜上所述,肥胖在LP與OA關(guān)系中具有重要作用。研究[43]表明,體育鍛煉(增加力量的訓(xùn)練模式)對OA中軟骨細(xì)胞結(jié)構(gòu)改變具有保護作用,且能緩解相關(guān)臨床癥狀,而這一作用的實現(xiàn)可能是因為體育鍛煉可降低LP水平。
以上研究皆表明,LP與肥胖者OA的發(fā)生密切相關(guān)。此外,LP不僅對肥胖者OA的發(fā)生有影響,還會反過來影響OA患者的體重。因此,LP是連接肥胖與OA的紐帶,在肥胖OA發(fā)生發(fā)展中具有重要作用。
2.3性別對LP與OA關(guān)系的影響
LP與OA的關(guān)系也受性別影響。Iwamoto等[44]研究發(fā)現(xiàn),日本女性絕經(jīng)后膝關(guān)節(jié)OA患者血清LP水平與體重呈正比。Karvonen-Gutierrez等[45]研究發(fā)現(xiàn),中年婦女血清LP水平與軟骨缺損和滑膜炎有關(guān),且對OA導(dǎo)致的關(guān)節(jié)退變有重要作用。有研究[46]發(fā)現(xiàn),女性膝關(guān)節(jié)和髖關(guān)節(jié)OA患者血清LP水平與疼痛程度呈正相關(guān),男性則不相關(guān)。Hooshmand等[47]也發(fā)現(xiàn),僅女性O(shè)A患者總關(guān)節(jié)液LP水平增高,男性則無此現(xiàn)象。以上研究表明,女性O(shè)A患者LP與OA關(guān)系更加密切。
綜上所述,無論是血清LP水平還是關(guān)節(jié)液LP水平,均與OA發(fā)生密切相關(guān)。LP或為肥胖導(dǎo)致OA的前提。此外,LP與OA的相關(guān)性還受性別影響,肥胖女性O(shè)A發(fā)生與LP相關(guān)性更高。
軟骨細(xì)胞為關(guān)節(jié)軟骨內(nèi)唯一的支持細(xì)胞,其生理功能受LP廣泛調(diào)節(jié)。但LP對軟骨細(xì)胞是發(fā)揮破壞作用還是保護作用,目前仍有爭議。
3.1促凋亡作用
3.1.1宏觀調(diào)控
LP促軟骨細(xì)胞凋亡的宏觀調(diào)控表現(xiàn)為軟骨細(xì)胞數(shù)目及增殖的減少。Martel-Pelletier等[48]對138例膝關(guān)節(jié)OA患者進行研究,發(fā)現(xiàn)LP可增加全膝關(guān)節(jié)和股骨內(nèi)側(cè)軟骨體積的丟失,且LP水平與膝關(guān)節(jié)置換率呈正相關(guān)。Stannus等[49]研究發(fā)現(xiàn),老年人群血清LP水平與關(guān)節(jié)軟骨變薄密切相關(guān)。Zhao等[50]研究發(fā)現(xiàn),OA患者LP受體高表達(dá)與軟骨退變、組織衰老明顯相關(guān),LP介導(dǎo)的軟骨祖細(xì)胞衰老可加快OA進展。
3.1.2微觀調(diào)控
LP可通過對一氧化氮(NO)、基質(zhì)金屬蛋白酶(MMP)等促炎因子的調(diào)控促進軟骨細(xì)胞凋亡。Otero等[51]研究發(fā)現(xiàn),LP通過JAK2途徑與干擾素(IFN)-γ協(xié)同作用,促進軟骨細(xì)胞NO及一氧化氮合酶(iNOS)產(chǎn)生。此外,LP可通過直接調(diào)控MMP-1、MMP-3、MMP-9和MMP-13的產(chǎn)生促進軟骨細(xì)胞凋亡[30,51-53]。Yaykasli等[25]研究報道,LP通過絲裂原活化蛋白激酶(MAPK)和NF-κB信號轉(zhuǎn)導(dǎo)通路上調(diào)ADAMTS-4、ADAMTS-5和ADAMTS-9基因表達(dá),從而促進軟骨細(xì)胞凋亡。Huang 等[54]研究認(rèn)為,在OA大鼠模型中,LP一方面通過賴氨酸氧化酶樣蛋白(LOXL)3/雷帕霉素靶蛋白(mTORC)1信號轉(zhuǎn)導(dǎo)通路抑制軟骨細(xì)胞自噬,另一方面通過LOXL3途經(jīng)直接促進軟骨細(xì)胞凋亡。Zhang等[21]研究報道,LP可通過JAK2/STAT3信號轉(zhuǎn)導(dǎo)通路誘導(dǎo)軟骨細(xì)胞凋亡。以上研究表明,LP可通過多種途徑發(fā)揮對軟骨細(xì)胞的破壞作用。
3.2抗凋亡作用
3.2.1宏觀調(diào)控
研究[23,55-56]認(rèn)為,LP對OA中軟骨細(xì)胞有抗凋亡和促進軟骨成骨的作用。Lee等[23]研究發(fā)現(xiàn),LP可通過JNK途徑抑制腫瘤壞死因子(TNF)-α誘導(dǎo)的軟骨細(xì)胞凋亡。劉柱等[55]也發(fā)現(xiàn),LP對TNF-α誘導(dǎo)的軟骨細(xì)胞凋亡具有保護作用。Zheng等[56]分析了影像學(xué)陽性的OA患者血清LP、脂聯(lián)素和抵抗素水平與膝關(guān)節(jié)軟骨體積的關(guān)系,結(jié)果發(fā)現(xiàn)只有血清LP水平與膝關(guān)節(jié)軟骨體積增加有關(guān),表明血清LP有助于促進關(guān)節(jié)軟骨增殖。
3.2.2微觀調(diào)控
Mutabaruka等[57]研究認(rèn)為,OA中異常的成骨現(xiàn)象與LP有關(guān),LP可促進細(xì)胞增殖,并促進ERK1/2和p38 MAPK信號轉(zhuǎn)導(dǎo)。有研究[58]發(fā)現(xiàn),在低氧環(huán)境下通過低氧誘導(dǎo)因子(HIF)-2(尤其是在維生素D3的作用下)誘導(dǎo)產(chǎn)生的LP與OA軟骨下成骨過程有關(guān)。Wang等[59]研究認(rèn)為,OA中LP下游因子雙特異性蛋白磷酸酶(DUSP)19可通過JNK途徑抑制軟骨細(xì)胞凋亡。Conde等[60]研究發(fā)現(xiàn),在人和鼠ATDC5軟骨細(xì)胞中,LP可通過JAK2、PI3K和腺苷酸活化蛋白激酶(AMPK)途徑上調(diào)血管細(xì)胞黏附因子(VCAM)-1的表達(dá),從而延緩軟骨降解。Kang等[61]研究報道,在肥胖大鼠的軟骨細(xì)胞中,血清LP水平增加可促進VCAM-1產(chǎn)生。Chang等[20]研究發(fā)現(xiàn),人軟骨細(xì)胞中LP可與骨形態(tài)發(fā)生蛋白(BMP)-2協(xié)同作用增加Ⅱ型膠原蛋白生成,對OA發(fā)生發(fā)展有一定調(diào)控作用。Liang等[62]研究報道,LP可通過RhoA/ROCK/LIMK/Cofilin信號轉(zhuǎn)導(dǎo)通路介導(dǎo)軟骨細(xì)胞骨架重塑。以上研究表明,在OA肥胖患者中,LP不僅對軟骨細(xì)胞發(fā)揮抗凋亡作用,還有促進軟骨成骨的功能。
盡管肥胖等力學(xué)因素在OA關(guān)節(jié)軟骨破壞中具有重要作用,但非力學(xué)因素如LP也對OA病理生理的發(fā)生和發(fā)展有重要作用。LP在肥胖與OA軟骨細(xì)胞之間的樞紐作用正逐漸被學(xué)者們關(guān)注。目前的研究表明,LP及其受體在OA發(fā)病機制中發(fā)揮的作用主要通過對關(guān)節(jié)軟骨細(xì)胞的調(diào)控來實現(xiàn)。LP對OA中軟骨細(xì)胞影響的作用機制尚存較多爭議。在OA中,LP作為一種信號分子,對軟骨細(xì)胞的新陳代謝有多重調(diào)控作用,不僅可誘導(dǎo)軟骨細(xì)胞凋亡,導(dǎo)致關(guān)節(jié)軟骨丟失和退化,還具有一定的抗凋亡和促進軟骨成骨作用。以上研究均表明,LP在OA病理生理中有著不可或缺的作用。LP對軟骨細(xì)胞新陳代謝的作用研究可為未來治療OA靶向藥物的研究提供新方向。然而,LP在OA中對軟骨細(xì)胞發(fā)揮具體調(diào)控作用機制有待進一步研究。
[1]Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue[J]. Nature, 1994, 372(6505):425-432.
[2]Hasnain S. Leptin promoter variant G2548A is associated with serum leptin and HDL-C levels in a case control observational study in association with obesity in a Pakistani cohort[J]. J Biosci, 2016, 41(2):251-255.
[3]Schlogl H, Muller K, Horstmann A, et al. Leptin substitution in patients with lipodystrophy: neural correlates for long-term success in the normalization of eating behavior[J]. Diabetes, 2016, 65(8):2179-2186.
[4]Naylor C, Petri WA Jr. Leptin regulation of immune responses[J]. Trends Mol Med, 2016, 22(2):88-98.
[5]Scotece M, Mobasheri A. Leptin in osteoarthritis: focus on articular cartilage and chondrocytes[J]. Life Sci, 2015, 140:75-78.
[6]Vesela PK, Kaniok R, Bayer M. Markers of bone metabolism, serum leptin levels and bone mineral density in preterm babies[J]. J Pediatr Endocrinol Metab, 2016, 29(1):27-32.
[7]Jordan KM, Arden NK, Doherty M, et al. EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT)[J]. Ann Rheum Dis, 2003, 62(12):1145-1155.
[8]Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis[J]. Int J Mol Sci, 2015, 16(11):26035-26054.
[9]Ben-Eliezer M, Phillip M, Gat-Yablonski G. Leptin regulates chondrogenic differentiation in ATDC5 cell-line through JAK/STAT and MAPK pathways[J]. Endocrine, 2007 32(2):235-244.
[10]Tong KM, Shieh DC, Chen CP, et al. Leptin induces IL-8 expression via leptin receptor, IRS-1, PI3K, Akt cascade and promotion of NF-kappaB/p300 binding in human synovial fibroblasts[J]. Cell Signal, 2008, 20(8):1478-1488.
[11]Ohba S, Lanigan TM, Roessler BJ. Leptin receptor JAK2/STAT3 signaling modulates expression of Frizzled receptors in articular chondrocytes[J]. Osteoarthritis Cartilage, 2010,18(12):1620-1629.
[12]Ben-Zvi D, Savion N, Kolodgie F, et al. Local application of leptin antagonist attenuates angiotensin Ⅱ-induced ascending aortic aneurysm and cardiac remodeling[J]. J Am Heart Assoc, 2016, 5(5):e003474.
[13]Sominsky L, Ziko I, Soch A, et al. Neonatal overfeeding induces early decline of the ovarian reserve: implications for the role of leptin[J]. Mol Cell Endocrinol, 2016, 431:24-35.
[14]Ciriello J, Moreau JM, McCoy A, et al. Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat[J]. Neurosci Lett, 2016, 626:112-118.
[15]Vaitkeviciute D, Latt E, Maestu J, et al. Adipocytokines and bone metabolism markers in relation to bone mineral values in early pubertal boys with different physical activity[J]. J Pediatr Endocrinol Metab, 2016, 29(6):723-729.
[16]Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R[J]. Cell, 1995, 83(7):1263-1271.
[17]Schaab M, Kratzsch J. The soluble leptin receptor[J]. Best Pract Res Clin Endocrinol Metab, 2015, 29(5):661-670.
[18]Sinha MK, Sturis J, Ohannesian J, et al. Ultradian oscillations of leptin secretion in humans[J]. Biochem Biophys Res Commun, 1996, 228(3):733-738.
[19]Baumann H, Morella KK, White DW, et al. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors[J]. Proc Natl Acad Sci USA, 1996, 93(16):8374-8378.
[20]Chang SF, Hsieh RZ, Huang KC, et al. Upregulation of bone morphogenetic protein-2 synthesis and consequent collagen Ⅱexpression in leptin-stimulated human chondro-cytes[J]. PLoS One, 2015, 10(12):e0144252.
[21]Zhang ZM, Shen C, Li H, et al. Leptin induces the apoptosis of chondrocytes in an in vitro model of osteoarthritis via the JAK2-STAT3 signaling pathway[J]. Mol Med Rep, 2016, 13(4):3684-3690.
[22]Wang SJ, Li XF, Jiang LS, et al. Leptin regulates estrogen receptor gene expression in ATDC5 cells through the extracellular signal regulated kinase signaling pathway[J]. J Cell Biochem, 2012, 113(4):1323-1332.
[23]Lee SW, Rho JH, Lee SY, et al. Leptin protects rat articular chondrocytes from cytotoxicity induced by TNF-α in the presence of cyclohexamide[J]. Osteoarthritis Cartilage, 2015, 23(12):2269-2278.
[24]El-Zein O, Usta J, El-Moussawi L, et al. Leptin inhibits the Na(+)/K(+) ATPase in Caco-2 cells via PKC and p38MAPK[J]. Cell Signal, 2015, 27(3):416-423.
[25]Yaykasli KO, Hatipoglu OF, Yaykasli E, et al. Leptin induces ADAMTS-4, ADAMTS-5, and ADAMTS-9 genes expression by mitogen-activated protein kinases and NF-κB signaling pathways in human chondrocytes[J]. Cell Biol Int, 2015, 39(1):104-112.
[26]Fowler-Brown A, Kim DH, Shi L, et al. The mediating effect of leptin on the relationship between body weight and knee osteoarthritis in older adults[J]. Arthritis Rheumatol, 2015, 67(1):169-175.
[27]Bas S, Finckh A, Puskas GJ, et al. Adipokines correlate with pain in lower limb osteoarthritis: different associations in hip and knee[J]. Int Orthop, 2014, 38(12):2577-2583.
[28]Gandhi R, Kapoor M, Mahomed NN, et al. A comparison of obesity related adipokine concentrations in knee and shoulder osteoarthritis patients[J]. Obes Res Clin Pract, 2015, 9(4):420-423.
[29]de Boer TN, van Spil WE, Huisman AM, et al. Serum adipokines in osteoarthritis;comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage[J]. Osteoarthritis Cartilage, 2012 , 20(8):846-853.
[30]Kim HR, Lee JH, Kim KW, et al. The relationship between synovial fluid VEGF and serum leptin with ultrasonographic findings in knee osteoarthritis[J]. Int J Rheum Dis, 2016, 19(3):233-240.
[31]Massengale M, Lu B, Pan JJ, et al. Adipokine hormones and hand osteoarthritis: radiographic severity and pain[J]. PLoS One, 2012, 7(10):e47860.
[32]Staikos C, Ververidis A, Drosos G, et al. The association of adipokine levels in plasma and synovial fluid with the severity of knee osteoarthritis[J]. Rheumatology (Oxford), 2013, 52(6):1077-1083.
[33]Presle N, Pottie P, Dumond H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production[J]. Osteoarthritis Cartilage, 2006, 14(7):690-695.
[34]Kulkarni K, Karssiens T, Kumar V, et al. Obesity and osteoarthritis[J]. Maturitas, 2016, 89:22-28.
[35]Flego A, Dowsey MM, Choong PF, et al. Addressing obesity in the management of knee and hip osteoarthritis: weighing in from an economic perspective[J]. BMC Musculoskelet Disord, 2016, 17(1):233.
[36]Yusuf E, Nelissen RG, Ioan-Facsinay A, et al. Association between weight or body mass index and hand osteoarthritis: a systematic review[J]. Ann Rheum Dis, 2010, 69(4):761-765.
[37]Reyes C, Leyland KM, Peat G, et al. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study[J]. Arthritis Rheumatol, 2016, 68(8):1869-1875.
[38]Santangelo KS, Radakovich LB, Fouts J, et al. Pathophysiology of obesity on knee joint homeostasis: contributions of the infrapatellar fat pad[J]. Horm Mol Biol Clin Investig, 2016, 26(2):97-108.
[39]Tian G, Liang JN, Pan HF, et al. Increased leptin levels in patients with rheumatoid arthritis: a meta-analysis[J]. Ir J Med Sci, 2014, 183(4):659-666.
[40]Griffin TM, Huebner JL, Kraus VB, et al. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis[J]. Arthritis Rheum, 2009, 60(10):2935-2944.
[41]Nicholson J, Azim S, Rebecchi MJ, et al. Leptin levels are negatively correlated with 2-arachidonoylglycerol in the cerebrospinal fluid of patients with osteoarthritis[J]. PLoS One, 2015, 10(4):e0123132.
[42]Pallu S, Francin PJ, Guillaume C, et al. Obesity affects the chondrocyte responsiveness to leptin in patients with osteoarthritis[J]. Arthritis Res Ther, 2010, 12(3):R112.
[43]Durmus D, Alayli G, Aliyazicioglu Y, et al. Effects of glucosamine sulfate and exercise therapy on serum leptin levels in patients with knee osteoarthritis: preliminary results of randomized controlled clinical trial[J]. Rheumatol Int, 2013, 33(3):593-599.
[44]Iwamoto J, Takeda T, Sato Y, et al. Serum leptin concentration positively correlates with body weight and total fat mass in postmenopausal Japanese women with osteoarthritis of the knee[J]. Arthritis, 2011, [Epub ahead of print].
[45]Karvonen-Gutierrez CA, Harlow SD, Mancuso P, et al. Association of leptin levels with radiographic knee osteoarthritis among a cohort of midlife women[J]. Arthritis Care Res (Hoboken), 2013, 65(6):936-944.
[46]Perruccio AV, Mahomed NN, Chandran V, et al. Plasma adipokine levels and their association with overall burden of painful joints among individuals with hip and knee osteoarthritis[J]. J Rheumatol, 2014, 41(2):334-337.
[47]Hooshmand S, Juma S, Khalil DA, et al. Women with osteoarthritis have elevated synovial fluid levels of insulin-like growth factor (IGF)-1 and IGF-binding protein-3[J]. J Immunoassay Immunochem, 2015, 36(3):284-294.
[48]Martel-Pelletier J, Raynauld JP, Dorais M, et al. The levels of the adipokines adipsin and leptin are associated with knee osteoarthritis progression as assessed by MRI and incidence of total knee replacement in symptomatic osteoarthritis patients: a post hoc analysis[J]. Rheumatology (Oxford), 2016, 55(4):680-688.
[49]Stannus OP, Cao Y, Antony B, et al. Cross-sectional and longitudinal associations between circulating leptin and knee cartilage thickness in older adults[J]. Ann Rheum Dis, 2015, 74(1):82-88.
[50]Zhao X, Dong Y, Zhang J, et al. Leptin changes differentiation fate and induces senescence in chondrogenic progenitor cells[J]. Cell Death Dis, 2016, 7(4):e2188.
[51]Otero M, Gomez Reino JJ, Gualillo O. Synergistic induction of nitric oxide synthase typeⅡ: in vitro effect of leptin and interferon-gamma in human chondrocytes and ATDC5 chondrogenic cells[J]. Arthritis Rheum, 2003, 48(2):404-409.
[52]Hui W, Litherland GJ, Elias MS, et al. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases[J]. Ann Rheum Dis, 2012, 71(3):455-462.
[53]Koskinen A, Vuolteenaho K, Nieminen R, et al. Leptin enhances MMP-1, MMP-3 and MMP-13 production in human osteoarthritic cartilage and correlates with MMP-1 and MMP-3 in synovial fluid from OA patients[J]. Clin Exp Rheumatol, 2011, 29(1):57-64.
[54]Huang ZM, Du SH, Huang LG, et al. Leptin promotes apoptosis and inhibits autophagy of chondrocytes through upregulating lysyl oxidase-like 3 during osteoarthritis pathogenesis[J]. Osteoarthritis Cartilage, 2016, 24(7):1246-1253.
[55]劉柱,范清,陳珽,等. 瘦素在腫瘤壞死因子-α介導(dǎo)的軟骨細(xì)胞死亡中的效應(yīng)[J]. 臨床和實驗醫(yī)學(xué)雜志, 2016, 15(7):624-628.
[56]Zheng S, Xu J, Xu S, et al. Association between circulating adipokines, radiographic changes, and knee cartilage volume in patients with knee osteoarthritis[J]. Scand J Rheumatol, 2016, 45(3):224-229.
[57]Mutabaruka MS, Aoulad-Aissa M, Delalandre A, et al. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression[J]. Arthritis Res Ther, 2010, 12(1):R20.
[58]Bouvard B, Abed E, Yelehe-Okouma M, et al. Hypoxia and vitamin D differently contribute to leptin and dickkopf-related protein 2 production in human osteoarthritic subchondral bone osteoblasts[J]. Arthritis Res Ther, 2014, 16(5):459.
[59]Wang Y, Xu Z, Wang J, et al. DUSP19, a downstream effector of leptin, inhibits chondrocyte apoptosis via dephosphorylating JNK during osteoarthritis pathogenesis[J]. Mol Biosyst, 2016, 12(3):721-728.
[60]Conde J, Scotece M, Lopez V, et al. Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes[J]. PLoS One, 2012, 7(12):e52533.
[61]Kang X, Xie QY, Zhou JS, et al. C/EBP-α, involvement of a novel transcription factor in leptin-induced VCAM-1 production in mouse chondrocytes[J]. FEBS Lett, 2014, 588(7):1122-1127.
[62]Liang J, Feng J, Wu WK, et al. Leptin-mediated cytoskeletal remodeling in chondrocytes occurs via the RhoA/ROCK pathway[J]. J Orthop Res, 2011, 29(3):369-374.
(收稿:2016-06-06;修回:2016-07-03)
(本文編輯:李昱霏)
200092,上海交通大學(xué)醫(yī)學(xué)院附屬新華醫(yī)院小兒骨科
張自明E-mail: zmzhang23@163.com
10.3969/j.issn.1673-7083.2016.05.011