鄭 熙 綜述,朱鵬立,余惠珍 審校
(福建醫(yī)科大學(xué)省立臨床醫(yī)學(xué)院 福建省立醫(yī)院 福建省臨床老年病研究所 福建省立醫(yī)院金山分院 內(nèi)科,福建 福州 350001)
?
組織基質(zhì)金屬蛋白酶系統(tǒng)與心室重塑
鄭熙 綜述,朱鵬立,余惠珍 審校
(福建醫(yī)科大學(xué)省立臨床醫(yī)學(xué)院 福建省立醫(yī)院 福建省臨床老年病研究所 福建省立醫(yī)院金山分院 內(nèi)科,福建 福州 350001)
急性心肌梗死后的左室重塑是導(dǎo)致心力衰竭重要的病理生理過程,也是導(dǎo)致心臟性死亡的重要危險因素?;|(zhì)金屬蛋白酶(MMPs)與基質(zhì)金屬蛋白酶組織抑制因子(TIMPs)是維持細(xì)胞外基質(zhì)(ECM)平衡的調(diào)控物質(zhì)。心梗后的左室重塑與組織基質(zhì)金屬蛋白酶系統(tǒng)失衡導(dǎo)致的ECM降解有密切關(guān)聯(lián)。本文對MMPs/TIMPs系統(tǒng)在心梗后心室重塑中的調(diào)節(jié)機制及其作用作一綜述。
基質(zhì)金屬蛋白酶;基質(zhì)金屬蛋白酶組織抑制因子;信號通路;心肌梗死;心室重塑
[引用本文]鄭熙,朱鵬立,余惠珍.組織基質(zhì)金屬蛋白酶系統(tǒng)與心室重塑[J].大連醫(yī)科大學(xué)學(xué)報,2016,38(4):407-411.
急性心肌梗死(acute myocardial infarction,AMI)是冠狀動脈急性、持續(xù)性缺血缺氧所引起的心肌壞死,它是目前為止對人類健康危害最大的心血管疾病之一。急性心肌梗死后將會逐步出現(xiàn)左室重塑、收縮功能障礙等,心臟的這些病理變化不僅是梗死的區(qū)域造成的,而且梗死區(qū)域周圍存活的心肌也參與其中[1],如果不及時進(jìn)行合理的治療,最終將導(dǎo)致心力衰竭的發(fā)生與發(fā)展。左室重塑包括左室外形和心肌結(jié)構(gòu)的變化[2]。左室重塑可發(fā)生在心肌實質(zhì)中,也可發(fā)生在心肌間質(zhì)中,但以后者更為重要。心肌間質(zhì)重塑即心肌細(xì)胞外基質(zhì)(extracellular matrix, ECM)含量和組成的變化,也是左室重塑研究的主要對象。ECM的重塑其實質(zhì)是缺氧/復(fù)氧應(yīng)激的一個動態(tài)調(diào)節(jié)過程[3]。在高血壓與心衰患者中,心肌膠原支架的扭轉(zhuǎn)與丟失表明了保持ECM的完整性對防止心肌變形是具有重要的作用[4]。人體內(nèi)主要通過基質(zhì)金屬蛋白酶組織抑制因子(tissue inhibitor of matrix metalloproteinases, TIMPs)與基質(zhì)金屬蛋白酶(matrix metalloproteinases, MMPs)特異性結(jié)合從而抑制ECM的降解??傊?,只有MMPs/TIMPs系統(tǒng)的表達(dá)和活性維持動態(tài)平衡才能保持正常的心臟膠原網(wǎng)絡(luò),從而發(fā)揮心臟的正常功能[5]。
MMPs是一大類的內(nèi)肽酶家族,主要通過分解細(xì)胞外基質(zhì)的內(nèi)部肽鍵來降解ECM。MMPs主要根據(jù)其降解的底物及結(jié)構(gòu)可分成6大類[6]:(1)膠原酶類(collagenases):有 MMP-1,8,13,18;(2) 明膠酶類(gelatinases):包含MMP-2和MMP-9;(3)基質(zhì)分解素(stromelysins):有MMP-3與MMP-10;(4)基質(zhì)溶解素 (matrilysins):包含MMP-7及MMP-26;(5)膜型基質(zhì)金屬蛋白酶 (membrane-type,MT-MMPs):分為跨膜型或者GPI錨定型;(6)其他種類的MMPs。
TIMPs是一類組成結(jié)構(gòu)中含有1個或1個以上金屬離子的蛋白酶,能夠特異性抑制MMPs活性。已知的TIMPs有4種[7],分別是TIMP-1,TIMP-2,TIMP-3,和TIMP-4。其中TIMP-1,2,4是水溶性的,而TIMP-3是非水溶性的。TIMPs主要由成纖維細(xì)胞、上皮細(xì)胞、內(nèi)皮細(xì)胞等產(chǎn)生,它們廣泛分布于組織和體液中,屬于低分子量分泌型糖蛋白。TIMPs在結(jié)構(gòu)上均有12個半胱氨酸殘基,通過二硫鍵結(jié)合起來形成密集的三級結(jié)構(gòu)。過去的研究已表明每種TIMP的 N端序列與C端序列不管是在抑制MMP或非抑制MMP的作用上都有獨特的功能[8]。TIMPs主要通過以下路徑抑制MMPs[9]:(1)TIMPs可阻止MMPs酶原的活化;(2)抑制已活化的MMPs。同時,TIMPs調(diào)控著許多生物學(xué)活性,除了上述提到的抑制MMPs活性外,還負(fù)責(zé)激活及調(diào)控親和基質(zhì)金屬蛋白酶、調(diào)控細(xì)胞增殖,血管生成和誘導(dǎo)凋亡[10]。
目前已有實驗表明MMPs/TIMPs系統(tǒng)和ECM的重塑有著不可分割的聯(lián)系。Arpino等[11]觀察到在大鼠的肝臟損傷后TIMP-1有限制炎癥的作用及抑制細(xì)胞外基質(zhì)積聚和纖維化;TIMP-2通過調(diào)控MMP-2的活性來間接控制ECM的含量;TIMP-3通過控制炎癥反應(yīng)、調(diào)節(jié)TGF-β1的激活和細(xì)胞表型等通路來控制纖維化。Takawale A等[12]發(fā)現(xiàn)TIMP-4能夠通過抑制MMP-14的活性和炎癥反應(yīng)來調(diào)節(jié)細(xì)胞外基質(zhì)沉積。Zhang Z等[13]的研究結(jié)果表明在血管內(nèi)皮細(xì)胞中脂聯(lián)素通過脂聯(lián)素受體1和增強AMPK信號通路擾亂了瘦素誘導(dǎo)的血管細(xì)胞外基質(zhì)重塑,反而在平滑肌細(xì)胞中促進(jìn)了SOCS3表達(dá)來抑制瘦素誘導(dǎo)的STAT3磷酸化。然而,Kiczak Liliana等[14]發(fā)現(xiàn)健康的豬與心衰的豬對比,在左室心肌細(xì)胞中MMP-2、MMP-9、TIMP-1的mRNA表達(dá)無差異。
心肌細(xì)胞的功能乃至整個心臟的功能都與心肌間質(zhì)內(nèi)的膠原網(wǎng)絡(luò)有著密切的聯(lián)系。膠原代謝的動態(tài)平衡對于維持器官的結(jié)構(gòu)與功能具有舉足輕重的作用,而ECM是膠原代謝中不可或缺的一員。Spinale FG[15]發(fā)現(xiàn)ECM結(jié)構(gòu)的變化將會導(dǎo)致心梗后左室重塑的面積擴大。Konstam MA等[16]認(rèn)為ECM的持續(xù)性降解將會推動左室重塑病理生理機制進(jìn)展為心衰。Cerisano G等[17]發(fā)現(xiàn)對于ST段抬高型心肌梗死的患者而言,血清中TIMP-2的水平與心梗的面積、嚴(yán)重程度以及左室擴張程度呈負(fù)相關(guān)。正常心肌細(xì)胞外基質(zhì)合成與分解的代謝離不開MMPs與TIMPs相互作用形成動態(tài)平衡。所以,各種原因引起的MMPs/TIMPs系統(tǒng)表達(dá)平衡失調(diào)都將導(dǎo)致心肌細(xì)胞外基質(zhì)代謝水平的紊亂[18]。同時,有研究發(fā)現(xiàn)缺乏C端或者N端的TIMPs與心梗后的心室重塑有很強的關(guān)聯(lián)[2]。一個功能完整、表達(dá)完善的MMPs/TIMPs系統(tǒng)對于維持心臟中ECM的正常形態(tài)起著重要作用。總之,心肌膠原網(wǎng)絡(luò)在心衰的發(fā)生發(fā)展進(jìn)程中具有重要意義。
為了進(jìn)一步了解MMPs/TIMPs系統(tǒng)在心梗后心室重構(gòu)中如何變化、發(fā)揮作用,必須深入了解該系統(tǒng)的機制、信號通路以及如何調(diào)控等諸多因素。
5.1TIMPs在心室重塑中可能存在的信號通路
Jung KK等[19]研究提出TIMP-1的一個重要受體即CD63。目前發(fā)現(xiàn)在各種不同類型的細(xì)胞中,TIMP-1作用于CD63受體介導(dǎo)的細(xì)胞促生長和抗凋亡作用可能均有涉及PI3K-Akt信號途徑,也是目前認(rèn)識最多的一條通路。Sarbassov DD等[20-21]認(rèn)為TIMP-1作用于CD63后激活PI3K-Akt路徑,隨后活化的Akt作用于下游的蛋白,從而對細(xì)胞增殖、代謝、生存、凋亡起到調(diào)節(jié)作用。但是近期有研究表明,PI3K信號通路可以獨立使Akt磷酸化,通過激活PDK1,從而激活其它蛋白如PKC[22]。此外,TIMPs還可通過其他的一些通路發(fā)揮作用。Tsoutsman T等[23]發(fā)現(xiàn)在心肌細(xì)胞中CCN2是一個強大的ECM調(diào)節(jié)器,它可以調(diào)節(jié)TIMP-1基因和細(xì)胞外基質(zhì)蛋白編碼基因的表達(dá)。Li SH等[24]的研究提供了miR-17→TIMP1/2→MMP9通路對于心臟調(diào)節(jié)起著關(guān)鍵的控制平衡作用的證據(jù)。這種平衡狀態(tài)在病理情況下會被破壞,如心臟缺血損傷導(dǎo)致異常的心臟基質(zhì)重塑,最終導(dǎo)致心臟擴張和心臟故障。
5.2MMPs/TIMPs系統(tǒng)的負(fù)性調(diào)節(jié)
TIMPs抑制心室重塑的作用會受到許多阻滯劑以及負(fù)性通路的影響,為了更好的改善心梗后的心室重構(gòu),理應(yīng)盡可能避免這些方面的影響。Lu YC等[25]研究發(fā)現(xiàn)miR-196(MicroRNA-196)→NME4(non-metastatic cells 4)→p-JNK→TIMP-1→MMP-1/9這條負(fù)性通路,并且指出不管是miR-196a/196b都會作用于NME4并使其下調(diào),然后NME4作用于p-JNK(對p-Erk/p-p38幾乎無影響)使其上升,從而抑制了TIMP-1,使得 MMP-1/9表達(dá)增加。Tapia-Pizarro A等[26]指出hCG(Human chorionic gonadotropin)→ESCs(endometrial stromal cells)→ TIMP-1/MMP-2 該通路中hCG通過ESC下調(diào)了TIMP-1的表達(dá),同時MMP-2的表達(dá)上升。這些負(fù)性因素都會影響TIMPs在抑制心室重塑方面的良性作用。
許多動物的心梗模型研究表明, TIMPs可有效地減輕心梗后不良的左室重塑,意味著TIMPs對于心梗患者而言將會成為一種潛在性的治療方向。Glass C等[27]將TIMP-1植入胚胎干細(xì)胞(ES cell)中并且過表達(dá),觀察到過表達(dá)TIMP-1的胚胎干細(xì)胞移植、分化為心肌細(xì)胞后顯著上調(diào)TIMP-1,可能通過Akt通路來抑制心梗后的心肌細(xì)胞凋亡,并且抑制了間質(zhì)和血管纖維化以及肝纖維化蛋白、MMP-9的表達(dá)。同時,還可以通過改變TIMPs的結(jié)構(gòu)來增強治療效果。Djafarzadeh R等[28]通過在TIMP-1上添加糖基磷脂酰肌醇來增加其結(jié)合在細(xì)胞表面的能力以及對基質(zhì)金屬蛋白酶活性的影響。Yongxin S等[29]認(rèn)為戒煙是一個重要的治療手段,長期吸煙會導(dǎo)致MMP-2、9的升高,即使是戒煙后MMP-2、9也難以恢復(fù)正常水平。Hopps E等[30]通過飲食、運動、藥物等治療方法改善MMPs/TIMPs比率的證據(jù)推動了動脈粥樣硬化過程中干預(yù)措施的研究并降低其發(fā)病率和死亡率及其血管并發(fā)癥的概率。Wright KJ等[31]發(fā)現(xiàn)雖然MMPs的活性隨著年齡的增加而增加,但是它并不影響耐力訓(xùn)練后TIMP-1基因的表達(dá)增加,根據(jù)其實驗結(jié)果人類的壽命是大鼠的25~30倍,故人類應(yīng)該實施12~15年的耐力訓(xùn)練。Xu J等[32]發(fā)現(xiàn)減少β2-糖蛋白將會下調(diào)p38-MAPK信號通路導(dǎo)致MMPs/TIMPs表達(dá)減少從而抑制血管脂質(zhì)沉積和斑塊形成。此外,Tsoutsman T等[23]認(rèn)為CCN2可能成為心衰的一個新的治療靶點。然而有學(xué)者質(zhì)疑TIMP-1在心室重塑中并沒有起到關(guān)鍵作用,Goldbergova MP等[33]觀察到在急性心梗后TIMP-1基因多態(tài)性對TIMP-1含量以及左室功能障礙或衰竭并沒有顯著影響。雖然以前的研究表明,TIMP-1在心梗后的左室重塑中起重要作用,但根據(jù)實驗測量出的TIMP-1水平作為預(yù)測左室功能衰竭的早期預(yù)測生物標(biāo)志物在臨床實踐中無價值。
MMPs/TIMPs系統(tǒng)不僅僅與心室重構(gòu)有關(guān),還與其他的臨床疾病有聯(lián)系。Zeng R等[34]發(fā)現(xiàn)在息肉狀脈絡(luò)膜血管病變中MMP-2和MMP-9是重要的生物相關(guān)標(biāo)志物?;|(zhì)金屬蛋白酶在腫瘤侵襲過程中起著重要的作用即降解細(xì)胞外基質(zhì)成分及轉(zhuǎn)移[35]。
綜上所述,在動物的心梗模型中觀察到MMPs/TIMPs系統(tǒng)參與了左室重塑的病變進(jìn)展,通過TIMPs對MMPs的內(nèi)源性抑制作用來調(diào)節(jié)心臟重塑的過程、改善心功能。雖然目前對于應(yīng)用TIMPs來治療心梗后心室重塑仍處在動物模型的實驗階段,但是TIMPs在心梗動物模型中顯示出的良好效果暗示了TIMPs將是心肌梗死、心力衰竭以及慢性高血壓等許多心臟疾病的一種趨勢。如果能夠深入剖析MMPs/TIMPs系統(tǒng)與左室重構(gòu)之間的聯(lián)系,對于在臨床上運用TIMPs治療左室重塑是重要的一步。
[1] Lindsey ML, Zamilpa R. Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction[J].Cardiovasc Ther, 2012,30(1):31-41.
[2] Spinale FG, Villarreal F. Targeting matrix metalloproteinases in heart disease: lessons from endogenous inhibitors[J]. Biochem Pharmacol, 2014, 90(1):7-15.
[3] Li X, Ren Y, Sorokin V, et al. Quantitative profiling of the rat heart myoblast secretome reveals differential responses to hypoxia and re-oxygenation stress[J]. J Proteomics, 2014, 98:138-149.
[4] Maharaj N, Khandheria BK, Libhaber E, et al. Relationship between left ventricular twist and circulating biomarkers of collagen turnover in hypertensive patients with heart failure[J]. J Am Soc Echocardiogr, 2014, 27(10):1064-1071.
[5] Phatharajaree W, Phrommintikul A, Chattipakorn N. Matrix metalloproteinases and myocardial infarction[J]. Can J Cardiol, 2007, 23(9):727-733.
[6] Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease[J].Biochem Pharmacol, 2008, 75(2):346-359.
[7] 羅新棟,聶青和.金屬蛋白酶組織抑制因子在肝纖維化研究中的價值[J].肝臟,2003,8(2):40-42.
[8] Moore CS, Crocker SJ. An alternate perspective on the roles of TIMPs and MMPs in pathology[J]. Am J Pathol,2012, 180(1):12-16.
[9] Nuttall RK, Sampieri CL, Pennington CJ, et al. Expression analysis of the entire MMP and TIMP gene families during mouse tissue development[J]. FEBS Lett, 2004, 563(1-3):129-134.
[10] Rojiani MV, Ghoshal-Gupta S, Kutiyanawalla A, et al. TIMP-1 overexpression in lung carcinoma enhances tumorkinetics and angiogenesis in brain metastasis[J]. J Neuropathol Exp Neurol, 2015, 74(4):293-304.
[11] Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis[J]. Matrix Biol,2015, 44-46:247-254.
[12] Takawale A, Fan D, Basu R, et al. Myocardial recovery from ischemia-reperfusion is compromised in the absence of tissue inhibitor of metalloproteinase 4[J]. Circ Heart Fail, 2014, 7(4):652-662.
[13] Zhang Z, Wang F, Wang BJ, et al. Inhibition of leptin-induced vascular extracellular matrix remodelling by adiponectin[J]. J Mol Endocrinol, 2014, 53(2):145-154.
[14] Kiczak Liliana, Tomaszek Alicja, Bania Jacek, et al. Expression and Complex Formation of MMP9, MMP2,NGAL, and TIMP1 in Porcine Myocardium but Not in Skeletal Muscles in Male Pigs with Tachycardia-InducedSystolic Heart Failure[J]. Bio Med Res Int, 2013, 2013:1-12.
[15] Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function[J]. Physiol Rev, 2007, 87(4):1285-1342.
[16] Konstam MA, Kramer DG, Patel AR, et al. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment[J]. JACC Cardiovasc Imaging, 2011, 4(1):98-108.
[17] Cerisano G, Buonamici P, Gori AM, et al. Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial[J]. Int J Cardiol, 2015, 197:147-153.
[18] 陳曉鋒, 顧振綸, 唐禮江. 基質(zhì)金屬蛋白酶在心衰中作用的研究進(jìn)展[J]. 中國藥理學(xué)通報, 2004, 20(2):137-140.
[19] Jung KK, Liu XW, Chirco R, et al. Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein[J]. EMBO J, 2006, 25(17):3934-3942.
[20] Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex[J]. Science, 2005, 307(5712):1098-1101.
[21] Ikeda H, Shiojima I, Oka T, et al. Increased Akt-mTOR signaling in lung epithelium is associated with respiratory distress syndrome in mice[J]. Mol Cell Biol, 2011, 31(5):1054-1065.
[22] Bayascas JR, Wullschleger S, Sakamoto K, et al. Mutation of the PDK1 domain inhibits protein kinase B/Akt, leading to small size and insulin resistance[J]. Mol Cell Biol,2008, 10:3258-3272.
[23] Tsoutsman T, Wang X, Garchow K, et al. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure[J]. J Mol Cell Cardiol, 2013, 62:164-178.
[24] Li SH, Guo J, Wu J, et al. miR-17 targets tissue inhibitor of metalloproteinase 1 and 2 to modulate cardiac matrix remodeling[J]. FASEB J, 2013, 27(10):4254-4265.
[25] Lu YC, Chang JT, Liao CT, et al. OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4-JNK-TIMP1-MMP signaling pathway[J]. Mol Cancer, 2014, 13:218.
[26] Tapia-Pizarro A, Argando a F, Palomino WA, et al. Human chorionic gonadotropin (hCG) modulation of TIMP1 secretion by human endometrial stromal cells facilitates extravillous trophoblast invasion in vitro[J]. Hum Reprod,2013, 28(8):2215-2227.
[27] Glass C, Singla DK. Overexpression of TIMP-1 in embryonic stem cells attenuates adverse cardiac remodeling following myocardial infarction[J]. Cell Transplant, 2012, 21(9):1931-1944.
[28] Djafarzadeh R, Sauter M, Notohamiprodjo S, et al. Recombinant GPI-anchored TIMP-1 stimulates growth and migration of peritoneal mesothelial cells[J]. PLoS ONE, 2012, 7(4):e33963.
[29] Yongxin S, Wenjun D, Qiang W, et al. Heavy smoking before coronary surgical procedures affects the native matrix metalloproteinase-2 and matrix metalloproteinase-9 gene expression in saphenous vein conduits[J]. Ann Thorac Surg, 2013, 95(1):55-61.
[30] Hopps E, Caimi G. Matrix metalloproteinases in metabolic syndrome[J]. Eur J Intern Med, 2012, 23(2):99-104.
[31] Wright KJ, Thomas MM, Betik AC, et al. Exercise training initiated in late middle age attenuates cardiac fibrosis and advanced glycation end-product accumulation in senescent rats[J]. Exp Gerontol, 2014, 50:9-18.
[32] Xu J, Wang P, Wang T, et al. Effects of reduced β2-glycoprotein I on the expression of aortic matrix metalloproteinases and tissue inhibitor matrix metalloproteinases in diabetic mice[J]. BMC Cardiovasc Disord, 2014, 14:114.
[33] Goldbergova MP, Parenica J, Jarkovsky J, et al. The association between levels of tissue inhibitor of metalloproteinase-1 with acute heart failure and left ventricular dysfunction in patients with ST elevation myocardial infarction treated by primary percutaneous coronary intervention[J]. Genet Test Mol Biomarkers, 2012, 16(10):1172-1178.
[34] Zeng R, Wen F, Zhang X, et al. Serum levels of matrix metalloproteinase 2 and matrix metalloproteinase 9 elevated in polypoidal choroidal vasculopathy but not in age-related macular degeneration[J]. Mol Vis, 2013, 19:729-736.
[35] Ben Néjima D, Ben Zarkouna Y, Gammoudi A, et al. Prognostic impact of polymorphism of matrix metalloproteinase-2 and metalloproteinase tissue inhibitor-2 promoters in breast cancer in Tunisia: case-control study[J]. Tumour Boil,2015,36(5):3815-3822.
Ventricular remodeling after myocardial infarction and tissue matrix metalloproteinase system
ZHENG Xi, ZHU Peng-li, YU Hui-zhen
(InternalMedicine,ProvincialClinicalMedicalCollegeofFujianMedicalUniversity,FujianProvincialHospital,GeriatricMedicineResearchInstitutionofFujianProvincialHospital,JinShanBranchCourtsofFujianProvincialHospital,Fuzhou350001,China)
It is well known that left ventricular remodeling after acute myocardial infarction is an important pathophysiological process in the process of heart failure, and it is also an important risk factor for cardiac death. Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) are regulators of extracellular matrix (ECM) balance. The left ventricular remodeling after myocardial infarction is closely related to the imbalance of the tissue matrix metalloproteinase system, which leads to the ECM degradation. In this paper, the regulation mechanism and function of MMPs/TIMPs system in ventricular remodeling after myocardial infarction are reviewed.
matrix metalloproteinases; tissue inhibitor of matrix metalloproteinases; signaling pathway; myocardial infarction; ventricular remodeling
鄭 熙(1991-),男,福建福州人,碩士研究生。E-mail:894383150@qq.com
朱鵬立,教授。E-mail:zpl7755@126.com
綜述10.11724/jdmu.2016.04.23
R541.7+8,R542.2+2
A
1671-7295(2016)04-0407-05
2016-01-18;
2016-05-13)