陳振華++趙秀媛++王輝平++張昊++陳鼎
摘要:對(duì)制備的Zr57.5Cu27.3Al8.5Ni6.7非晶合金的等溫與非等溫晶化動(dòng)力學(xué)通過(guò)差式掃描量熱法(DSC)進(jìn)行了研究,根據(jù)Kisinger方程計(jì)算出Zr57.5Cu27.3Al8.5Ni6.7非晶合金在非等溫條件下的激活能Eg,Ex,Ep1和Ep2,分別為409.70 kJ/mol(± 60.07 kJ/mol),335.53 kJ/mol(± 39.94 kJ/mol),323.95 kJ/mol(± 15.21 kJ/mol)和187.75 kJ/mol(± 13.27 kJ/mol).在718 K,723 K,728 K和733 K等溫條件下得到的晶化體積分?jǐn)?shù)與時(shí)間的關(guān)系曲線呈“S”型,表明晶化過(guò)程為典型的形核長(zhǎng)大型轉(zhuǎn)變.Avrami指數(shù)n的范圍為3≤n≤4,表明晶化過(guò)程由界面控制的二維長(zhǎng)大轉(zhuǎn)變?yōu)榻缑婵刂频娜S長(zhǎng)大,形核率隨時(shí)間逐漸降低至穩(wěn)定,等溫晶化過(guò)程得到的激活能平均值434.81 kJ/mol,高于非等溫晶化過(guò)程的有效激活能.
關(guān)鍵詞:大塊非晶;晶化動(dòng)力學(xué);激活能; Avrami指數(shù)
中圖分類號(hào):TG139.8 文獻(xiàn)標(biāo)識(shí)碼:AIsochronal and Isothermal Crystallization
in Zr57.5Cu27.3Al8.5Ni6.7 Bulk Metallic Glass
CHEN Zhenhua1, ZHAO Xiuyuan1, WANG Huiping2,ZHANG Hao3,CHEN Ding1,
(1. College of Materials Science and Engineering, Hunan Univ, Changsha, Hunan410082, China;
2. Zhuzhou Cemented Carbide Group Co, Ltd, Zhuzhou,Hunan412000, China;
3. Dept of Electromechanical Engineering, Changsha Univ,Changsha, Hunan410022, China)Abstract:Nonisothermal crystallization transformation kinetics and isothermal crystallization kinetics of prepared Zr57.5Cu27.3Al8.5Ni6.7 bulk metallic glass (BMG) were investigated with differential scanning calorimetry (DSC). In isochronal mode, the values of activation energy, Eg, Ex, Ep1 and Ep2, calculated by Kisinger method are 409.70 kJ/mol (± 60.07 kJ/mol), 335.53 kJ/mol (± 39.94 kJ/mol), 323.95 kJ/mol (± 15.21 kJ/mol) and 187.75 kJ/mol (± 13.27 kJ/mol), respectively. In isothermal mode, the Sshape relation curves of crystalline volume fraction and temperature reveal the typical transition of nucleation and growth. The Avrami exponent n ranges from 3.0 to 4, indicating the crystallization mechanism in the Zr57.5Cu27.3Al8.5Ni6.7 BMG is mainly interfacecontrolled. The crystal growth way changes from twodimensional growth with decreased nucleation rate to threedimensional growth in the isothermal crystallization process. In isothermal mode, the mean value of activation energy is 434.81 kJ/mol, which is higher than that in the isochronal mode.
Key words:BMG; crystallization kinetics; activation energy; Avrami exponent
與晶態(tài)物質(zhì)相比,大塊非晶合金呈短程有序長(zhǎng)程無(wú)序排列,沒(méi)有晶體結(jié)構(gòu)、晶界以及其他的晶體缺陷.因而大塊非晶合金(BMG)具有一系列優(yōu)異的性能,比如具有較高的屈服極限,較大的彈性應(yīng)變極限,高耐磨性,高抗疲勞強(qiáng)度和較強(qiáng)的耐腐蝕性[1-3].但非晶合金在熱力學(xué)上處于亞穩(wěn)態(tài),受熱時(shí)會(huì)發(fā)生向穩(wěn)定晶態(tài)的轉(zhuǎn)變,使其結(jié)構(gòu)和性能發(fā)生改變[4-5].因此研究大塊非晶的晶化過(guò)程和晶化動(dòng)力學(xué)對(duì)于評(píng)估其熱穩(wěn)定性以防止其晶化有非常重要的意義.因?yàn)榉蔷Ш辖鸬木Щ峭ㄟ^(guò)形核和長(zhǎng)大過(guò)程發(fā)生,這為研究晶體向各向同性價(jià)值生長(zhǎng)提供了機(jī)會(huì).此外此過(guò)程也為在大過(guò)冷條件下檢驗(yàn)經(jīng)典的形核長(zhǎng)大理論提供了較好的機(jī)會(huì).
湖南大學(xué)學(xué)報(bào)(自然科學(xué)版)2015年第12期陳振華等:Zr57.5Cu27.3Al8.5Ni6.7非晶合金的非等溫和等溫晶化動(dòng)力學(xué)研究研究者常用DSC法分析等溫和非等溫過(guò)程中的晶化行為和相關(guān)參數(shù):激活能,孕育時(shí)間,晶化指數(shù).等溫晶化,即非晶材料被迅速加熱到過(guò)冷液相區(qū)內(nèi)的設(shè)定溫度后保溫一段時(shí)間.通常,用JMA方程[6]來(lái)表征等溫模式下的晶化機(jī)制.非等溫晶化,即非晶樣品以恒定的加熱速率加熱,常采用OzawaFlynnWall法、Kissinger法、AugisBennett (AB)法以及GaoWang模型研究非晶態(tài)材料的有效晶化激活能[7-11].本文用DSC對(duì)Zr57.5Cu27.3Al8.5Ni6.7塊體非晶合金的非等溫和等溫晶化動(dòng)力學(xué)進(jìn)行了研究.
1實(shí)驗(yàn)方法
本文采用氬氣作為保護(hù)氣氛下電弧熔煉純金屬(wZr=99.5%;wCu=99.999%;wAl=99.999%;wNi=99.999%)混合物的方法制備Zr57.5Cu27.3Al8.5Ni6.7非晶合金.為減少樣品制備過(guò)程中氧氣的夾雜,首先熔煉氧含量不超過(guò)0.05%(原子分?jǐn)?shù))的鋯金屬塊[12].為確保成分均勻,將合金鑄錠反復(fù)熔煉6次,然后再將其吸鑄至水冷銅模中,制備出尺寸為Φ 4 mm×70 mm的大塊非晶合金鑄錠.
采用X射線衍射儀(XRD,D/Max2550)檢測(cè)鑄態(tài)Zr57.5Cu27.3Al8.5Ni6.7合金的非晶結(jié)構(gòu),衍射儀采用銅靶,K α射線,掃描速度為0.02 °/s.然后,將鑄錠線切割成1 mm厚的薄片,利用差示掃描量熱儀(DSC,NETZSCH STA 409 PC)對(duì)其晶化行為進(jìn)行分析.在高純氬氣氣流下,一部分樣品采用加熱速率分別為10 K/min,20 K/min,30 K/min,40 K/min的非等溫退火處理,另一部分樣品在以20 K/min升溫至目標(biāo)溫度后,分別在718 K,723 K,728 K和733 K溫度下等溫退火處理,并分析不同升溫速率以及不同等溫溫度下的DSC曲線,研究其非等溫晶化和等溫晶化行為.
2結(jié)果與討論
2.1結(jié)構(gòu)表征
2.2非等溫晶化行為
圖2為鑄態(tài)Zr57.5Cu27.3Al8.5Ni6.7大塊非晶合金分別在10 K/min,20 K/min,30 K/min和40 K/min的升溫速率下的連續(xù)加熱DSC曲線.從圖中可以看出,在玻璃化轉(zhuǎn)變溫度Tg各曲線均開(kāi)始出現(xiàn)向下的吸熱峰,溫度高于初始晶化溫度Tx后曲線開(kāi)始出現(xiàn)向上的尖銳的晶化峰,在玻璃化轉(zhuǎn)變溫度和開(kāi)始晶化溫度之間具有較寬的過(guò)冷液相區(qū)ΔT(ΔT= Tx- Tg).并且,可以清楚地看出隨著升溫速率的增大,Tg和Tx均逐漸向右移動(dòng).從Zr57.5Cu27.3Al8.5Ni6.7大塊非晶合金在不同升溫速率下的DSC曲線中得到的特征溫度列于表1,其中,Tp1 和Tp2分別對(duì)應(yīng)為第一晶化峰溫度和第二晶化峰溫度.
T/K
從表1中可以明顯看出,隨著升溫速率的增大, Zr57.5Cu27.3Al8.5Ni6.7大塊非晶合金的Tg,Tx,Tp1和Tp2逐漸提高,過(guò)冷液相區(qū)ΔT逐漸變寬,表明此非晶樣品的玻璃化轉(zhuǎn)變和晶化過(guò)程都具有動(dòng)力學(xué)效應(yīng).在非等溫退火過(guò)程中,Zr57.5Cu27.3Al8.5Ni6.7大塊非晶合金由非晶態(tài)轉(zhuǎn)變?yōu)榫B(tài)會(huì)產(chǎn)生相變動(dòng)力學(xué).
依據(jù)表1中的各特征溫度,可以計(jì)算出非等溫晶化過(guò)程中,玻璃化轉(zhuǎn)變和開(kāi)始晶化等過(guò)程所需要克服的能量勢(shì)壘,即為晶化轉(zhuǎn)變的激活能.在非晶合金晶化過(guò)程中,晶化激活能常使用Kissinger方法來(lái)計(jì)算,Kissinger方程表示為式(1):
ln (T2ib)≈EiRTi-ln (vREi).(1)
式中:b為升溫速率;Ti分別為特征溫度Tg,Tx,Tp1和Tp2;R為玻爾茲曼常數(shù);Ei為玻璃化轉(zhuǎn)變激活能和晶化激活能Eg,Ex,Ep1和Ep2.根據(jù)在不用升溫速率下得到的特征溫度值,利用Kissinger方程擬合出相應(yīng)的直線,如圖3所示.
(1 000/T)/K-1
圖3Zr57.5Cu27.3Al8.5Ni6.7
大塊非晶合金的Kissinger曲線
Fig.3Kissinger plots of Zr57.5Cu27.3Al8.5Ni6.7 BMG
根據(jù)圖中擬合出的直線的斜率計(jì)算得到的激活能Eg,Ex,Ep1和Ep2分別為409.70 kJ/mol(±60.07 kJ/mol),335.53 kJ/mol(± 39.94 kJ/mol),323.95 kJ/mol(± 15.21 kJ/mol)和187.75 kJ/mol(± 13.27 kJ/mol).可以明顯看出,Eg>Ex>Ep1>Ep2,表明連續(xù)加熱過(guò)程中,固態(tài)原子擴(kuò)散比過(guò)冷態(tài)原子的擴(kuò)散所需要克服的能量勢(shì)壘大,即相變激活能更大,這與文獻(xiàn)中所闡述的結(jié)果相一致[13],同時(shí)可以看出一次晶化比二次晶化所需克服的能量勢(shì)壘大,其激活能差值也較大.
2.3等溫晶化行為
這里對(duì)Zr57.5Cu27.3Al8.5Ni6.7非晶合金樣品的等溫晶化行為進(jìn)行分析和討論.非晶合金的結(jié)晶被認(rèn)為是在Tx以上發(fā)生的,然而Tx并不像金屬的融化溫度是熱力學(xué)參數(shù),而是加熱速率的函數(shù),加熱速率越高Tx越高.因此,如果時(shí)間充裕,在低于Tx的溫度下,非晶合金也能夠發(fā)生晶化.
圖4為不同等溫溫度下Zr57.5Cu27.3Al8.5Ni6.7非晶合金的DSC曲線,從圖中可以看出,隨著等溫溫度的增加,孕育時(shí)間τ(從開(kāi)始等溫至晶化開(kāi)始的時(shí)間)逐漸變短,晶化峰由平緩逐漸變得尖銳.
對(duì)不同等溫溫度下DSC曲線上向上的放熱峰進(jìn)行積分,可以得到晶化體積分?jǐn)?shù)x(t)與時(shí)間t的函數(shù)關(guān)系,如圖5所示.從圖5中可以明顯看出,在不同等溫溫度下的各曲線均呈“S”型,是典型的形核長(zhǎng)大轉(zhuǎn)變曲線形狀.
t/min
研究表明,鋯基非晶合金晶核長(zhǎng)大機(jī)制為界面控制長(zhǎng)大[14-15],根據(jù)表2中3≤n≤4,表明長(zhǎng)大方式由二維長(zhǎng)大逐漸變?yōu)槿S長(zhǎng)大,當(dāng)3 計(jì)算出相應(yīng)的ln t(x)和1 000/T值,以此作圖得到直線的斜率以求得該非晶合金在等溫過(guò)程中的有效激活能E.圖7為10%≤x(t)≤90%時(shí),晶化至不同體積分?jǐn)?shù)時(shí)所需時(shí)間ln t(x)與等溫溫度1 000/T的關(guān)系曲線,可以看出,擬合出的幾組直線趨于平行,根據(jù)式(4)Arrhenius公式[16],可以計(jì)算出各晶化體積分?jǐn)?shù)下的激活能:
t(x)=t0e(Ex/RT). (4)
式中:t(x)為晶化至不同體積分?jǐn)?shù)所需的時(shí)間;t0為常數(shù);Ex為不同晶化體積分?jǐn)?shù)的激活能;R為玻爾茲曼常數(shù);T為等溫溫度.得到的平均有效激活能為434.81 kJ/mol,等溫條件下得到的激活能與前面討論過(guò)的非等溫過(guò)程的有效激活能相比數(shù)值上較大,這種情況與文獻(xiàn)中的結(jié)果相一致[17-18].Yang等人[16]認(rèn)為在非等溫情況下,加熱溫度比等溫條件下高,導(dǎo)致非晶合金從亞穩(wěn)態(tài)轉(zhuǎn)變至穩(wěn)態(tài)相對(duì)容易,因此在等溫加熱條件下晶化所需能量臨界值比非等溫加熱高.
(1 000/T)/K-1
圖7Zr57.5Cu27.3Al8.5Ni6.7非晶合金的激活能計(jì)算曲線
Fig.7Plots for calculation of activation
energy in Zr57.5Cu27.3Al8.5Ni6.7 BMG
3結(jié)論
關(guān)于Zr57.5Cu27.3Al8.5Ni6.7非晶合金在10 K/min,20 K/min,30 K/min,40 K/min升溫速率下非等溫晶化與718 K,723 K,728 K和733 K溫度下等溫晶化動(dòng)力學(xué)研究結(jié)果總結(jié)如下:
1)根據(jù)Kissinger方程計(jì)算出Zr57.5Cu27.3Al8.5Ni6.7非晶合金玻璃化轉(zhuǎn)變和晶化過(guò)程的激活能Eg,Ex,Ep1和Ep2分別為409.70 kJ/mol(±60.07 kJ/mol),335.53 kJ/mol(± 39.94 kJ/mol),323.95 kJ/mol(± 15.21 kJ/mol)和187.75 kJ/mol(±13.27 kJ/mol),并且滿足Eg>Ex>Ep1>Ep2.
2)根據(jù)JMA曲線得出Avrami指數(shù)n的范圍為3≤n≤4,表明Zr57.5Cu27.3Al8.5Ni6.7非晶合金等溫晶化過(guò)程中由界面控制的二維長(zhǎng)大轉(zhuǎn)變?yōu)榻缑婵刂频娜S長(zhǎng)大,形核率隨時(shí)間逐漸降低至穩(wěn)定.
3)等溫晶化過(guò)程得到的激活能平均值434.81 kJ/mol,高于非等溫晶化過(guò)程的有效激活能.
參考文獻(xiàn)
[1]INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48(1): 279-306.
[2]WANG W H, DONG C, SHEK C H. Bulk metallic glasses[J]. Materials Science and Engineering: R: Reports, 2004, 44(2): 45-89.
[3]WANG W H. Bulk metallic glasses with functional physical properties[J]. Advanced Materials, 2009, 21(45): 4524-4544.
[4]HU Y, LIU L, CHAN K C, et al. The effect of crystallization microstructure and magnetic properties of Fe61Co7Zr9.5Mo5W2B15.5 bulk metallic glass[J]. Materials Letters, 2006, 60(8): 1080-1084.
[5]KUMAR G, RECTOR D, CONNER R D, et al. Embrittlement of Zrbased bulk metallic glasses[J]. Acta Materialia, 2009, 57(12): 3572-3583.
[6]LU K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties[J]. Materials Science and Engineering R, 1996, 16(4): 161-221.
[7]OZAWA T. Kinetic analysis of derivative curves in thermal analysis[J]. Journal of Thermal Analysis and Calorimetry, 1970, 2(3): 301-324.
[8]KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706.
[9]OZAWA T. Estimation of activation energy by isoconversion methods[J]. Thermochimica Acta, 1992, 203(2):159-165.
[10]GAO Y Q, WANG W. On the activation energy of crystallization in metallic glasses[J]. Journal of Noncrystalline Solids, 1986, 81(1): 129-134.
[11]QIAO J C, PELLETIER J M. Isochronal and isothermal crystallization in Zr55Cu30Ni5Al10 bulk metallic glass[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 577-584.
[12]WANG G Y, LIAW P K, YOKOYAMA Y, et al. Fatigue behavior of Zrbased bulkmetallic glasses[J]. Materials Science and Engineering: A, 2008, 494(1): 314-323.
[13]SUN H Y, WANG J S, CAO L J, et al. Effect of electropulsing treatment on the crystallization kinetics of Zr55Ni5Al10Cu30 bulk metallic glass[J] Thermochimica Acta, 2012, 537: 80-85.
[14]PAULY S, DAS J, MATTERN N, et al. Phase formation and thermal stability in CuZrTi(Al) metallic glasses[J]. Intermetallics, 2009, 17(6): 453-462.
[15]SONG K K, PAULY S, ZHANG Y, et al. Strategy for pinpointing the formation of B2 CuZr in metastable CuZrbased shape memory alloys[J]. Acta Materialia, 2011, 59(17): 6620-6630.
[16]YANG Y J, XING D W, SHEN J, et al. Crystallization kinetics of a bulk amorphous CuTiZrNi alloy investigated by differential scanning calorimetry[J]. Journal of Alloys and Compounds, 2006, 415(1): 106-110.
[17]ZHANG L C, XU J, ECKERT J. Thermal stability and crystallization kinetics of mechanically alloyed TiC∕ Tibased metallic glass matrix composite[J]. Journal of Applied Physics, 2006, 100(3): 033154-033161.
[18]QIAO J C, PELLETIER J M. Enthalpy relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 bulk metallic glasses by differential scanning calorimetry (DSC)[J]. Intermetallics, 2011, 19(1): 9-18.